⑴ 奥数中的巧算速算方法
巧算公式
乘法:分配律=ac+ab=a(b+c)
结合律=abc=a(bc)
交换律=ab=ac
积不变性质=ab=(a÷c)×(bc)(c≠0)
加法:结合律=a+b+c=a+(b+c)
交换律=a+b=b+a
除法:a÷b÷c=a÷(b×c)(b≠0,c≠0)
商不变性质=a÷b=(a×d)÷(b×d)(b≠0,d≠0)=(a÷d)÷(b÷d)(b≠0,d≠0)
减法:a-b-c=a-(b+c)
速算方法
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
(1)奥数乘加混合运算简便计算的方法扩展阅读
国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。
这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助;第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克,匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。
以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。2013年参加这项赛事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。
经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化, 有了一整套约定俗成的常规,并为历届东道主所遵循。
国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供;但旅费由参赛国自理。参赛选手必须是不超过20岁的中学生,每支代表队有学生6人;另派2名数学家为领队。试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。
东道国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。主试委员会由各国的领队及主办国指定的主席组成。这个主席通常是该国的数学权威。
⑵ 四则混合运算的简便方法
常见的简便运算的方法
1.凑整法
运用补充数或分解数的方法凑成整十、整百、整千的数在小数、分数中凑成整数。
例如:9.9 +99.9 +999.9= 10 + 100+1000-0.3
2.拆分法
把算式中的某个数拆分为能够运算简便的数。
例如:99×63=(100-1) x63
3.运用积(商)不变的性质
运用积不变的性质变形。
如: 2222×3333 +1111 ×3334
=1111 ×6666+1111 ×3334
=1111 × (6666 + 3334)
=1111 × 10000
= 11110000
4. 转换运算
根据运算的定义和性质,有时可以用一种运算代替另一种运算。
用乘法代替加法:23 +23 +23 +37=23×3 +37 = 106
用乘法代替除法:1.24×0.25+2.76÷4
=1.24×0.25 +2.76×0.25
=(1.24 +2.76) ×0.25
=4×0.25
=1
用除法代替乘法:3.2×0.125=3.2÷8=0.4
⑶ 数学乘法简便计算方法技巧
要有六大方法: “凑整巧算”——运用加法的交换律、结合律进行计算。运用乘法的交换律、结合律进行简算。 运用减法的性质进行简算,同时注意逆进行。运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。运用乘法分配律进行简算。 混合运算(根据混合运算的法则)。 具体解释:一、“凑整巧算”——运用加法的交换律、结合律进行计算。凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。加法交换律 定义:两个数交换位置和不变,公式:A+B =B+A,例如:6+18+4=6+4+18 加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。公式:(A+B)+C=A+(B+C),例如:(6+18)+2=6+(18+2) 引申——凑整例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 二、运用乘法的交换律、结合律进行简算。乘法交换律定义:两个因数交换位置,积不变. 公式:A×B=B×A 例如:125×12×8=125×8×12 乘法结合律定义:先乘前两个因数,或者先乘后两个因数,积不变。 公式:A×B×C=A×(B×C), 例如:30×25×4=30×(25×4)三、运用减法的性质进行简算,同时注意逆进行。减法 定义:一个数连续减去两个数,可
⑷ 简便运算的技巧和方法四年级奥数
四年级“简便计算”掌握的好坏直接影响五六年级数学成绩,各种运算定律要牢牢记住,并多加练习。在本单元学习过程中你能碰到的题型,基本都在这里了,请关注李老师,收藏本文,碰到困难题型再来看一看。
文末有“完整电子版”获取方式!
首先给同学们奉上加、减、乘、除“运算定律”,务必熟记,最好是能全部准确默写。
加、减、乘、除运算定律
例1:“多加就减,多减就加,少加再加,少减再减”。
例2:带符号搬家
注意:此方法只能用于只有加减法或只有乘除法时,“带符号”带的是数字前面的符号。
例3:减法的性质、带符号搬家综合运用
减法的性质:一个数连续减去几个数,等于这个数减去这几个减数的和,用字母表示为:a-b-c=a-(b+c)
例4:除法的性质
除法的性质:一个数连续除以几个数,等于这个数除以这几个除数的积,用字母表示为:a÷b÷c=a÷(b×c)
例5:去括号和加括号
注意:在需要去括号和加括号时,如果括号前面是“+”或“×”,不用变号;如果括号前面是“-”或“÷”,要变号,“+”变“-”,“-”变“+”,“×”变“÷”,“÷”变“×”。
⑸ 加减混合运算法简便运算技巧
加减混合运算简便方法公式为:
a+b-c。加减混合运算凑成整数来运算是最简便的方法。加减法混合运算首先算括号里的,其次是按照先后顺序计算。
1、同级运算时,从左到右依次计算。
2、两级运算时,先算乘除,后算加减。
3、有括号时,先算括号里面的,再算括号外面的。
4、有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号外面的。
5、要是有乘方,最先算乘方。
6、在混合运算中,先算括号内的数 ,括号从小到大,如有乘方先算乘方,然后从高级到低级。
⑹ 简便运算的规律和方法
一、什么是简便运算
“简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。
二、简便运算大全
(一)、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
说明:适用于加法交换律和乘法交换律。
(二)、结合律
(1)加括号法
①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括号法
①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
①分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
③注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8 ×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
综上所述,在四则混合运算中,简便运算试题的类型不外乎这几种形式,只要掌握四则混合运算顺序,同时掌握好上述简便算法,就可以保证计算的时效。
⑺ 数学简便计算,有哪几种方法
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2