1. 提纯的办法有哪些方法
提纯是指将混合物中的杂质分离出来以此提高其纯度。提纯作为一种重要的化学方法,不仅在化学研究中具有重要作用,在化工生产中也同样具有十分重要的作用。不少重要的化学研究与化工生产,都是以提纯为主体的。
常见的提纯方法:
过滤
利用物质的溶解性差距,将液体和不溶于液体的固体分离开来的方法。
结晶
利用溶剂对被提纯物质及杂质的溶解度不同,可以使被提纯物质从过饱和溶液中析出,而让杂质全部或大部分仍留在溶液中,从而达到提纯的目的。
蒸馏
利用互溶的液体混合物中各组分的沸点不同,给液体混合物加热,使其中的某一组分变成蒸气在冷凝成液体,从而达到分离提纯的目的 。
萃取
利用某溶质在互不相溶的溶剂中的溶解度不同,用一种溶剂把溶质从它与另一种溶剂组成的溶液中提取出来,再利用分液的原理和方法将它们分离开来。
层析
层析法是利用混合物中各组分物理化学性质的差异(如吸附力、分子形状及大小、分子亲和力、分配系数等),使各组分在两相(一相为固定的,称为固定相;另一相流过固定相,称为流动相)中的分布程度不同,从而使各组分以不同的速度移动而达到分离的目的。
2. 求助:植物提取物的提取方法有哪些,如精油类物质用什么方法,药用成分用什么方法
植物提取物的提取方法
目前提取植物提取物常用的方法有溶剂提取法、超声波提取法、微波提取法和酶提取法,而超临界流体萃取法、微波辅助提取法等则作为新的提取技术被广泛使用。
溶剂提取法
溶剂提取法是用溶剂从固体原料中提取有效成分,所用的溶剂必须具备与所提取的溶质互溶的特性。将植物材料粉碎后,放入适合的容器内,加入数倍量溶剂,可采用浸渍、渗漉、煎煮、回流和连续提取法进行提取。巴科的丹参提取物就是用溶剂提取法提取的,精油类物质就是用溶剂提取法。
在溶剂提取法的提取工艺过程中,溶剂的浓度、料液比、提取温度、提取的时间会直接影响有效成分的提取率。Cristina Juan等人通过溶剂萃取法提取大米中的赭曲霉素A,用荧光探测法和液相色谱法确定OTA的含量,研究表明在最适宜的料液比、提取温度和提取时间的情况下,提取物OTA含量最高为4.17ng/g。Monte D. Holt等采用溶剂萃取法从生的和熟的小麦种提取烷基间苯二酚,实验表明采用溶剂萃取法能够节约提取时间。
超声波提取法
超声波提取是利用超声波产生的强烈振动和空化效应加速植物细胞内物质的释放、扩散并溶解进入溶剂中,同时可以保持被提取物质的结构和生物活性不发生变化。超声波提取原理主要为物理过程,是近年来逐渐受到重视的一个较新的提取方法。对多数成分来说,超声波提取方法较常规的溶剂提取能大幅地缩短提取时问,消耗溶剂少,浸出率高,因此具有较高的提取效率。
在超声波法提取工艺过程中,溶剂的选择和浓度、料液比、提取温度、提取的时间会直接影响提取率。Ling Zhou等人利用超声波提取法提取五味子,主要研究了超声提取率的影响因素,实验研究得出,提取率随着温度的升高而升高,随着功率的增大而增大。Hong Van Le等利用超声波提取樱桃中的维生素E和酚类化合物,主要比较了超声提取法和酶提取法在提取时间、提取率上的差异,实验结果表明超声波提取法时间上比酶提取缩短了6倍,超声波提取的提取率是酶提取的2~3倍。钟爱国等利用超声波萃取鲜竹叶中叶绿素的方法,用分光光度计来定量测定所萃取的叶绿素的含量。结果表明:与常用的有机溶剂提取法相比,超声波萃取法不仅萃取率高、速度快、效率高,而且是室温提取,无需加热,节约能源。
超临界流体萃取法
超临界流体提取(supercriticalfluid extraction,SFE)是一种较新型的提取分离技术,一般采用CO2作为提取剂。超临界流体萃取法的原理是利用超临界流体的独特溶解能力和物质在超临界流体中的溶解度对压力温度的变化非常敏感的特性,通过升温降压手段(或两者兼用)将超临界流体中所溶解的物质分离出来,达到分离提纯的目的,它兼有精馏和提取两种作用,具有活性成分不易失活、产品质量高、提取分离过程同步完成等优点,被认为是绿色环保的高新分离技术,特别适合于不稳定天然产物和生理活性物质的分离与精制。
20世纪80年代中期,超临界CO2提取技术逐步应用于植物活性成分的提取分离中,是研究和应用较为成功的一项新技术。Ruey Chi Hsu等以CO2和乙醇为溶剂,采用超临界流体提取技术提取灵芝的有效成分,研究结果表明:超临界流体提取法保证了灵芝提取物的流动性且不受温度的影响。Monica Waldeb.ck等采用加压流体萃取技术提取橄榄中的角鲨烯和α-生育酚两种成分,实验结果表明:溶剂为乙醇、提取温度为190℃、提取时间为10min时,提取效果最好。YI QI ANG GE等采用超临界CO2提取技术从小麦胚芽中提取天然维生素E,主要研究了提取前处理和提取工艺条件对产率的影响,实验研究表明:当粒子为30网、压力为4000~5000psi、提取温度为40~50℃、CO2流体流速为2.0mL/min时提取率最高。
微波辅助提取法
微波辅助提取技术(microwave.assistedextraction,MAE)是利用微波能提高提取效率的一种新技术。微波辅助提取就是利用微波加热的特性对物料中目标成分进行选择性提取的方法,通过调节微波的参数,可有效加热目标成分,以利于目标成分的提取与分离。微波辅助提取法提取植物的原理是植物样品在微波场中吸收大量的能量,而周围的溶剂则吸收较少,从而在细胞内部产生热应力,植物细胞因内部产生的热应力而破裂,使细胞内部的物质直接与相对冷的提取溶剂接触,进而加速了目标产物由细胞内部转移到提取溶剂中,从而强化了提取过程。微波辅助提取法技术原理上与浸泡和过滤一样也使用热能,但是提取植物提取物的速度却要比传统的方法快得多,在减少提取时间的同时避免有价值的植物提取物被破坏和降解。
目前,微波辅助提取法以其快速的提取速度和较好的提取物质量成为天然植物活性成分提取的有力工具,但微波辅助提取法是选择性内加热且要求被处理的物料具有良好的吸水性,换言之待分离的产物所处的位置容易吸水,否则细胞难以吸收足够的微波将自身击破,产物也就难以迅速释放出来。对于液体提取体系,要求溶剂物质具有极性,非极性溶剂对微波的作用不敏感。Ti ng Zhou等采用微波辅助提取法提取药用植物中提取的黄酮类和香豆素类化合物,通过正交实验研究样品大小、料液比、提取温度和时间对提取率的影响,实验研究表明:在最佳提取工艺条件下提取率为98.7%。黎海彬等用微波辅助提取法提取干罗汉果中的罗汉果皂苷,结果显示微波辅助提取法的提取率为70.5%,比常规水提取法高45%,时间上也缩短了50%。
微波超声波协同提取法
微波是一种非电离的电磁辐射,被辐射物质的极性分子在微波电磁场中快速转向及定向排列,从而产生撕裂和相互摩擦引起发热,这可以保证能量的快速传递和充分利用,具有高效节能无工业污染等优点,但微波的穿透深度有限(与其波长在同一数量级),且它在强化提取过程中传质功能并不显着。超声波是一种高频机械波,具有湍动效应微扰效应界面效应和聚能效应等,但超声波所产生的热效应不显着,且局限在空化泡周围的极小范围。将它们两者结合起来,协同作用有利于破壁组分释放等,即通过微波-超声波协同强化提取技术可获取一种高效价廉无污染的生物活性物质的提取方法。HeJT等采用微波-超声场协同从中药中提取水溶性生物活性成分,均取得较好的效果。罗锋等采用微波超声波协同提取法从甘草中提取黄酮。马利华等研究了传统蒸馏法与微波超声波协同提取法对牛蒡中类胡萝卜素提取率的影响,并通过正交实验确定最佳提取条件。白红进等分别以无水乙醇蒸馏水及无水乙醇-蒸馏水(体积比为1∶1)等为溶剂,采用微波超声波协同提取芦荟,并采用食用油氧化稳定性测定仪分别测定提取物对菜籽油猪油棉籽油及葵花油的抗氧化作用。
酶提取法
天然植物的细胞壁由纤维素构成,其中植物的有效成分往往被包裹在细胞壁内。酶提取法就是利用纤维素酶果胶酶蛋白酶等(主要是纤维素酶),破坏植物的细胞壁,以促使植物有效成分最大限度溶解分离出的一种方法。在酶提取法的提取工艺中,酶的选择、酶浓度、pH值、酶解温度、酶解时间都会影响植物提取物的提取率。
E. BARZANA等人采用酶提取法从万寿菊提取类胡萝卜素,主要研究了料液比、酶浓度、酶解时间和温度等对提取率的影响,研究结果表明最佳提取工艺为:料液比1∶4、酶浓度0.3%、提取时间为1.5h、温度为25℃。张小清等人采用酶提取法提取银杏中的活性成分—黄酮,并通过正交实验找出酶浓度、pH值、酶解温度和时间等影响提取率的最佳工艺条件。
3. 辣椒色素的提取精制工艺如何
(1)有机溶剂萃取法
根据辣椒色素的理化性质,工业上多采取以下方法进行提取。将茄科植物辣椒的成熟干燥果实之果皮粉碎后,用乙醇、丙酮、异丙醇或正己烷等抽提。考虑到天然红辣椒中含有辣椒红、辣椒素、辣椒油脂等成分,其中辣椒素即辣椒碱有辣味,高温下产生刺激性蒸气,因此在辣椒色素的精制过程中必须将其去除。从结构上看辣椒素含有酰胺键,分子中含有一个羟基,是一个极性化合物,其晶体呈现为单斜棱柱体或矩形,熔点61℃,溶于稀乙醇、己醚、丙酮、乙酸乙酯等溶剂及碱性水溶液中。考虑到辣椒红混合物和辣椒素在不同溶剂中溶解度不同,可以利用两者的溶解度差异进行脱辣处理。
贺文智等基于此原理采用正己烷萃取法,利用辣椒红色素易于溶于正己烷而辣椒素较难溶于正己烷的性质将两者进行分离,操作步骤如下称取经去蒂、去籽、粉碎处理后的红辣椒粉末,以丙酮为萃取剂进行常压萃取操作,提取液在温度为90℃、真空度为0.09兆帕(MPa)的条件下进行减压蒸馏浓缩,同时回收丙酮。用丙酮提取辣椒红的过程实质上是液固之间通过相际接触表面进行的传质过程,传质速率的快慢决定着传质设备的尺寸及操作时间。该方法为了提高传质速率,采用索氏提取器对粉末状的干红辣椒进行提取。称取一定量的经浓缩的辣椒红粗产品用一定量的正己烷进行萃取脱辣。色价定义为单位质量原料的提取物的吸光度。
该方法操作简单,色素回收率较大,产品得率高,但产品色价较小。由于色价值与辣度呈负相关性,说明该方法脱辣不够彻底,对于以辣椒红为主要产品且对辣椒素含量要求不是十分苛刻的情况,可以采用此方法。张宗恩等以丙酮为溶剂提取制备辣椒油树脂,油树脂得率高、色价大、辣素含量低,便于分离。采用pH大于10.37的丙酮(50%)溶液进行5次以上脱辣萃取可得到口尝无辣味的红色素。该方法工艺简单、操作方便,所得色素的各项质量指标均符合FAO/WHO标准。
(2)柱层析法
据报道,辣椒中的辣椒素即使稀释1∶100000仍能感觉到辣味,这在很大程度上限制了辣椒色素的应用。因此,去掉辣味成分就成为提取分离辣椒红色素工艺的关键步骤。用硅胶柱层析分离辣椒色素属分配层析法,是根据色素和辣素的结构差异,在束缚于硅胶上的固定相和洗脱液中的溶解度不同,因此在固定相和洗脱液之间的分配系数不同而达到分离效果。袁庆云研究了用硅胶柱层析分离辣椒红色素,总结出以下工艺流程:
辣椒→挑选→粉碎→加酶→过滤→浓缩→乙醇石油醚提取→过滤→浓缩→上硅胶柱→洗脱→浓缩→深红色黏稠液体
操作要领:①加酶:加酶水解使细胞中与蛋白质、脂肪、糖类等结合的色素游离出来,便于用溶剂提取。②提取:以90%乙醇和石油醚(1∶1)的提取液在室温下搅拌过夜提取,经过滤后减压浓缩。③通过薄层层析寻找洗脱条件,当石油醚和食用级90%乙醇体积比=2∶1时展层效果最好。④将提取的浓缩液上硅胶柱,柱直径10厘米,高100厘米,用洗脱液洗脱,收集红色洗脱部分。⑤将收集的洗脱部分减压浓缩。
实验所得红色黏稠液经检验水分含量0.37%,脂肪含量90.68%,色素∶色阶E1%1cm(475nm)=143,不含辣椒素。贺文智、索全伶等也探讨了辣椒红色素的柱层析提取精制方法:用丙酮作萃取剂从红辣椒干粉中提取出辣椒红粗品,粗品经减压蒸馏浓缩处理后进行柱层析脱辣精制操作。该试验鉴于柱层析法的优点,采用尺寸规格较大的玻璃柱进行柱层析分离,选用粒径74~152微米(μm)硅胶作填料,石油醚与丙酮的复配混合液(10∶1)为展开剂进行柱层析。辣椒红粗品上柱淋洗分离,首先流出的是橙黄色液体(量少),其次是辣椒红色素,最后是较难洗脱的淡黄色且具有较浓辣味的液体。收集红色素产品进行减压蒸馏浓缩,用751分光光度计测定其色价E 1%1cm(460nm)=56.5,色素回收率可达平均67.2%。
针对现有文献中大多介绍以红辣椒为原料提取无辣味混合色素的方法但未对混合色素作进一步分离分析的问题,提出了采用柱层析对辣椒色素中的黄色素进行分离。该方法以硅胶为固定相,丙酮、95%乙醇分别作为辣红素和辣黄素的洗脱剂,每次分离的色素量为硅胶质量的4%~2%,分离后的液体经减压蒸馏得浓缩产物。通过此过程,不但可得到辣椒色素中的主要副产品——黄色素,而且相应地提高了主要成分的纯度,得到纯度较高的红色素。
采用柱层析分离技术,选用吸附剂X和混合洗脱液用于中试,将辣椒色素中红、橙、黄进一步分离,可以使低质量辣椒红色素的色价和色调得到较大的提高。吴明光等采用柱层析分离技术,从辣椒果皮中分离出了游离型结晶辣椒红色素单体,其含量大于95%,这是我国辣椒红色素在剂型上的突破。
(3)超临界CO2流体萃取技术
由于辣椒红素的油状特性使得采用有机溶剂萃取分离得到的辣椒色素产品中有较高的溶剂残留,采取一般的洗脱剂方法产品很难达到联合国粮农组织和世界卫生组织(FAO/WHO,1984)规定的最新标准,极大地影响了辣椒色素的实用和出口创汇。超临界流体萃取是一种新型的化工分离技术。该技术的关键是了解超临界流体的溶解能力及随诸多因素影响的变化规律。超临界CO2流体萃取(SCFE-CO2)就是使用高于临界温度、临界压力的CO2流体作为溶媒的萃取过程。处于临界点附近的流体不仅对物质具有极高的溶解能力,而且物质的溶解度会随体系的压力或温度的变化而变化,从而通过调节体系的压力或温度就可以方便地进行选择性地萃取分离不同物质。超临界分离技术工艺简单,能耗低,萃取溶剂无毒、易回收,所得产品具有极高的纯度,残留溶剂符合FAO/WHO要求。赵亚平等采用自行设计的超临界CO2流体萃取设备进行辣椒色素提取。该设备主要由供气系统、超临界CO2流体发生系统、萃取分离系统、计量系统4部分组成,所有部件都国产化。实验表明,最佳萃取条件为粒度〈1.2毫米,萃取压力15兆帕(MPa),萃取温度50℃,流量6立方米/小时。在萃取过程中,根据UV3000紫外可见分光光度计测定200~600纳米(nm)的吸光度曲线判断辣椒色素与辣椒素的分离效果。用色素的丙酮溶液在449纳米(nm)处测定吸光度,所得值即为色素的色价。用该方法萃取的辣椒色素各项质量指标均超过国家标准。
采用瑞士NOVA公司制造的超临界萃取装置对辣椒色素进行分离、提纯。使产品符合FAO/WHO残留溶剂标准要求(己烷含量≤25毫克/千克)的最佳工艺参数是:萃取压力18兆帕(MPa),萃取温度25℃,萃取剂流量2.0升/分(L/min),萃取时间3小时(h)。在最佳工艺条件下产品色价可达到342。韩玉谦等采用超临界CO2流体萃取技术对色价100~180,溶剂残留30×10-6~150×10-6的辣椒红色素进行精制,实验结果表明:当萃取压力控制在20兆帕(MPa)以下时,辣椒红色素的色价和色调几乎不受损失,有机溶剂的残留可以降低到2.7×10-6左右,但辣椒色素中的红色系色素和黄色系色素未达到完全分离。研究发现,在超临界CO2流体萃取辣椒色素的过程中使用助溶剂如1%的乙醇或丙酮或升高提取压力能提高辣椒色素得率。在较低压力下分离得到的辣椒色素几乎都是β-胡萝卜素,而在较高压力下得到较大比例的红色类胡萝卜素如辣椒红色素、辣椒玉红素、玉米黄质、β-隐黄质等和少量的β-胡萝卜素。在两步分段提取过程中,第一阶段采用分离红辣椒油和β-胡萝卜素的技术保证了第二阶段辣椒色素提取的富集,并使辣椒红、黄色素比率达到1.8。在自行开发的多功能超临界CO2流体萃取分馏装置上对辣椒色素脱辣精制技术进行了研究,结果表明:在小于10.0MPa压力下可萃取出黄色和辣味成分,保留红色素;当压力大于12.0兆帕(MPa)时可将红色组分萃取完全。尽管超临界流体萃取天然色素具有很多的优点,但由于超临界设备一次性投资较大,目前我国在这一领域还未得到广泛的应用。
(4)其他
采用两步法萃取分离红辣椒,即先用有机溶剂浸取法从干尖辣椒中萃取出含有红色素、辣椒素和焦油味臭味的辣椒浸膏,然后再用超临界CO2萃取的方法去除焦油味臭味并把红色素和辣椒素分开,从而得到不含有机溶剂的红色素和辣椒素,产量较单纯用超临界萃取方法提高5~7倍,且质量远超过FAO/WHO(1984)标准。
4. 陈皮苷的提取和精制实验方法
1、陈皮的预处理:橘皮于40℃烘箱中烘干,将干燥的陈皮粉碎至1~2mm,过60目筛,称取50g,加入0.002mol/L稀盐酸,在室温下搅拌30min,重复用0.002mol/L的稀盐酸洗涤两次,再用流水洗涤。控干后,置于20倍量的去离子水中,用盐酸调节pH值为2,在85~90℃下搅拌提取1h,过滤,滤渣作为提取橙皮苷所用。
2、粗制橙皮苷:将滤渣烘干,加入18倍量的乙醇,在85℃的水浴锅中浸提3次,每次1小时(带迥流装置)后,过滤,除去滤渣。滤液蒸镏回收乙醇后,调节pH值为4,静置过夜,离心分离得粗橙皮苷。
3、精制橙皮苷:取粗品加入乙醇和0.1%氢氧化钠使其完全溶解,过滤,滤液中加入盐酸调节pH至4,再静置过夜,过滤得白色晶体,烘干,即得精制橙皮苷。
5. 几种分离和提纯方法
过程应用实例倾析从液体中分离密度较大且不溶的固体分离沙和水过滤从液体中分离不溶的固体净化食用水溶解和过滤分离两种固体,一种能溶于某溶剂,另一种则不溶分离盐和沙离心分离法从液体中分离不溶的固体分离泥和水结晶法从溶液中分离已溶解的溶质从海水中提取食盐分液分离两种不互溶的液体分离油和水萃取加入适当溶剂把混合物中某成分溶解及分离用庚烷提取水溶液中的碘蒸馏从溶液中分离溶剂和非挥发性溶质从海水中取得纯水分馏分离两种互溶而沸点差别较大的液体从液态空气中分离氧和氮; 石油的精炼升华分离两种固体,其中只有一种可以升华分离碘和沙吸附除去混合物中的气态或固态杂质用活性炭除去黄糖中的有色杂质色层分析法分离溶液中的溶质分离黑色墨水中不同颜色的物质
一、由粗食盐提取氯化钠
提示:(1)提纯含有硫酸钠、氯化镁和泥沙等杂质的粗食盐,可供选择的试剂有:氢氧化钠溶液、氯化钡溶液、碳酸钠溶液、稀盐酸等。
(2)为彻底除杂,加入的试剂需要稍过量,因此在后续的除杂方法中要考虑除去此过量试剂。
实验步骤:①将粗盐溶于水,过滤;②在所得滤液中加入稍过量的氢氧化钠溶液(除去氯化镁);③再顺序加入稍过量的氯化钡溶液(除去硫酸钠)和碳酸钠溶液(除去溶液中过量的氯化钡),过滤;④在滤液中滴加适量的稀盐酸(除去溶液中剩余的碳酸钠和氢氧化钠)直至溶液显中性。⑤蒸发、结晶,得到精制的氯化钠。
注意:上述步骤②、③的顺序可以对调,但是步骤③中的两种试剂天家顺序不能对调。
二、用重结晶法提纯硝酸钾
1、向100mL烧杯中加入30mL水,加热至800 C左右,向烧杯内加入含氯化钾的硝酸钾固体,搅拌,使固体完全溶解,冷却上述溶液至室温,过滤。
2、将上述过滤得到的晶体作为样品重复上述操作。
三、萃取、分液
1、萃取:在两支试管中各加入2~3mL碘水(因溴水易挥发,考虑用碘水代替,且碘水颜色较深,现象更明显),再向其中的一支试管中滴加1mL四氯化碳,振荡,静置。
2、萃取、分液:
(1)往分液漏斗中加入5mL 碘水和5mL四氯化碳,塞上塞子用右手压住塞子,左手拇指、食指和中指夹住漏斗颈上的旋塞,将分液漏斗横放,用力振摇或将分液漏斗反复倒转并振荡,振荡过程中常有气体产生,应及时将漏斗倾斜倒置使液面离开旋塞,扭开旋塞把气体放出。
(2)(3)漏斗下放一只烧杯,打开分液漏斗上口的磨口塞或使塞上的凹槽与漏斗口颈上的小孔对准,打开旋塞,使下层液体慢慢流入烧杯里,下层液体流完后,关闭旋塞,将上层液体从漏斗上口倒入另外容器里。
6. 发酵工艺中产品提取分离的方法有哪些种类
目标物的提取是采用物理或化学手段从发酵液或菌丝体中得到目标物的浓缩液或粗制品。常用的提取方法有
溶媒萃取法、
离子交换法、
吸附法以及沉淀法。
具体采用何种提取方法需结合目标物化学结构特征、产品组份情况、拟采用的终产品精制工艺终产品质量要求以及对终产品安全性的影响等因素综合考虑。
7. 天然香料加工提取方法有哪些
天然香料加工提取方法有:水蒸气蒸馏法、萃取法、冷榨冷磨法、吸附法。
1、水蒸气蒸馏法:适用于香气成分不因水蒸气加热而产生显着变化的原料。此法实施简便,故应用较广。利用精油的挥发性,虽其沸点大都在150~300℃,但通入水蒸气即可在低于 100℃时被蒸馏出。
2、萃取法:对香气成分受热易变质的,或一部分香气成分溶解于水中,不适用水蒸气提取的原料,尤其是对某些鲜花原料,精油含量较低,只能采用低于水蒸气蒸馏法的温度进行提取的原料,宜采用萃取法。
3、冷榨冷磨法:用于从柑橘类果实或果皮获得精油的方法。经压榨刺磨可在室温下将油囊压裂或刺破,使精油流出。从油囊释出的精油连同破碎的果皮组织、细胞碎屑以及细胞液喷淋水一起流出,再将油、水和渣屑分离、澄清,即得产品。
4、吸附法:最早应用的吸附法为冷吸附法。将采摘下来仍有生命力的鲜花,如茉莉和晚香玉等花朵放在涂有精制油脂的花框上,然后将花框叠起置放在低温室中。经过一段时间要更换花朵,多次更换后使油脂吸附鲜花的香成分达到饱和。
品种分类:
1、动物香料
较珍贵的天然香料。在调香中除起圆和谐调、增强香气等作用外,还有使香气持久的定香作用(见调香术)。主要有 4种:麝香、灵猫香、海狸香和龙涎香。通常以乙醇制成酊剂,并经存放令其圆熟后使用。
2、植物香料
大部分天然香料属植物性香料。以芳香植物的花、果、叶、枝、皮、根或地下茎、种籽等含有精油的器官及树脂分泌物为原料,可制成各种不同的形态的香料产品。
在世界各地,尤其在热带和亚热带地区,都有各种芳香植物的栽培和生长,如印度的檀香、保加利亚的玫瑰、中国的薄荷和八角茴香、斯里兰卡的肉桂以及法国的熏衣草等均着称于世。虽然含有精油的植物很多,但常用的约200余种。
8. 一般天然产物的提取方式有哪些残余物质如何除去
(一)溶剂提取法:
1.溶剂提取法的原理:溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。
2.溶剂的选择:运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来。选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。
3.提取方法:用溶剂提取中草药成分,、常用浸渍法、渗漉法、煎煮法、回流提取法及连续回流提取法等。同时,原料的粉碎度、提取时间、提取温度、设备条件等因素也都能影响提取效率,必须加以考虑。
1)浸渍法:浸渍法系将中草药粉末或碎块装人适当的容器中,加入适宜的溶剂(如乙醇、稀醇或水),浸渍药材以溶出其中成分的方法。本法比较简单易行,但浸出率较差,且如用水为溶剂,其提取液易于发霉变质)须注意加入适当的防腐剂。
2)渗漉法:渗漉法是将中草药粉末装在渗漉器中,不断添加新溶剂,使其渗透过药材,自上而下从渗漉器下部流出浸出液的一种浸出方法小当溶剂渗进药粉溶出成分比重加大而向下移动时,上层的溶液或稀浸液便置换其位置,造成良好的浓度差,使扩散能较好地进行,故浸出效果优于浸渍法。但应控制流速,在渗渡过程中随时自药面上补充新溶剂,使药材中有效成分充分浸出为止。或当渗滴液颜色极浅或渗涌液的体积相当于:原药材重的10倍时,便可认为基本上已提取完全。在大量生产中常将收集的稀渗淮液作为另一批新原料的溶剂之用。
3)煎煮法:煎煮法是我国最早使用的传统的浸出方法。所用容器一般为陶器、砂罐或铜制、搪瓷器皿,不宜用铁锅,以免药液变色。直火加热时最好时常搅拌,以免局部药材受热太高,容易焦糊。有蒸汽加热设备的药厂,多采用大反应锅、大铜锅、大木桶,或水泥砌的池子中通入蒸汽加热。还可将数个煎煮器通过管道互相连接,进行连续煎浸。
4)回流提取法:应用有机溶剂加热提取,需采用回流加热装置,以免溶剂挥发损失。小量操作时,可在圆底烧瓶上连接回流冷凝器。瓶内装药材约为容量的%~%,溶剂浸过药材表面约1~2cm。在水浴中加热回流,一般保持沸腾约1小时小放冷过滤,再在药渣中加溶剂,作第二、三次加热回流分别约半小时,或至基本提尽有效成分为止。此法提取效率较冷浸法高,大量生产中多采用连续提取法。
5)动连续提取法:应用挥发性有机溶剂提取中草药有效成分,不论小型实验或大型生产,均以连续提取法为好,而且需用溶剂量较少,提取成分也较完全。实验室常用脂肪提取器或称索氏提取器。连续提取法,一般需数小时才能提取完全。提取成分受热时间较长,遇热不稳定易变化的成分不宜采用此法。
6)水蒸气蒸馏法:水蒸气蒸馏法,适用于能随水蒸气蒸馏而不被破坏的中草药成分的提取。此类成分的沸点多在100℃以上,与水不相混溶或仅微溶,且在约100℃时存一定的蒸气压。当与水在一起加热时,其蒸气压和水的蒸气压总和为一个大气压时,液体就开始沸腾,水蒸气将挥发性物质一并带出。例如中草药中的挥发油,某些小分子生物碱一麻黄碱、萧碱、槟榔碱,以及某些小分子的酚性物质。牡丹酚(paeonol)等,都可应用本法提取。有些挥发性成分在水中的溶解度稍大些,常将蒸馏液重新蒸馏,在最先蒸馏出的部分,分出挥发油层,或在蒸馏液水层经盐析法并用低沸点溶剂将成分提取出来。例如玫瑰油、原白头翁素(protoanemonin)等的制备多采用此法。
7)升华法:固体物质受热直接气化,遇冷后又凝固为固体化合物,称为升华。中草药中有一些成分具有升华的性质,故可利用升华法直接自中草药中提取出来。例如樟木中升华的樟脑(camphor),在《本草纲目》中已有详细的记载,为世界上最早应用升华法制取药材有效成分的记述。茶叶中的咖啡碱在178℃以上就能升华而不被分解。游离羟基蒽醌类成分,一些香豆素类,有机酸类成分,有些也具有升华的性质。例如七叶内酯及苯甲酸等。升华法虽然简单易行,但中草药炭化后,往往产生挥发性的焦油状物,粘附在升华物上,不易精制除去,其次,升华不完全,产率低,有时还伴随有分解现象。
4.分离和纯化:
(一)溶剂分离法:一般是将上述总提取物,选用三、四种不同极性的溶剂,由低极性到高极性分步进行提取分离。水浸膏或乙醇浸膏常常为胶伏物,难以均匀分散在低极性溶剂中,故不能提取完全,可拌人适量惰性填充剂,如硅藻土或纤维粉等,然后低温或自然干燥,粉碎后,再以选用溶剂依次提取,使总提取物中各组成成分,依其在不同极性溶剂中溶解度的差异而得到分离。例如粉防己乙醇浸膏,碱化后可利用乙醚溶出脂溶性生物碱,再以冷苯处理溶出粉防己碱,与其结构类似的防己诺林碱比前者少一甲基而有一酚羟基,不溶于冷苯而得以分离。利用中草药化学成分,在不同极性溶剂中的溶解度进行分离纯化,是最常用的方法。
(二)两相溶剂萃取法:
1.萃取法:两相溶剂提取又简称萃取法,是利用混合物中各成分在两种互不相溶的溶剂中分配系数的不同而达到分离的方法。萃取时如果各成分两相溶剂中分配系数相差越大,则分离效率越高、如果在水提取液中的有效成分是亲脂性的物质,一般多用亲脂性有机溶剂,如苯、氯仿或乙醚进行两相萃取,如果有效成分是偏于亲水性的物质,在亲脂性溶剂中难溶解,就需要改用弱亲脂性的溶剂,例如乙酸乙酯、丁醇等。还可以在氯仿、乙醚中加入适量乙醇或甲醇以增大其亲水性。提取黄酮类成分时,多用乙酸乙脂和水的两相萃取。提取亲水性强的皂甙则多选用正丁醇、异戊醇和水作两相萃取。不过,一般有机溶剂亲水性越大,与水作两相萃取的效果就越不好,因为能使较多的亲水性杂质伴随而出,对有效成分进一步精制影响很大。
2.逆流连续萃取法:是一种连续的两相溶剂萃取法。其装置可具有一根、数根或更多的萃取管。管内用小瓷圈或小的不锈钢丝圈填充,以增加两相溶剂萃取时的接触面。例如用氯仿从川楝树皮的水浸液中萃取川楝素。将氯仿盛于萃取管内,而比重小于氯仿的水提取浓缩液贮于高位容器内,开启活塞,则水浸液在高位压力下流入萃取管,遇瓷圈撞击而分散成细粒,使与氯仿接触面增大,萃取就比较完全。如果一种中草药的水浸液需要用比水轻的苯、乙酸乙酯等进行萃取,则需将水提浓缩液装在萃取管内,而苯、乙酸乙酯贮于高位容器内。萃取是否完全,可取样品用薄层层析、纸层析及显色反应或沉淀反应进行检查。
3.逆流分配法(CounterCurrentDistribution,CCD):逆流分配法又称逆流分溶法、逆流分布法或反流分布法。逆流分配法与两相溶剂逆流萃取法原理一致,但加样量一定,并不断在一定容量的两相溶剂中,经多次移位萃取分配而达到混合物的分离。本法所采用的逆流分布仪是由若干乃至数百只管子组成。若无此仪器,小量萃取时可用分液漏斗代替。预先选择对混合物分离效果较好,即分配系数差异大的两种不相混溶的溶剂。并参考分配层析的行为分析推断和选用溶剂系统,通过试验测知要经多少次的萃取移位而达到真正的分离。逆流分配法对于分离具有非常相似性质的混合物,往往可以取得良好的效果。但操作时间长,萃取管易因机械振荡而损坏,消耗溶剂亦多,应用上常受到一定限制。
4.液滴逆流分配法:液滴逆流分配法又称液滴逆流层析法。为近年来在逆流分配法基础上改进的两相溶剂萃取法。对溶剂系统的选择基本同逆流分配法,但要求能在短时间内分离成两相,并可生成有效的液滴。由于移动相形成液滴,在细的分配萃取管中与固定相有效地接触、摩擦不断形成新的表面,促进溶质在两相溶剂中的分配,故其分离效果往往比逆流分配法好。且不会产生乳化现象,用氮气压驱动移动相,被分离物质不会因遇大气中氧气而氧化。本法必须选用能生成液滴的溶剂系统,且对高分子化合物的分离效果较差,处理样品量小(1克以下),并要有一定设备。应用液滴逆流分配法曾有效地分离多种微量成分如柴胡皂甙原小檗碱型季铵碱等。液滴逆流分配法的装置,近年来虽不断在改进,但装置和操作较繁。目前,对适用于逆流分配法进行分离的成分,可采用两相溶剂逆流连续萃取装置或分配柱层析法进行。
(三)沉淀法:是在中草药提取液中加入某些试剂使产生沉淀,去杂质的方法。
1.铅盐沉淀法:铅盐沉淀法为分离某些中草药成分的经典方法之一。由于醋酸铅及碱式醋酸铅在水及醇溶液中,能与多种中草药成分生成难溶的铅盐或络盐沉淀,故可利用这种性质使有效成分与杂质分离。中性醋酸铅可与酸性物质或某些酚性物质结合成不溶性铅盐。因此,常用以沉淀有机酸、氨基酸、蛋白质、粘液质、鞣质、树脂、酸性皂甙、部分黄酮等。可与碱式醋酸铅产生不溶性铅盐或络合物的范围更广。通常将中草药的水或醇提取液先加入醋酸铅浓溶液,静置后滤出沉淀,并将沉淀洗液并入滤液,于滤液中加碱式醋酸铅饱和溶液至不发生沉淀为止,这样就可得到醋酸铅沉淀物、碱式醋酸铅沉淀物及母液三部分。
然后将铅盐沉淀悬浮于新溶剂中,通以硫化氢气体,使分解并转为不溶性硫化铅而沉淀。含铅盐母液亦须先如法脱铅处理,再浓缩精制。硫化氢脱铅比较彻底,但溶液中可能存有多余的硫化氢,必须先通人空气或二氧化碳让气泡带出多余的硫化氢气体,以免在处理溶液时参与化学反应。新生态的硫化铅多为胶体沉淀,能吸咐药液中的有效成分,要注意用溶剂处理收回