1. 数学建模中有什么好的数据处理方法,尤其是量大的数据
你是要做统计吗?对大量数据的处理统计,spss是个很强大的统计软件,只要你将excel中的数据导入spss,然后选择你要处理的方式,软件自动帮你解决。至于lingo,是做优化的好帮手,而MATLAB虽然也具有统计处理数据的功能,但是没有spss强大,不过用来解微分方程是很合适的。
另外,如果你不会用spss,觉得学起来麻烦,那就用excel吧,其实excel的功能也是很强大的,处理数据很方便。我一般是先用excel对数据做一些初级的处理,比如排序啊,求和统计,平均数之类的,如果要做回归分析或者聚类分析等等,我就会用spss来做,这个用起来很方便。
2. 建模的五种基本方法
参数化建模(Parametric Modeling)
是20世代末逐渐占据主导地位的一种计算机辅助设计方法,是参数化设计的重要过程。
3. 数学建模中综合评价的方法有哪些
综合评价有许多不同的方法:
1、综合指数法:
综合指数法是先综合,后对比平均,其最大优点在于不仅可以反映复杂经济现象总体的变动方向和程度,而且可以确切地、定量地说明现象变动所产生的实际经济效果。但它要求原始资料齐全。平均指数法是先对比,后综合平均,虽不能直接说明现象变动的绝对效果,但较综合指数法灵活,便于实际工作中的运用。
2、TOPSIS法:
其基本原理,是通过检测评价对象与最优解、最劣解的距离来进行排序,若评价对象最靠近最优解同时又最远离最劣解,则为最好;否则不为最优。其中最优解的各指标值都达到各评价指标的最优值。最劣解的各指标值都达到各评价指标的最差值。
3、层次分析法:
运用层次分析法有很多优点,其中最重要的一点就是简单明了。层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。也许层次分析法最大的优点是提出了层次本身,它使得买方能够认真地考虑和衡量指标的相对重要性。
另外还有RSR法、模糊综合评价法、灰色系统法等,这些方法各具特色,各有利弊。
(3)建模中排序用哪些方法扩展阅读:
综合评价的一般步骤
1、根据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即根据有关的专业理论和实践,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。
2、根据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重;
3、合理确定各单个指标的评价等级及其界限;
4、根据评价目的,数据特征,选择适当的综合评价方法,并根据已掌握的历史资料,建立综合评价模型;
5、确定多指标综合评价的等级数量界限,在对同类事物综合评价的应用实践中,对选用的评价模型进行考察,并不断修改补充,使之具有一定的科学性、实用性与先进性,然后推广应用。
4. 数学建模试题 排名问题
在各个评委评定的名次比较接近时合理,当有评委给出差异很大的结果时不合理,应去掉有巨大差异的评委结果,就可消除此消极影响。
名次取倒数相加,结果从大到小排列,将更为合理
5. 数学建模五个步骤顺序
数学建模五个步骤顺序如下:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。
如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
6. catia怎么更改模型树中不同特征的先后顺序
方法和详细的操作步骤如下:
1、第一步,在“模型”界面上看不到图纸,见下图,转到下面的步骤。
7. 多目标模型怎么给目标排序matlab
matlab多目标模型给目标排序的方法:
1、打开matlab软件,在matlab软件的界面中,找到插入选项。
2、点击打开插入选项,在插入选项中,找到多目标模型,点击打开多目标模型。
3、在多目标模型中找到排序选项,点击打开排序选项,即可进行给目标排序。
8. 数学建模常用方法
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
9. 如何用数学建模的方法,将1到100十组杂乱数字进行快速排序
就是一个计算机编程的问题,编程的过程和方法也可以作为数学模型,数学建模可以是一个数字,可以是一个程序,一个公式等。
建议你用matab或c语言有专门的排序方法像冒泡法等