导航:首页 > 知识科普 > 因式分解简便方法教学视频

因式分解简便方法教学视频

发布时间:2022-12-25 08:38:06

‘壹’ 解分解因式的简单方法

因式分解(factorization)

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

⑴提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立

因式分解的十二种方法

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x -x(2003淮安市中考题)

x -2x -x=x(x -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)

解:a +4ab+4b =(a+2b)

3、 分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m +5n-mn-5m

解:m +5n-mn-5m= m -5m -mn+5n

= (m -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x -19x-6

分析: 1 -3

7 2

2-21=-19

解:7x -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40

解x +3x-40=x +3x+( ) -( ) -40

=(x+ ) -( )

=(x+ + )(x+ - )

=(x+8)(x-5)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x -x -6x -x+2

解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x

=x [2(x + )-(x+ )-6

令y=x+ , x [2(x + )-(x+ )-6

= x [2(y -2)-y-6]

= x (2y -y-10)

=x (y+2)(2y-5)

=x (x+ +2)(2x+ -5)

= (x +2x+1) (2x -5x+2)

=(x+1) (2x-1)(x-2)

8、 求根法

令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )

例8、分解因式2x +7x -2x -13x+6

解:令f(x)=2x +7x -2x -13x+6=0

通过综合除法可知,f(x)=0根为 ,-3,-2,1

则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图象与x轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )

例9、因式分解x +2x -5x-6

解:令y= x +2x -5x-6

作出其图象,见右图,与x轴交点为-3,-1,2

则x +2x -5x-6=(x+1)(x+3)(x-2)

10、 主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a (b-c)+b (c-a)+c (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)

=(b-c) [a -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x +9x +23x+15

解:令x=2,则x +9x +23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x +9x +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x -x -5x -6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)

= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd

所以 解得

则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

‘贰’ 数学因式分解

例1 把2x^2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
� ╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5)
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
�╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5 x^2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
总结:①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b

c d
通俗方法
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写
1 1
X
二次项系数 常数项
若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)
需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)
a b

c d
第一次a=1 b=1 c=二次项系数÷a d=常数项÷b
第二次a=1 b=2 c=二次项系数÷a d=常数项÷b
第三次a=2 b=1 c=二次项系数÷a d=常数项÷b
第四次a=2 b=2 c=二次项系数÷a d=常数项÷b
第五次a=2 b=3 c=二次项系数÷a d=常数项÷b
第六次a=3 b=2 c=二次项系数÷a d=常数项÷b
第七次a=3 b=3 c=二次项系数÷a d=常数项÷b
......
依此类推
直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)
例解:
2x^2+7x+6
第一次:
1 1

2 6
1X6+2X1=8 8>7 不成立 继续试
第二次
1 2

2 3
1X3+2X2=7 所以 分解后为:(x+2)(2x+3) [编辑本段]⒉十字相乘法(解决两者之间的比例问题) 原理
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。
AX+B(1-X)=C
X=(C-B)/(A-B)
1-X=(A-C)/(A-B)
因此:X∶(1-X)=(C-B)∶(A-C)
上面的计算过程可以抽象为:
A ………C-B
……C
B……… A-C
这就是所谓的十字相乘法。
十字相乘法使用时的注意
第一点:用来解决两者之间的比例问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。

‘叁’ 因式分解12种方法图解

因式分解方法如下:

一、提取公因式法

提取公因式法是最基本的因式分解方法,甚至可以说后面的因式分解方法都是在这个基础上进行使用。一般来说,提取公因式法的使用针对比较直观的因式进行提取,例如学生在多项式中直接看到有一个共同项,立刻就想到提取公因式。

例1:因式分解:3x^3+8x^2y+6x^2y^3=x^2(3x+8y+6y^3)

有些多项式进行提取公因式法之后,还要进一步进行因式分解,如果没有分解到不能再分,不能算是正确答案。

三、完全平方差公式法

完全平方差公式法和完全平方和公式法如同孪生兄弟,二者极其相似,它的基本表达式子是x^2-2xy+y^2,它是(x-y)(x-y)的乘积,而在实际因式分解中,并不像公式那样的明显,例如x^2-6x+9,x^2-4xy+4y^2.下面看一个常见的例子:x^2+y^2-2xy-6x+6y+9

解析:通过观察发现这个式子可以变成x^2-6x+9-2y(x-3)+y^2,可以构成一个完全平方差公式。

‘肆’ 因式分解的方法与技巧

因式分解的方法与技巧如下:

因式分解并不难,分解方法要记全,各项若有公因式,首先提取莫迟缓,各项若无公因式,
套用公式来试验。

如果是个二项式,平方差公式要领先,如果是个三项式,完全平方想周
全,以上方法都不行,运用分组看一看,面对二次三项式,十字相乘求方便,能分解的再分
解,不能分解是答案。

把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形
式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

分解一般步骤

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。

‘伍’ 因式分解讲解过程

1
因式分解首先是提公因式法,我们可以提出多项式中的公共因式,来达到饮食分解的目的。
2
需要注意的是我们的公因式是需要是字母部分的公因式和常数部分的公因式一起提出来,同时需要注意留下来的项是用括号括在一起,还有注意符号的变化。
3
利用公式法因式分解,我们公式法因式分解,是利用两个一个是平方差公式,一个是完全平方公式。
4
利用两个公式需要熟记我们公式计算方法,和适用的形式,注意我们的平方差是需要两个数的平方,注意多次平方差公式的运用。还有完全平方和我们的平方差的联合运用。
5
十字交叉法因式分解,十字交叉实际上是利用完全平方和平方差进行的见简便运算方法,利用十字交叉的时候需要注意我们的逐步的讲解和分析十字交叉的原理,进而让学生理解。
6
我们可以用完全皮方公式进行配方,然后用平方差公式进行因式分解就可以得到十字交叉的结果,进而讲解会比较好点。

‘陆’ 如何分解因式

要看题目具体条件的哦,方法有很多
⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:
见 ██星星██的回答

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2
解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33
x^5+3x^4y-5x^3y^2+4xy^4+12y^5
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y)
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立
补充:
因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x^3 -2x^2 -x(2003淮安市中考题)
x^3 -2x^2 -x=x(x^2 -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a^2 +4ab+4b^2 (2003南通市中考题)
解:a^2 +4ab+4b^2 =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m^2 +5n-mn-5m
解:m^2+5n-mn-5m= m^2-5m -mn+5n
= (m^2 -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx^2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x^2 -19x-6
分析:
1 -3
7 2
2-21=-19
解:7x^2 -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x^2 +3x-40
解x^2 +3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5)
补充:
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
8、 求根法
令多项式f(x)=0,求出其根为x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例8、分解因式2x^4 +7x^3 -2x^2 -13x+6
解:令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0
通过综合除法可知,f(x)=0根为1/2 ,-3,-2,1
则2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图像法
令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例9、因式分解x^3 +2x^2 -5x-6
解:令y= x^3 +2x^2 -5x-6
作出其图像,与x轴交点为-3,-1,2
则x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
补充:
例11、分解因式x^3 +9x^2 +23x+15
解:令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5) ,验证后的确如此。
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x^4 -x^3 -5x^2 -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x^4 -x^3 -5x^2 -6x-4=(x^2 +ax+b)(x^2 +cx+d)
= x^4 +(a+c)x^3 +(ac+b+d)x^2 +(ad+bc)x+bd
所以 解得
则x^4 -x^3 -5x^2 -6x-4 =(x +x+1)(x -2x-4)

‘柒’ 因式分解公式法的步骤

因式分解公式法的步骤如下:

如果多项式的首项为负,应先提取负号;

如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

‘捌’ 怎么快速分解因式

因式分解的一般步骤是:一提二套三分解
一提:即提公因式,看到因式分解的题目,首先看有没有公因式,若有,则
先提公因式;若没有,则套用公式.
二套:即套用公式,在没有公因式的前提下,则套用公式,
常用公式有:a^2-b^2=(a+b)(a-b)
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
十字相乘法:x^2+(a+b)x+ab=(x+a)(x+b)
举例:x^2+5x+6=(x+3)(x+2)
即分组分解法.对于四项或四项以上的,一般都采用这种方法
下面主要对分组分解法和其他常见的方法归纳如下.
一、分组分解因式的几种常用方法
1.按公因式分解
例1 分解因式7x2-3y+xy+21x.
分析:第1、4项含公因式7x,第2、3项含公因式y,分组后又有公因式(x-3),
原式=(7x2-21x)+(xy-3y)=7x(x-3)+y(x-3)=(x-3)(7x+y).
2.按系数分解
例2 分解因式x3+3x2+3x+9.
分析:第1、2项和3、4项的系数之比1:3,把它们按系数分组.
解;原式=(x3+3x2)+(3x+9)=x2(x+3)+3(x+3)=(x+3)(x2+3).
3.按次数分组
例3 分解因式 m2+2m·n-3m-3n+n2.
分析:第1、2、5项是二次项,第3、4项是一次项,按次数分组后能用公式和提取公因式.
原式=(m2+2m·n+n2)+(-3m-3n)=(m+n)2-3(m+n)=(m+n)(m+n-3).
4.按乘法公式分组
分析:第1、3、4项结合正好是完全平方公式,分组后又与第二项用平方差公式.
5.展开后再分组
例5 分解因式ab(c2+d2)+cd(a2+b2).
分析:将括号展开后再重新分组.
原式=abc2+abd2+cda2十cdb2=(abc2+cda2)+(cdb2+abd2)=ac(bc+ad)+bd(bc+ad)=(bc+ad)(ac+bd).
6.拆项后再分组
例6 分解因式x2-y2+4x+2y+3.
分析:把常数拆开后再分组用乘法公式.
原式=x2-y2+4x+2y+4-1=(x2+4x+4)+(-y2+2y-1)=(x+2)2-(y-1)2=(x+y+1)(x-y+3).
7.添项后再分组
例7 分解因式x4+4.
分析:上式项数较少,较难分解,可添项后再分组.
原式=x4+4x2-4x2+4=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)
二、用换元法进行因式分解
用添加辅助元素的换元思想进行因式分解就是原式繁杂直接分解有困难,通过换元化为简单,从而分步完成.
例8 分解因式(x2+3x-2)(x2+3x+4)-16.
分析:将令y=x2+3x,则原式转化为(y-2)(y+4)-16再分解就简单了.
令y=x2+3x,则
原式=(y-2)(y+4)-16=y2+2y-24=(y+6)(y-4).
因此,原式=(x2+3x+6)(x2+3x-4)=(x-1)(x+4)(x2+3x+6).
三、用求根法进行因式分解
例9 分解因式x2+7x+2.
分析:x2+7x+2利用上述各方法皆不好完成,但仍可以分解,可用先求该多项式对应方程的根再分解.
四、用待定系数法分解因式.
例10 分解因式x2+6x-16.
分析:假设能分解,则应分解为两个一次项式的积形式,即(x+b1)(x+b2),将其展开得
x2+(b1+b2)x十b1·b2与x2+6x-16相比较得
b1+b2=6,b1·b2=-16,可得b1,b2即可分解.
设x2+6x-16=(x+b1)(x+b2)
则x2+6x-16=x2+(b1+b2)x+b1·b2
∴x2+6x-16=(x-2)(x+8).

阅读全文

与因式分解简便方法教学视频相关的资料

热点内容
柠檬草茶的功效与作用及食用方法 浏览:331
个税计算方法地区 浏览:144
吉列剃须刀使用方法 浏览:875
如何解释命运的方法 浏览:918
肩肌训练方法 浏览:396
2052除以57的简单方法 浏览:74
胸软筋挫伤治疗方法 浏览:392
烤猪肉的简单腌制方法 浏览:341
大腿外侧冷的原因和解决方法 浏览:51
ddc桩工程计算方法 浏览:689
指针万用表使用方法图解 浏览:372
差热分析最佳方法 浏览:631
收被子方法视频 浏览:123
记忆宫殿方法如何训练的坏处 浏览:58
材料进场验收的基本方法有哪些 浏览:382
惠普后视镜安装方法 浏览:402
体脂率是多少计算方法 浏览:200
刀塔2攻速计算方法 浏览:419
c编程简单方法 浏览:446
厂房吊顶龙拉杆的安装方法 浏览:77