导航:首页 > 知识科普 > 喜靓检验方法中哪些是参数检验

喜靓检验方法中哪些是参数检验

发布时间:2023-01-05 06:22:07

⑴ 常用的参数检验和非参数检验方法

1.正态总体均值的假设检验(t检验)

检验1组数据样本的均值是否等于,大于或小于某个值,或者检验两组数据样本的均值的大小情况。其中的统计量Z一般服从t分布。

2.正态总体方差的假设检验

检验1组数据样本的方差是否等于,大于或小于某个值,或者检验两组数据样本的方差的大小情况。其中单样本检验的统计量X2一般服从卡方分布。双样本检测的统计量F一般服从F分布。

3.二项分布总体的假设检验(非正态总体的假设检验)

非正态总体的假设检验有很多,二项分布总体的假设检验相对较为常用。常用于随机抽样实验的成功概率的检验。

1.Neyman-Pearson χ2 拟合优度检验

检验样本数据是否符合某种分布,Neyman-Pearson拟合优度检验是非常重要的非参数检验方法,既可以用于检验数据的分布特性,又可以检验不同组数据之间的分布关系(是否是同一分布)。

2.Kolmogorov-Smirnov检验

也是一个相当重要的检验方法,和Pearson方法一样属于拟合优度检验方法。但是Kolmogorov-Smirnov方法无需对要检验的数据分组,且使用经验累积分布函数(ECDF)来定义统计量,可以用于任何分布的检验。但Kolmogorov-Smirnov只适用于一元分布的情况。因此适用面与Pearson方法相比稍小。

3.独立性检验

很重要的检验方法,具体有Pearson卡方检验,Fisher精确独立性检验。这些检验方法通常用于检验数据的分布和假设影响因素的关系。

4.符号检验和秩和检验

检验样本与总体的情况,或样本总体间的差异。

⑵ 总结!14个常用的统计假设检验的方法

本文分享利用SPSSAU进行14个常用的统计假设检验的方法,分为以下五个部分:

一、正态性检验

正态性特质是很多分析方法的基础前提,如果不满足正态性特质,则应该选择其它的分析方法,因此在做某些分析时,需要先进行正态性检验。如果样本量大于50,则应该使用Kolmogorov-Smirnov检验结果,反之则使用Shapro-Wilk检验的结果。

常见的分析方法正态性特质要求归纳如下表(包括分析方法,以及需要满足正态性的分析项,如果不满足时应该使用的分析方法)。


如果p 值大于0.05,则说明具有正态性特质,反之则说明数据没有正态性特质。

如果是问卷研究,数据很难满足正态性特质,而实际研究中却也很少使用不满足正态性分析时的分析方法。

SPSSAU认为有以下三点原因:

① 参数检验的检验效能高于非参数检验,比如方差分析为参数检验,所以很多时候即使数据不满足正态性要求也使用方差分析

② 如果使用非参数检验,呈现出差异性,则需要对比具体对比差异性(但是非参数检验的差异性不能直接用平均值描述,这与实际分析需求相悖,因此有时即使数据不正态,也不使用非参数检验,或者Spearman相关系数等)

③ 理想状态下数据会呈现出正态性特质,但这仅会出现在理想状态,现实中的数据很难出现正态性特质(尤其是比如问卷数据)【可直接使用“直方图”直观展示数据正态性情况】。

二、方差齐检验

如果要进行方差分析,需要满足方差齐性的前提条件,需要进行方差齐检验,其用于分析不同定类数据组别对定量数据时的波动情况是否一致。例如研究人员想知道三组学生的智商 波动情况是否一致(通常情况希望波动一致,即方差齐)。

判断p 值是否呈现出显着性(p <0.05),如果呈现出显着性,则说明不同组别数据波动不一致,即说明方差不齐;反之p 值没有呈现出显着性(p >0.05)则说明方差齐。


提示: 方差不齐时可使用‘非参数检验’,或者还可使用welch 方差,或者Brown-Forsythe方差。

三、相关性检验

(1)相关分析

相关分析是一种简单易行的测量定量数据之间的关系情况的分析方法。可以分析包括变量间的关系情况以及关系强弱程度等。相关系数常见有三类,分别是:

1.Pearson相关系数

2.Spearman等级相关系数

3.Kendall相关系数

三种相关系数最常使用的是Pearson相关系数;当数据不满足正态性时,则使用Spearman相关系数,Kendall相关系数用于判断数据一致性,比如裁判打分。下图是详细使用场景:

如果呈现出显着性(结果右上角有*号,此时说明有关系;反之则没有关系)。

有了关系之后,关系的紧密程度直接看相关系数大小即可。(一般0.7以上说明关系非常紧密;0.4~0.7之间说明关系紧密;0.2~0.4说明关系一般。)

如果说相关系数值小于0.2,但是依然呈现出显着性(右上角有*号,1个*号叫0.05水平显着,2个*号叫0.01水平显着;显着是指相关系数的出现具有统计学意义普遍存在的,而不是偶然出现),说明关系较弱,但依然是有相关关系。

(2)卡方检验

卡方检验主要用于研究定类与定类数据之间的差异关系。卡方检验要求X、Y项均为定类数据,即数字大小代表分类。并且卡方检验需要使用卡方值和对应p 值去判断X与Y之间是否有差异。通常情况下,共有三种卡方值,分别是Pearson卡方,yates校正卡方,Fisher卡方;优先使用Pearson卡方,其次为yates校正卡方,最后为Fisher卡方。

具体应该使用Pearson卡方,yates校正卡方,也或者Fisher卡方;需要结合X和Y的类别个数,校本量,以及期望频数格子分布情况等,选择最终应该使用的卡方值。SPSSAU已经智能化处理这一选择过程。

第一:分析X分别与Y之间是否呈现出显着性(p值小于0.05或0.01);

第二:如果呈现出显着性;具体对比选择百分比(括号内值),描述具体差异所在;

第三:对分析进行总结。


卡方检验,SPSSAU提供两个按钮,二者的区别是,后者输出更多的统计量过程值以及深入指标表格,满足需要更多分析指标的研究人员,如下各图。


进行卡方检验,上传数据时需要特别注意数据格式,有两种格式:常规格式和加权格式。

①  常规格式数据 ,如下图。则通用方法中的【交叉(卡方)】和实验/医学研究中的【卡方检验】都可以使用。


②  加权数据: 但在某些情况下,我们得到的不是原始数据,而是经过整理的汇总统计数据。比如下面这样格式的数据:

类似这样的格式,不能直接使用的,需要整理成加权数据格式,只能使用实验/医学研究中的【卡方检验】


这时候点击实验/医学研究面板中的【卡方检验】-拖拽三个【分析变量】分别到对应分析框-【开始分析】即可。

四、参数检验

(1) 单样本t检验

单样本T检验用于比较样本数据与一个特定数值之间是否存在差异情况。

首先判断p 值是否呈现出显着性,如果呈现出显着性,则分析项明显不等于设定数字,具体差异可通过平均值进行对比判断。

(2)独立样本T检验(T检验)

独立样本T检验用于分析定类数据(X)与定量数据(Y)之间的差异情况。

独立样本T检验除了需要服从正态分布、还要求两组样本的总体方差相等。当数据不服从正态分布或方差不齐时,则考虑使用非参数检验。


首先判断p 值是否呈现出显着性,如果呈现出显着性,则说明两组数据具有显着性差异,具体差异可通过平均值进行对比判断。


(3)配对样本T检验

用于分析配对定量数据之间的差异对比关系。与独立样本t检验相比,配对样本T检验要求样本是配对的。两个样本的样本量要相同;样本先后的顺序是一一对应的。

常见的配对研究包括几种情况:


判断p 值是否呈现出显着性,如果呈现出显着性,,则说明配对数据具有显着性差异,具体差异可通过平均值进行对比判断。

(4)方差分析

方差分析(单因素方差分析),用于分析定类数据与定量数据之间的关系情况.例如研究人员想知道三组学生的智商平均值是否有显着差异。

进行方差分析需要数据满足以下两个基本前提:

理论上讲,数据必须满足以上两个条件才能进行方差分析,如不满足,则使用非参数检验。但现实研究中,数据多数情况下无法到达理想状态。正态性检验要求严格通常无法满足,实际研究中,若峰度绝对值小于10并且偏度绝对值小于3,或正态图基本上呈现出 钟形 ,则说明数据虽然不是绝对正态,但基本可接受为正态分布,此时也可使用方差分析进行分析。

第一:分析X与Y之间是否呈现出显着性(p值小于0.05或0.01)。

第二:如果呈现出显着性;通过具体对比平均值大小,描述具体差异所在。

第三:如果没有呈现出显着性;说明X不同组别下,Y没有差异。


(5)重复测量方差

在某些实验研究中,常常需要考虑时间因素对实验的影响,当需要对同一观察单位在不同时间重复进行多次测量,每个样本的测量数据之间存在相关性,因而不能简单的使用方差分析进行研究,而需要使用重复测量方差分析。


第一、首先进行球形度检验,p <0.05说明没有通过球形度检验,p >0.05说明通过球形度检验;

第二、如果没有通过球形度检验,并且球形度W值大于0.75,则使用HF校正结果;

第三、如果没有通过球形度检验,并且球形度W值小于0.75,则使用GG校正结果;

第四、如果通过球形度检验,组内效应分析结果时使用“满足球形度检验”结果即可;

将数据上传至SPSSAU分析,选择【实验/医学研究】--【重复测量方差】。

五、非参数检验

凡是在分析过程中不涉及总体分布参数的检验方法,都可以称为“非参数检验”。因而,与参数检验一样,非参数检验包括许多方法。以下是最常见的非参数检验及其对应的参数检验对应方法:

非参数秩和检验研究X不同组别时Y的差异性,针对方差不齐,或者非正态性数据(Y)进行差异性对比(X为两组时使用mannWhitney检验,X超过两组时使用Kruskal-Wallis检验,系统默认进行判断);

(1)单样本Wilcoxon检验

单样本Wilcoxon检验是单样本t检验的代替方法。该检验用于检验数据是否与某数字有明显的区别,如对比调查对象整体态度与满意程度之间的差异。首先需要判断数据是否呈现出正态性分析特质,如果数据呈现出正态性特质,此时应该使用单样本t检验进行检验;如果数据没有呈现出正态性特质,此时应该使用单样本Wilcoxon检验

首先判断p 值是否呈现出显着性,如果呈现出显着性,则分析项明显不等于设定数字,具体差异可通过中位数进行对比判断。


(2)Mann-Whitney检验

Mann-Whitney检验是独立样本t检验的非参数版本。该检验主要处理包含等级数据的两个独立样本,SPSSAU中称为非参数检验。

第一:分析X与Y之间是否呈现出显着性(p值小于0.05或0.01)。

第二:如果呈现出显着性;通过具体对比中位数大小,描述具体差异情况。


(3)Kruskal-Wallis检验

Kruskal-Wallis检验是单因素方差分析的非参数替代方法。Kruskal-Wallis检验用于比较两个以上独立组的等级数据。

在SPSSAU中,与Mann-Whitney检验统称为“非参数检验”,分析时SPSSAU会根据自变量组别数自动选择使用Kruskal-Wallis检验或Mann-Whitney检验。

(4)配对Wilcoxon检验

Wilcoxon符号秩检验是配对样本t检验的非参数对应方法。该检验将两个相关样本与等级数据进行比较。

第一:分析每组配对项之间是否呈现出显着性差异(p值小于0.05或0.01)。

第二:如果呈现出显着性;具体对比中位数(或差值)大小,描述具体差异所在。


⑶ 参数检验和非参数检验的区别

参数检验和非参数检验的区别:

1、定义不同:

参数检验:假定数据服从某分布(一般为正态分布),通过样本参数的估计量(x±s)对总体参数(μ)进行检验,比如t检验、u检验、方差分析。

非参数检验:不需要假定总体分布形式,直接对数据的分布进行检验。由于不涉及总体分布的参数,故名“非参数”检验。比如,卡方检验。

2、参数检验的集中趋势的衡量为均值,而非参数检验为中位数。

3、参数检验需要关于总体分布的信息;非参数检验不需要关于总体的信息。

4、参数检验只适用于变量,而非参数检验同时适用于变量和属性。

5、测量两个定量变量之间的相关程度,参数检验用Pearson相关系数,非参数检验用Spearman秩相关。

简而言之,若可以假定样本数据来自具有特定分布的总体,则使用参数检验。如果不能对数据集作出必要的假设,则使用非参数检验。

(3)喜靓检验方法中哪些是参数检验扩展阅读:

非参数检验的常见方法:

1、Wilcoxon Signed Ranks test:也称配对符号秩检验,适用于连续型资料,用来检验配对资料的差值是否来自于中位数为0的总体,也可推断总体中位数是否等于某个指定值,该方法利用配对资料差值大小的信息,检验效率高于符号检验。

2、Sign test:也称差数秩检验,根据配对资料差值正负号检验其效果有无差异,由于检验效能较低,当配对设计资料不满足非参数检验时可考虑使用。

3、McNemar test:在卡方检验时学习过,该方法适用于计数资料,指标变量为二分类,可用来检验配对设计资料处理前后的结果是否存在差异或者配对组之间的频率有无差异。

4、Marginal Homogeneity test:McNemar检验的扩展,适用于指标变量为多分类的有序或无序资料,即平方表格资料(R×R列联表资料)。

⑷ 参数检验和非参数检验

非参数检验(Nonparametric tests)是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。

参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。参数检验的方法有Z检验、T检验,这些检验都是假设 样本来自于正态分布的总体 ,将总体的数字特征看作未知的“参数”,通过样本的数据特征对其总体进行统计推断。

但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。

非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。

非参数检验的优点:

SPSS给出的四种独立样本的非参数检验的方法:

SPSS中多个独立样本检验的方法主要有3种:Kruskal-Wakkis H检验、中位数(Median)检验和Jonckheere-Terpstra检验。

该检验一般应用于对同一研究对象(或配对对象)分别给予K种不同处理或处理前后的效果进行比较,前者推断K种效果有无显着差异,后者推断某种处理是否有效。
在SPSS种两个相关样本检验的方法主要有:Wilcoxon检验、Sign(符号)检验、McNemar检验和Marginal Homogeneity检验。

在SPSS种两个相关样本检验的方法主要有:Friedman检验、Kendall's W检验和Cochran‘s Q检验。

⑸ 参数检验和非参数检验是什么意思

参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。

参数检验和非参数检验的本质区别:

1.参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。

2.参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。

(5)喜靓检验方法中哪些是参数检验扩展阅读:

参数检验与非参数检验的优缺点。

1)参数检验:优点是符合条件时,检验效率高;其缺点是对资料要求严格,如等级数据、非确定数据(>50mg)不能使用参数检验,而且要求资料的分布型已知和总体方差相等。

2)非参数检验:优点是应用范围广、简便、易掌握;缺点是若对符合参数检验条件的资料用非参数检验,则检验效率低于参数检验。如无效假设是正确的,非参数法与参数法一样好,但如果无效假设是错误的,则非参数检验效果较差,如需检验出同样大小的差异的差异往往需要较多的资料。

另一点是非参数检验统计量是近似服从某一部分,检验的界值表也是有近似的(如配对秩和检验)因此其结果有一定近似性。

1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。

H0:样本与总体或样本与样本间的差异是由抽样误差引起的;

H1:样本与总体或样本与样本间存在本质差异;

预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显着,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立。

如果P≤α,结论为按所取α水准显着,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。

两独立样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布等是否存在显着差异的方法。独立样本是指在一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本。

SPSS中提供了多种两独立样本的非参数检验方法,其中包括曼-惠特尼U检验、K-S检验、W-W游程检验、极端反应检验等。

某工厂用甲乙两种不同的工艺生产同一种产品。如果希望检验两种工艺下产品的使用是否存在显着差异,可从两种工艺生产出的产品中随机抽样,得到各自的使用寿命数据。

阅读全文

与喜靓检验方法中哪些是参数检验相关的资料

热点内容
寻找真爱有哪些方法 浏览:552
如何才是最好的减肥方法 浏览:509
头孢拉定鉴别显色的方法是 浏览:962
电脑手机在线连接方法 浏览:629
什么方法治扁平疣 浏览:336
公主蛋糕怎么做的方法 浏览:401
打开膏肓穴有哪些方法 浏览:583
腈纶可用什么方法鉴别 浏览:96
足球对抗技战术训练方法180例 浏览:170
枕套的正确安装方法 浏览:296
工程资料教学方法 浏览:93
治疗青胎记最好的方法 浏览:332
肾阳虚腹泻最快治疗方法 浏览:136
吊扇变速器的安装方法 浏览:298
如何选择生茶存放方法和条件 浏览:525
让头发直有哪些方法 浏览:470
大肠菌群检测方法实验报告 浏览:850
把手机变成高逼格的方法 浏览:259
晶片抛光有哪些方法 浏览:546
篮球运动的训练方法 浏览:84