1. 复数如何进行运算
复数运算法则有:加减法、乘除法。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,
即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
2. 复数的运算公式有哪些
复数运算法则有加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。
一.复数的定义
我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
二.复数运算公式
1.加法法则:复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
2.减法法则:复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
3.乘法法则:规定复数的乘法按照以下的法则进行:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
4.除法法则:复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
3. 复数的运算公式是什么
1、加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
2、减法法则
复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
3、乘法法则
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,展开得: ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i 。两个复数的积仍然是一个复数。
4、除法法则
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,在分子分母同时乘上分母的共轭.。所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
(3)复数的简便运算方法扩展阅读
复数的加法就是自变量对应的平面整体平移,复数的乘法就是平面整体旋转和伸缩,旋转量和放大缩小量恰好是这个复数对应向量的夹角和长度。
二维平移和缩放是一维左右平移伸缩的扩展,旋转是一个至少要二维才能明显的特征,限制在一维上,只剩下旋转0度或者旋转180度,对应于一维导数正负值(小线段是否反向)。
4. 复数的计算是怎么样的
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
加法:实部与实部相加为实部,虚部与虚部相加为虚部。
(a+bi)+(c+di)=(a+c)+(b+d)i
减法:实部与实部相减为实部,虚部与虚部相减为虚i。
(a+bi)-(c+di)=(a-c)+(b-d)i
乘法:按多项式的乘法运算来做
(a+bi)*(c+di)=ac+adi+bci+bdi^2(i^2=-1)
=(ac-bd)+(ad+bc)i
除法:把除法写成分数的形式,再将分母实数化(就是乘其共轭复数)
(a+bi)/(c+di)=(a+bi)*(c-di)/[(c+di)(c-di)]
=[ac+bd-(ad-bc)i]/(c^2+d^2)
在实数域上定义二元有序对z=(a,b)
并规定有序对之间有运算“+”、“×”(记z1=(a, b),z2=(c, d)):
z1+ z2=(a+c, b+d)
z1× z2=(ac-bd, bc+ad)
容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,有
z=(a, b)=(a, 0) + (0, 1) × (b, 0)
令f是从实数域到复数域的映射,f(a)=(a, 0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。
以上内容参考:网络-复数
5. 复数如何运算
复数的四则运算公式是复数相加则相加,相减则减,相乘则乘,相除则除。
复数的介绍
我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数,当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数运算法则有,加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数,指数,真数时,其运算规则可由欧拉公式e^iθ=cosθ+i sinθ弧度制推导而得。