Ⅰ 数据库常见的存取方法
1.索引存取方法 索引存取方法就是根据应用要求,确定对应关系的哪些属性列建立索引、哪些属性列建立组合索引、哪些索引要设计为唯一索引等。指导方案有以下几点: 1)如果一个(或一组)属性经常在查询条件中出现,则可将...
2.聚簇存取方法 为了提高某属性(或属性组)的查询速度,可以将这些属性(称为聚簇码,cluster key)上具有相同值的元组集中...
3.hash存取方法 有些DBSM提供了hash存取方法,选取hash存取方法的规则如下: .
Ⅱ 目前数据管理的主要方法是哪个
数据管理的主要方法是(B、文件系统和操作系统)。
数据库管理技术是指对数据的分类、组织、编码、存储、检索和维护的技术,数据管理技术的发展经过3个阶段:人工阶段、文件系统阶段和数据库阶段。
利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程。其目的在于充分有效地发挥数据的作用。实现数据有效管理的关键是数据组织。
(2)数据库处理过程常用哪些方法扩展阅读:
在数据库系统中所建立的数据结构,更充分地描述了数据间的内在联系,便于数据修改、更新与扩充,同时保证了数据的独立性、可靠、安全性与完整性,减少了数据冗余,故提高了数据共享程度及数据管理效率。
由于每一个文件都是独立的,当需要用到相同的数据时,必须建立各自的文件,数据还是无法共享,也会造成大量的数据冗余。
数据不具有独立性,在此阶段数据仍然不具有独立性,当数据的结构发生变化时,也必须修改应用程序,修改文件的结构定义;而应用程序的改变也将改变数据的结构。
Ⅲ Java中,在JAVA中处理数据库事务的方法
在java中 一般有两种方式可以进行数据库事务处理:
一是:如果你用到开源框架hibernater的话,在hibernater里面它提供了事务工厂,你可以利用这个类来进行事务操作。
二是:我们一般有Connection连接对象来对事务进行操作。
Ⅳ 预处理常用的方法有哪些
一、混凝-絮凝
混凝是指向水中投加一定剂量的化学药剂,这些化学药剂在水中发生水解,和水中的胶体粒子互相碰撞,发生电性中和,产生吸附、架桥和网捕作用,从而形成大的絮体颗粒,并从水中沉降,起到了降低颗粒悬浮物和胶体的作用。
二、介质过滤
介质过滤是指以石英砂或无烟煤等为介质,使水在重力或压力下通过由这些介质构成的床层,而水中的的颗粒污染物质则被介质阻截,从而达到与水分离的过程。粒状介质过滤基于“过滤-澄清”的工作过程去除水中的颗粒、悬浮物和胶体。
工业水处理
在工业用水处理中,预处理工序的任务是将工业用水的水源——地表水、地下水或城市自来水处理到符合后续水处理装置所允许的进水水质指标,从而保证水处理系统长期安全、稳定地运行,为工业生产提供优质用水。
预处理的对象主要是水中的悬浮物、胶体、微生物、有机物、游离性余氯和重金属等。这些杂质对于电渗析、离子交换、反渗透、钠滤等水处理装置会产生不利的影响。
Ⅳ 如何处理大量数据并发操作
处理大量数据并发操作可以采用如下几种方法:
1.使用缓存:使用程序直接保存到内存中。或者使用缓存框架: 用一个特定的类型值来保存,以区别空数据和未缓存的两种状态。
2.数据库优化:表结构优化;SQL语句优化,语法优化和处理逻辑优化;分区;分表;索引优化;使用存储过程代替直接操作。
3.分离活跃数据:可以分为活跃用户和不活跃用户。
4.批量读取和延迟修改: 高并发情况可以将多个查询请求合并到一个。高并发且频繁修改的可以暂存缓存中。
5.读写分离: 数据库服务器配置多个,配置主从数据库。写用主数据库,读用从数据库。
6.分布式数据库: 将不同的表存放到不同的数据库中,然后再放到不同的服务器中。
7.NoSql和Hadoop: NoSql,not only SQL。没有关系型数据库那么多限制,比较灵活高效。Hadoop,将一个表中的数据分层多块,保存到多个节点(分布式)。每一块数据都有多个节点保存(集群)。集群可以并行处理相同的数据,还可以保证数据的完整性。
拓展资料:
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
Ⅵ 对大数据进行云计算处理的时候采用了什么方法
云计算和大数据的结合可以说是相辅相成,因为云计算为大数据提供了可以弹性扩展相对便宜的存储空间和计算资源,使得中小企业也可以像大型企业一样通过云计算来完成大数据分析。
大数据的对数据进行专业化处理的过程离不开云计算的支持。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要框架来向数十、数百或甚至数千的电脑分配工作。并且,大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
Ⅶ 数据处理一般包括哪四个过程
数据治理流程是从数据规划、数据采集、数据储存管理到数据应用整个流程的无序到有序的过程,也是标准化流程的构建过程。
根据每一个过程的特点,我们可以将数据治理流程总结为四个字,即“理”、“采”、“存”、“用”。
1.理:梳理业务流程,规划数据资源
对于企业来说,每天的实时数据都会超过TB级别,需要采集用户的哪些数据,这么多的数据放在哪里,如何放,以什么样的方式放?
这些问题都是需要事先进行规划的,需要有一套从无序变为有序的流程,这个过程需要跨部门的协作,包括了前端、后端、数据工程师、数据分析师、项目经理等角色的参与。
2.采:ETL采集、去重、脱敏、转换、关联、去除异常值
前后端将采集到的数据给到数据部门,数据部门通过ETL工具将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,目的是将散落和零乱的数据集中存储起来。
3.存:大数据高性能存储及管理
这么多的业务数据存在哪里?这需要有一高性能的大数据存储系统,在这套系统里面将数据进行分门别类放到其对应的库里面,为后续的管理及使用提供最大的便利。
4.用:即时查询、报表监控、智能分析、模型预测
数据的最终目的就是辅助业务进行决策,前面的几个流程都是为最终的查询、分析、监控做铺垫。
这个阶段就是数据分析师的主场,分析师们运用这些标准化的数据可以进行即时的查询、指标体系和报表体系的建立、业务问题的分析,甚至是模型的预测。
Ⅷ 数据处理经历了哪几个阶段
1.数据采集\x0d\x0a了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。\x0d\x0a在数据采集阶段,数据分析师需要更多的了解数据生产和采集过程中的异常情况,如此才能更好的追本溯源。另外,这也能很大程度上避免“垃圾数据进导致垃圾数据出”的问题。\x0d\x0a2.数据的加工整理\x0d\x0a在明确数据分析目标基础上收集到的数据,往往还需要进行必要的加工整理后才能真正用于分析建模。数据的加工整理通常包括数据缺失值处理、数据的分组、基本描述统计量的计算、基本统计图形的绘制、数据取值的转换、数据的正态化处理等,它能够帮助人们掌握数据的分布特征,是进一步深入分析和建模的基础。\x0d\x0a3.数据分析\x0d\x0a数据分析相对于数据挖掘更多的是偏向业务应用和解读,当数据挖掘算法得出结论后,如何解释算法在结果、可信度、显着程度等方面对于业务的实际意义,如何将挖掘结果反馈到业务操作过程中便于业务理解和实施是关键。\x0d\x0a4.数据展现\x0d\x0a数据展现即数据可视化的部分,数据分析师如何把数据观点展示给业务的过程。数据展现除遵循各公司统一规范原则外,具体形式还要根据实际需求和场景而定。基本素质要求如下:\x0d\x0a工具:PPT、Excel、Word甚至邮件都是不错的展现工具,任意一个工具用好都很强大。\x0d\x0a形式:图文并茂的基本原则更易于理解,生动、有趣、互动、讲故事都是加分项。\x0d\x0a原则:领导层喜欢读图、看趋势、要结论,执行层欢看数、读文字、看过程。\x0d\x0a场景:大型会议PPT最合适,汇报说明Word最实用,数据较多时Excel更方便。\x0d\x0a最重要一点,数据展现永远辅助于数据内容,有价值的数据报告才是关键。
Ⅸ 6种数据库管理方法!有哪些!
1.需求分析阶段
准确了解与分析用户需求(包括数据与处理)
是整个设计过程的基础,是最困难、最耗费时间的一步
2.概念结构设计阶段
是整个数据库设计的关键
通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型
3.逻辑结构设计阶段
将概念结构转换为某个DBMS所支持的数据模型
对其进行优化
4.数据库物理设计阶段
为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)
5.数据库实施阶段
运用DBMS提供的数据语言、工具及宿主语言,根据逻辑设计和物理设计的结果
建立数据库,编制与调试应用程序,组织数据入库,并进行试运行
6.数据库运行和维护阶段
数据库应用系统经过试运行后即可投入正式运行。
Ⅹ 在数据库中如何快速查询数据,处理方法
SQL关键索引,在大表上创建索引
千万记录的表不算大,只要索引创建对了,性能可以正常提升,
还有一种就是比较偏的方式:先把需要批量的数据库插入临时表
这个可以防止频繁对表进行查询操作,
SQL 如下:select * into #Temp from Table
后面就只需要对临时表操作,不允许主表性能。