导航:首页 > 知识科普 > 几何校正常用方法有哪些

几何校正常用方法有哪些

发布时间:2023-01-11 20:08:15

① 图像校正的图像校正分类

图像校正主要分为两类:几何校正和灰度校正。
图象几何校正
其思路是通过一些已知的参考点,即无失真图象的某些象素点和畸变图象相应象素的坐标间对应关系,拟合出映射关系中的未知系数,并作为恢复其它象素的基础。
几何校正的基本方法是:
首先建立几何校正的数学模型;
其次利用已知条件确定模型参数;
最后根据模型对图像进行几何校正。
具体操作通常分两步:
①对图像进行空间坐标变换;首先建立图像像点坐标(行、列号)和物方(或参考图)对应点坐标间的映射关系,解求映射关系中的未知参数,然后根据映射关系对图像各个像素坐标进行校正;
②确定各像素的灰度值(灰度内插)。

② 几何校正

几何校正

几何校正就是校正成像过程中所造成的各种几何畸变,将图像数据投影到平面上,使其符合地图投影系统的过程。影像上的像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等。

将地图坐标系统赋予图像数据的过程,称为地理参考(georeferencing)或地理编码(geo-coding),由于所有地图投影系统都遵循于一定地图坐标系,因此几何校正包含了地理参考过程。

引起几何畸变的原因:遥感平台的位置和运动状态变化、地形起伏,地表曲率,大气折射和地球自转等。几何校正就是纠正这些畸变,确定校正后图像的行列值,并找到新图像中每一像元的亮度值,从而实现配准校正。

常用几何校正方法有:(1)基于多项式;(2)基于共线方程;(3)基于有理函数;(4)基于自动配准的小面元微分纠正。方法(1)的主要步骤有:选取地面控制点(Ground Control Point,GCP),多项式校正模型构建,重采样。

N次多项式控制点的最少数为(N+1)(N+2)/2,控制点选取原则:选取图像上容易分辨并精确的点,如道路的交叉点,河流的分叉处等。图像边缘选取一定数量特征点,特征点均匀分布在整幅图像上。

重采样:控制点的像元一一定位后,为得到图像上各点的亮度值,需要按照一定规则对图像中各个位置像元的亮度值进行计算。重采样的方法有:

(1)最邻近法:将最邻近像元值直接赋予输出像元。速度快且不改变原始栅格值。

(2)双线性内插法:采用双线性方程和2x2窗口计算输出像元值。更光滑,但改变了原来的栅格值。

(3)三次卷积法:三次方程和4x4窗口计算输出像元值。

图像控制点。 英文: image control point 。释文: 图像几何校正、投影变换和图像配准等几何变换中,在图像上选取的用于建立几何变换函数的参考点。当以地面实际坐标(经纬度、地图投影坐标等)为参照进行几何变换时,这时的控制点又称为地面控制点(ground contml point,GCP)。每个控制点应包含两组坐标数据,即在输入图像上的坐标和在输出图像上的坐标,因此又称为控制点对。

随着建筑物越来越多,测量标志对建筑也越来越重要。控制点是作为施工控制的测量坐标点,是地形图平面测量的主要测量依据,在地形图上标记有表示控制点的符号,该控制点是地面上控制点标志的代表。其实测量标志有很多种,例如水准点标志、控制点标志、GPS点标志等测量标志都是用来标定地面测量控制点的位置。控制点标志具有外形美观、物美价廉、能长期保存、数据十分精确等优点。可根据用户的要求刻字、编号,数据记录清晰,方便寻找,是控制测量中不可或缺、充分提升测绘单位形象的优质产品。控制点标志为社会的各方面提供了真实可靠、准确权威的地理国情信息,对于优化国土空间开发利用、促进人与自然协调发展等方面起着十分重要的作用,不仅是国家赋予测绘工作的重要使命,还是测绘事业科学发展的重要战略选择。

水准点标志、 控制点标志 、GPS点标志等测量标志都是用来标定地面测量控制点位置的。那这些点又有哪些种类呢?下面就为大家详细介绍一下:

1.基线点:采用精密的仪器和精湛的技术方法来直接测量一段或多段直线的长度,作为起算数据或检校标准,这样的直线就是基线,基线的端点一般会设置测量标志,这样的点就被称为基线点。可以通过基线检定来与测距真实长度对比,从而发现仪器是否出现问题,使测量精度更有保障。

2.导线点:进行测量工程时,在地面上选取一系列的点并为其设置测量标志,连成折线后测量其长度与转折角,这样的折线就被称作导线,这些点就是导线点。

3.重力点:它是用来测量重力加速度的点,重力测量的成果能够使大地测量的成果准确归算到椭球面,它是石油开发、矿物勘探的重要手段,而且还能为当今的卫星轨道计算提供重要的导航参数。

4.三角点:根据测量工程中的规范选取好相应的点,然后将以这些点为定点的三角形连接成为三角网,这些点就是三角点,它可以为经济建设与地形测绘提供基本的平面控制。

5.天文点:它是采用天文测量来测定的地面点,可用来确定观测地点的天文经度和纬度以及某一方向的方位角。

6.水准点:在高程控制测量中,经常采用水准测量的方法来测定其点位,所测得的点就是水准点,它为地形测绘、矿山开采、城市建设等提供了精确的高程控制。

7.全球卫星定位点:它也被称为GPS点,是用卫星定位技术获得的控制点。

以上就是地面测量 控制点 的种类了,在实际的测绘工作中,所用到的点自然不止这些,相关测量单位要根据工程具体情况合理选择选择测量方式,标定测量点。

国产影像数据中的*.rpc/*.rpb文件,即RPC文件

Rational Ploynomial Coefficient 有理多项式系数模型。用于几何校正,将地面点大地坐标系与其对应的像点坐标用比值多项式关联起来,这就像数字摄影测量学上在外场用单反拍张照片,并求出其内外方位元素,已知对应像点坐标的大地坐标值(一般为三对以上)将相片的所有像点坐标转换为大地坐标的求解过程。

提供RPC的主要原因:影像供应商不提供卫星和传感器参数,当然RPC模型方便性和实用性。

③ 几何校正的原理和过程

几何校正原理:框幅式遥感影像图的几何校正手段分为光学校正和数字校正。传统 的遥感影像图校正多采用光学校正 ,这种方法在数学上有一定 的局限 ;而数字校正建立在严格的数学基础上,可以逐点逐行进行校正,所以它要求各种类型传感器图像 实行严格校正。通过数字校正,改正原始图像的几何变形 ,产生符合某种地图投影的新图像。

遥感影像图的几何校正有3种方案 ,即系统校正、利用控制点校正以及混合校正。

几何精校正就是利用地面控制点GCP对各种因素引起的遥感图像几何畸变进行校正。从数学上说,其原理是通过一组 GCP建立原始的畸变图像空间与校正空间的坐标变换关系,利用这种对应关 系把畸变空间中全部元素变换到校正空间中去,从 而实现几何精校正。

系统几何校正的关键是建立地球固定坐标系中LOS和未校正图像平面到校正图像平面之间的相互转换关系。

常用的方法有:基于多项式的遥感图像纠正、基于共线方程的遥感图像纠正、基于有理函数的遥感图像纠正、基于自动配准的小面元微分纠正等。

应用是:多光谱、多时相影像配准和遥感影像制图,必须经过上述几何校正。因人们已习惯于用正射投影地图,故多数遥感影像的几何校正以正射投影为基准进行。某些大比例尺遥感影像专题制图,可采用不同地图投影作为几何校正基准,主要是解决投影变换问题,一些畸变不能完全得到消除。遥感影像的几何校正可应用光学、电子学或计算机数字处理技术来实现。

④ 几何校正为什么常用间接法

因为该方法能保证校正后图像的像元在空间上均匀分布。间接法最为常用,因为该方法能保证校正后图像的像元在空间上均匀分布,但不足之处在于需要进行灰度重采样。

⑤ 测区ETM+卫星图像几何校正

遥感图像几何校正处理有两个目的,一是消除遥感图像在其形成过程中产生的各种几何位置畸变,另一种目的是经过几何校正处理,使遥感图像带有经纬度球面坐标或大地坐标,便于与地形图对比分析。卫星遥感数据地面接收站(简称地面站)提供的遥感数据,一般已对遥感器本身和地球自转造成的系统几何畸变作了常规的几何校正处理(常称为粗校正),这里主要介绍对遥感图像中残存的非系统畸变的几何校正处理(又称为精校正)。这种校正,通常是从遥感图像空间到制图空间(标准制图空间)的投影变换。因此,遥感图像几何校正一般涉及地球投影变换。

故此我们首先建立以1954年北京坐标为基准的坐标系(与头文件中的坐标系相一致),并以项目名称命名为“YULIN”,为以后几何校正做好准备。

(一)图像系统几何校正

(1)正东方向调整,由头文件中知正东方向线分别为-9.13°、-9.16°,故对各数据分别旋转9.13°、9.16°(图6-2)。

图6-2 由正东方向对数据进行校正

校正后,以一些特征点检查其结果,比如124-44石南岭蒙水库西坝首坐标XX=361304.541,YY=2544933.606,校正结果为XX=361463.36,YY=2545168.83(图6-3左),误差分别为-158.819及-235.224,达到系统几何校正产品(Level2)的要求。124-45镇隆幅良德水库南坝首坐标XX=498126.88,YY=2449931.34,校正结果为XX=504210.54,YY=2479499.73(图6-3右),误差分别为-6083.66及-29568.39,校正精度太差。故而不能用正东方向角旋转图像的方法来进行系统几何校正。

(2)以头文件中所给的图像角点及中心点与地理坐标的对应关系,两景图像分别为1~7波段、6波段、8波段生成在已建立的坐标系“YUILN”内的校正控制点文件(GCP文件)(图6-4)。以这些GCP文件对分别对相应的波段进行校正。

校正完毕后,打开图像,将方里网线在图像上显示,可以见到原来明显倾斜的方里网线现在已经大致水平(图6-5)。

同样以岭蒙水库及良德水库来校验结果的误差。124-44石南岭蒙水库西坝首坐标XX=361353.53,YY=2544921.44,校正结果为XX=361463.36,YY=2545168.83(图6-6左),误差分别为-109.83及-247.39,达到系统几何校正产品(Level2)的要求。124-45镇隆幅良德水库南坝首坐标XX=498104.25,YY=2449959.72,校正结果为XX=498274.28,YY=2450378.65(图6-6右),误差分别为-170.03及-418.93,校正后其YY误差大于250,但小于500,勉强达到系统几何校正产品(Level2)的要求。

图6-3 岭蒙水库(左)与良德水库(右)的特征点在旋转校正后坐标值

图6-4 以角点及中心点信息建立的PTS文件

图6-5 系统校正前(左)后(右)的方里网线

(二)1~7及6波段图像的放大

由于全色8波段的分辨率为15m,而1~7波段为30m,6波段为60m。在不同分辨率波段间整合,一般为RGB→HSV或RGB→HLS,然后反变换HSV→RGB或HLS→RGB得到一幅RGB三波段图像,但此方法过程较繁且得到的图像不具备原始的波段特征。故我们采用将6波段放大4倍,1~7波段放大2倍,最后直接与8波段整合于一个单一的文件中,虽然这样大大增加了文件的容量,但因为它们具有同一的投影参数,与其他数字化图件整合利用带来极大的便利。

图6-6 岭蒙水库(左)与良德水库(右)的特征点在角点及中心点在系统几何校正后的坐标值

(三)图像镶嵌

图像镶嵌的方法有地理坐标镶嵌及同一图像点镶嵌,因经系统几何校正后的图像仍有较大的误差,故我们使用同一图像点(像元点)镶嵌法。

图6-7 选取两景图像的相同地理位置点

打开两景TM图像,选一个两景图像均包含的图像点,我们选取了玉林市沙田镇高坡村东的二级公路桥,大地坐标XX=402513.39,YY=2476475.72,124-44景的图像位置为(4965,12403),124-45景的图像位置为(7421,1712)(图6-7)。故124-44景的X坐标左移2456个像元,124-45景Y坐标下移10691个像元(图6-8)。同时选择接约10个像素点的边缘羽化。镶嵌后的图像见图6-9。

(四)图像精校正

数字图像的几何精校正,是将图像坐标按一定的精度要求变换到地形图的地理坐标系中,按新图像像元的大小,通过重新采样获取新像元的亮度数值。几何校正是利用地面控制点(Ground Control Point,GCP)对由各种因素引起的遥感图像的几何畸变进行校正。GCP是原图像空间与标准制图空间(通常是地形图)上的同一地物,GCP必须较精确,因为它直接影响几何校正的精度。GCP的选择应是:在图像上反映较清晰,可寻找出来的,在地图上容易精确定位的永久特征点、特征线(取其中点或端点)等自然要素或人文要素,如河流拐弯处或交叉处、小岛、小水塘、道路交叉点、桥梁、机场跑道、水坝等。GCP的分布应尽可能均匀散布在研究区内。

图6-8 北景124-45(左)及南景124-45(右)的镶嵌位置量

(1)由于镶嵌后的图像文件达到4.2GB的容量,包含了较多非测区内的图像及空白区(图6-9),所以用大地坐标西线XX=340000,东线XX=501000,北线YY=2550000,南线YY=2420000围成的矩形将图像剪截下来(图6-10),截剪矩形的边界均在测区内图框线的系统几何校正误差范围以外,保证了精校正后内图框线内均不会出现空白区。

(2)按上述要求进行GCP的采集。打开数字化的底图,在数字底图上取得对应标志点的大地坐标,然后写入图像处理程序GCP采集模块中(图6-11),在GCP采集模块中能用点输入设备或直接输入该大地坐标位置对应的图像像元位置。大地坐标及对应的像元位置输入后,模块计算当前GCP的残差,如果残差很大,那就应该检查是图像变形造成的还是数据采集有误。当GCP多于3个时,GCP采集模一般均能预测出采集到的大地坐标位置在遥感图像上的图像像元位置,同明在显示窗口显示以该位置为中心的图像,对应作必要的调整就完成GCP采集。如此重复直到所采的点数达到要求(图6-12)。按图像处理程序的功能将GCP保存成为GCP文件。

(3)选择变换后图像像元亮度值重采样方法。常用的亮度重采样方法有最邻近点法、双线性内插法和三次卷积法。我们使用的为双线性内插法。

(4)精校正后,以1:10万石南幅西北角郁江支流与郁江的汇合处及镇隆幅良德水库的位置来检验结果的误差。郁江支流的汇合处位于新塘镇以南约2km,大地坐标XX=357055.20,YY=2543396.80,遥感图像校正后对应点大地坐标值XX=357053.43,YY=2543395.88(图6-13左),误差分别为1.77及0.92。良德水库坝首南端大地坐标值XX=498126.88,YY=2449931.34,图像校正后对应点大地坐标值XX=498102.52,YY=2449935.92(图6-13图右),误差分别为24.36及-4.58。精校正结果的精度均小于1~5波段及7波段分辨率30m,大部分(3/4)小于8波段分辨率15m,基本达到精校正的精度要求。

图6-9 两景镶嵌好的图像图

6-10 以稍大于测区图框的界线将图像剪截以使图像文件容量减少

图6-11 数字化地形图至遥感图像的GCP的采集

图6-12 所采集GCP要有一定的数量及较均匀的分布于图像中

⑥ 几何校正

我们获得的ETM+图像数据只经过了系统纠正而没有经过精校正,因而需要进一步利用地面控制点(GCP)进行精确的纠正。

几何校正采用地面控制点方法,应用ERDAS图像处理系统的Geometric Correction模块实现。利用作为地理参考校正过的SPOT图像上同名点的地理坐标作为控制点。为了提高校正的精度,在选取控制点时,尽可能选择易于识别定位的点(如水系交叉点、其他线性影像交叉点,独立标志性地物等)。校正图像采用UTM,ZONE46投影坐标系统,WGS 84椭球参数。具体实施时大致分选择控制点和图像重采样两步完成。重采样方式选择的是邻近点插值。

⑦ 几何校正的应用

多光谱、多时相影像配准和遥感影像制图,必须经过上述几何校正。因人们已习惯于用正射投影地图,故多数遥感影像的几何校正以正射投影为基准进行。某些大比例尺遥感影像专题制图,可采用不同地图投影作为几何校正基准,主要是解决投影变换问题,一些畸变不能完全得到消除。遥感影像的几何校正可应用光学、电子学或计算机数字处理技术来实现。
常用的方法有:基于多项式的遥感图像纠正、基于共线方程的遥感图像纠正、基于有理函数的遥感图像纠正、基于自动配准的小面元微分纠正等。

⑧ 总结几何校正的方法及影响因素

重采样就是改变原影像的象元大小,校正时 被校正影像会被自动赋予基准影像的分辨率,所以需要改为本来的像元大小。

⑨ 几何校正的校正方法

(1)推求受摄轨道;
(2)推导标称轨道;
(3)求的传感器坐标系下任意时刻的标称LOS单位矢量;
(4)引入相关资粮与文献,减小偏置;

⑩ 什么是几何校正和正射校正

几何校正是给图象加上地理坐标,正射校正加上地理坐标的同时再通过一些测量高程点和DEM来消除地形起伏引起的图象变形.后者的测量高程点很难获得,需要外定向数据点.
在ERDAS8.6中不可以加入测量高程点和DEM来消除地形起伏引起的图象变形,但在ERDAS9.1中也可以在几何纠正的模块中加入测量高程点和DEM来消除地形起伏引起的图象变形。所以两者的区别不是这样的。正射纠正是几何纠正的一种,它主要是用来处理航片的,单单用几何纠正更粗糙一点,正射纠正处理航片模型更精确。
图像几何校正(看图 需要打开http://blog.sina.com.cn/s/blog_591e2880010008o8.html)
1、图像几何校正的途径
ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。
ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。

图2-1 Set Geo-Correction Input File对话框
在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况:
其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。
其二:首先确定来自文件(From Image File),然后选择输入图像。
2、图像几何校正的计算模型(Geometric Correction Model)
ERDAS提供的图像几何校正模型有7种,具体功能如下:
表2-1 几何校正计算模型与功能
模型 功能
Affine 图像仿射变换(不做投影变换)
Polynomial 多项式变换(同时作投影变换)
Reproject 投影变换(转换调用多项式变换)
Rubber Sheeting 非线性变换、非均匀变换
Camera 航空影像正射校正
Landsat Lantsat卫星图像正射校正
Spot Spot卫星图像正射校正
3、图像校正的具体过程
第一步:显示图像文件(Display Image Files)
首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下:
ERDAS图表面板菜单条:Session→Title Viewers
然后,在Viewer1中打开需要校正的Lantsat图像:tmAtlanta,img
在Viewer2中打开作为地理参考的校正过的SPOT图像:panAtlanta,img
第二步:启动几何校正模块(Geometric Correction Tool)
Viewer1菜单条:Raster→ Geometric Correction
→打开Set Geometric Model对话框(2)
→选择多项式几何校正模型:Polynomial→OK
→同时打开Geo Correction Tools对话框(3)和Polynomial Model Properties对话框(4)。
在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数:
→定义多项式次方(Polynomial Order):2(若此处定义的次方数为T,则需配准的点数为(T+1)*(T+2)/2,若为2,责应该配置6个点)
→定义投影参数:(PROJECTION):略
→Apply→Close
→打开GCP Tool Referense Setup 对话框(5)

图2-2 Set Geometric Model对话框

图2-3 Geo Correction Tools对话框

图2-4 Polynomial Properties对话框

图2-5 GCP Tool Referense Setup 对话框
第三步:启动控制点工具(Start GCP Tools)

图2-6 Viewer Selection Instructions
首先,在GCP Tool Referense Setup对话框(图5)中选择采点模式:
→选择视窗采点模式:Existing Viewer→OK
→打开Viewer Selection Instructions指示器(图2-6)
→在显示作为地理参考图像panAtlanta,img的Viewer2中点击左键
→打开reference Map Information 提示框(图2-7);→OK
→此时,整个屏幕将自动变化为如图7所示的状态,表明控制点工具被启动,进入控制点采点状态。

图2-7 reference Map Information 提示框

图2-8 控制点采点
第四步:采集地面控制点(Ground Control Point)
GCP的具体采集过程:
在图像几何校正过程中,采集控制点是一项非常重要和繁重的工作,具体过程如下:
1、 在GCP工具对话框中,点击Select GCP图表,进入GCP选择状态;
2、 在GCP数据表中,将输入GCP的颜色设置为比较明显的黄色。
3、 在Viewer1中移动关联方框位置,寻找明显的地物特征点,作为输入GCP。
4、 在GCP工具对话框中,点击Create GCP图标,并在Viewer3中点击左键定点,GCP数据表将记录一个输入GCP,包括其编号、标识码、X坐标和Y坐标。
5、 在GCP对话框中,点击Select GCP图标,重新进入GCP选择状态。
6、 在GCP数据表中,将参考GCP的颜色设置为比较明显的红色,
7、 在Viewer2中,移动关联方框位置,寻找对应的地物特征点,作为参考GCP。
8、 在GCP工具对话框中,点击Create GCP图标,并在Viewer4中点击对应点,系统将自动将参考点的坐标(X、Y)显示在GCP数据表中。
9、在GCP对话框中,点击SelectGCP图标,重新进入GCP选择状态,并将光标移回到Viewer1中,准备采集另一个输入控制点。
10、不断重复1-9,采集若干控制点GCP,直到满足所选定的几何模型为止。
第五步:采集地面检查点(Ground Check Point)
以上采集的 GCP的类型均为控制点,用于控制计算,建立转换模型及多项式方程,。下面所要采集的GCP类型是检查点。(略)
第六步:计算转换模型(Compute Transformation)
在控制点采集过程中,一般是设置为自动转换计算模型。所以随着控制点采集过程的完成,转换模型就自动计算生成。
在Geo-Correction Tools对话框中,点击Display Model Properties 图表,可以查阅模型。
第七步:图像重采样(Resample the Image)
重采样过程就是依据未校正图像的像元值,计算生成一幅校正图像的过程。原图像中所有删格数据层都要进行重采样。
ERDAS IMAGE 提供了三种最常用的重采样方法。略
图像重采样的过程:
首先,在Geo-Correction Tools对话框中选择Image Resample 图标。
然后,在Image Resample对话框中,定义重采样参数;
→输出图像文件明(OutputFile):rectify.img
→选择重采样方法(Resample Method):Nearest Neighbor
→定义输出图像范围:
→定义输出像元的大小:
→设置输出统计中忽略零值:
→定义重新计算输出缺省值:
第八步:保存几何校正模式(Save rectification Model)
在Geo-Correction Tools对话框中点击Exit按钮,推出几何校正过程,按照系统提示,选择保存图像几何校正模式,并定义模式文件,以便下一次直接利用。
第九步:检验校正结果(Verify rectification Result)
基本方法:同时在两个视窗中打开两幅图像,一幅是矫正以后的图像,一幅是当时的参考图像,通过视窗地理连接功能,及查询光标功能进行目视定性检验。

阅读全文

与几何校正常用方法有哪些相关的资料

热点内容
仓鼠在家锻炼方法 浏览:881
如何预防感冒的方法稿件 浏览:837
冰犀牛角鉴别方法 浏览:713
厚度的检测方法和评定方法 浏览:572
如何消灭衰老的方法 浏览:454
不同体温测量方法适用范围 浏览:42
如何培养学生科学学习兴趣和方法 浏览:409
正确的供奉摆放方法 浏览:648
耳机转接器连接方法 浏览:761
40头干鲍的正确泡发方法 浏览:239
波纹管接口施工方法视频 浏览:615
菌种的正确接种方法和步骤 浏览:864
土方法如何驱虫 浏览:721
修理换手机有什么好方法 浏览:778
如何教小孩擦鼻涕的正确方法 浏览:841
春季跑步减肥的正确方法 浏览:58
环境监测依据及分析方法 浏览:458
短期减肥最快的方法有哪些 浏览:446
无线网卡怎么安装设置方法 浏览:42
最简单的省油方法 浏览:60