导航:首页 > 知识科普 > 简便方法的灵活运用

简便方法的灵活运用

发布时间:2023-01-27 06:20:47

1. 数学乘法简便计算方法技巧有哪些

一、结合法

一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。

示例:

计算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。

二、分解法

一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。

示例:

计算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

将18分解成2×9的形式,再将括号去掉,使计算简便。

三、拆数法

有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。

示例:

计算:99×99+199

(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:

99×99+199

=99×99+99+100

=99×(99+1)+100

=99×100+100

=10000

(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:

99×99+199

=(100-1)×99+(100-1)+100

=(100-1)×(99+1)+100

=(100-1)×100+100

=10000

四、改数法

有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。

示例:

计算:25×5×48

25×5×48

=25×5×4×12

=(25×4)×(5×12)

=100×60

=6000

把48转化成4×12的形式,使计算简便。

数学乘法运算定律

整数的乘法运算满足:交换律,结合律,分配律,消去律。

随着数学的发展, 运算的对象从整数发展为更一般群。

群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。

1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。

2、乘法结合律:(ab)c=a(bc)

3、乘法分配律:(a+b)c=ac+bc

2. 小学简便运算窍门

1、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。注意相同因数的提取。
2、借来借去法
需要注意观察,发现规律。看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
3、拆分法
拆分法就是为了方便计算把一个数拆成几个数。如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小。
4、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
5、拆分法和乘法分配律结
这种方法要灵活掌握拆分法和乘法分配律,看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
6、利用基准数
在一系列数中找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。

3. 数学简便计算方法技巧四年级简单易懂

1.提取公因式

这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。

注意相同因数的提取。

例如:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

2.借来借去法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。

考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。

例如:

9999+999+99+9

=9999+1+999+1+99+1+9+1-4

3.拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。

例如:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

4.加法结合律

注意对加法结合律

(a+b)+c=a+(b+c)

的运用,通过改变加数的位置来获得更简便的运算。

例如:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

5.拆分法和乘法分配律结合

这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。

例如:

34×9.9 = 34×(10-0.1)

案例再现:57×101=?

6.利用基准数

在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。

例如:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

7.利用公式法

(1) 加法:

交换律,a+b=b+a

结合律,(a+b)+c=a+(b+c)

(2) 减法运算性质:

a-(b+c)=a-b-c,

a-(b-c)=a-b+c

a-b-c=a-c-b

(a+b)-c=a-c+b=b-c+a

(3):乘法(与加法类似):

交换律,a*b=b*a

结合律,(a*b)*c=a*(b*c)

分配率,(a+b)xc=ac+bc

(a-b)*c=ac-bc

(4) 除法运算性质(与减法类似):

a÷(b*c)=a÷b÷c

a÷(b÷c)=a÷bxc

a÷b÷c=a÷c÷b

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。

8.裂项法

分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。

常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

分数裂项的三大关键特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”

(3)分母上几个因数间的差是一个定值。

公式:

阅读全文

与简便方法的灵活运用相关的资料

热点内容
医院卵泡发育的检测方法 浏览:387
冰箱铝管对铝焊接方法和技巧 浏览:169
手工包的制作方法和步骤 浏览:326
图片解释方法 浏览:576
纳米晶粒径检测方法 浏览:444
小学低年级的教学方法与策略 浏览:758
电锤拆石头的正确操作方法 浏览:394
生白术的食用方法 浏览:422
四芯铝芯电缆接头连接方法 浏览:414
鸡感冒了怎么办最有效的土方法 浏览:788
织帽子的方法视频 浏览:99
土工试验资料试表22的计算方法 浏览:218
移植后快速暖宫方法 浏览:926
分析方法A 浏览:545
口腔麻醉消毒的方法不包括哪些 浏览:572
8x88简便计算方法 浏览:908
小说对话翻译研究方法 浏览:737
咸丰元宝宝源当百真假鉴别方法 浏览:552
翡翠新武器鉴别方法 浏览:643
竞争的定价方法常用在哪里 浏览:566