㈠ 环境脆弱性评价方法
基于对环境脆弱性内涵的界定,相关学者先后构建了环境脆弱性评价指标体系。总的来说,当前所建的环境脆弱性评价指标体系大致可分为两大类:单一类型区域的指标体系和综合性指标体系[13]。单一类型区域的指标体系通常是针对特定地理背景而建立的,结构简单,针对性强,具有区域性特点,能够根据区域特点确定导致区域环境脆弱的关键因子。综合性指标体系既考虑环境系统内在功能与结构的特点,又考虑环境系统与外界之间的联系,选取的指标比较全面,能够反映环境脆弱性的自然状况、社会发展状况、经济发展状况等方面。现有综合性评价指标体系可概括以下3种类型:成因及结果表现指标体系,在体现导致环境脆弱性主要因素的同时,其结果表现指标可以修正成因指标之间的地区性差异,使评价结果更具有地区间的可比性;“压力—状态—响应”指标体系,采用压力与状态指标描述人类活动对环境造成的压力以及在这种压力下资源与环境的质量状况和社会经济状况采用响应指标描述社会各个层次对造成环境脆弱压力的响应;多系统评价指标体系,运用系统论的观点分析环境系统及其子系统的特点,综合水资源、土地资源、生物资源、气候资源、社会经济等子系统脆弱因子,筛选指标,确定指标体系,能够全面地反映出区域环境的脆弱性。
李鹤等归纳和分析了目前脆弱性评价研究中运用的主要方法。根据脆弱评价的思路将脆弱性评价方法分为5类:综合指数法、脆弱性函数模型评价法、模糊物元评价法和危险度分析[14]。综合指数法是从脆弱性表现特征、发生原因等方面建立评价指标体系,利用数学方法综合成脆弱性指数,表示评价单元的脆弱性程度,是目前脆弱性评价中较常用的一种方法。其特点是简单、容易操作。脆弱性函数模型评价法基于对脆弱性的理解,首先对脆弱性的各构成要素进行定量评价,然后从脆弱性构成要素之间的相互作用关系出发,建立脆弱性评价模型。该方法与脆弱性内涵对应较强,能够体现脆弱性构成要素之间的相互作用关系,但目前关于脆弱性的概念、构成要素及其相互作用关系尚无统一的认识,并且脆弱性构成要素的定量表达较困难,使得该评价方法进展较为缓慢。模糊物元评价法是通过计算各研究区域与一个选定参照状态(脆弱性最高或最低)的相似程度来判别各研究区域的相对脆弱程度。该方法可以充分利用原始变量的信息,缺点在于对参照单元的界定缺乏科学合理的方法,评价结果对参照单元选取标准的变化十分敏感,并且评价结果反映出的信息量较少,只能反映各研究区域脆弱性的相对大小,难以反映脆弱性空间差异的决定因素及脆弱性特征等方面的信息。危险度分析方法计算研究单元各变量现状矢量值与自然状态下各变量矢量值之间的欧氏距离,认为距离越大系统越脆弱,越容易使系统的结构和功能发生彻底的改变。该方法多用于生态环境脆弱性评价,反映系统偏离自然状态的程度和研究单元的生态危险程度。不足之处是忽视了人类活动对生态环境改善的促进作用以及自然状态的不确定性,没有确定的脆弱性阈值。
随着GIS、融合技术及非线性方法等新方法的引入,环境脆弱性评价将可能出现新的方法。借助GIS技术,可以实现在同一个平台下表征出多种途径和探测手段能够获取的定性和非定性数据,利用空间叠加分析的强大功能提取出有用信息,阐述各种数据之间的相互关系,从而可以揭示自然环境要素间内在联系及演变规律。GIS技术与各种数学模型的结合将是环境脆弱性评价研究的一个重要发展方向。
从以上论述可以看出,关于地质环境脆弱性的研究尚不多见。近年来,有学者先后对地质环境对社会经济发展的影响做了一些探索,提出了地质环境生态适宜性评价指标体系、农业地质环境质量评价指标、区域地质环境可持续利用评价体系、国土资源与地质环境健康指数等评价框架或方法[15~18]。总的看来,地质环境脆弱性的研究多偏重于定性评价,定量评价理论与方法尚处在探索阶段,距离应用还有很大差距。
㈡ 地下水污染风险评价方法
1.3.2.1 地下水脆弱性与污染风险的概念
地下水脆弱性指由于自然条件变化或人类活动影响,地下水遭受破坏的趋向和可能性,它反映了地下水对自然和(或)人类活动影响的应付能力,地下水脆弱性一般分为固有脆弱性和特殊脆弱性。
地下水污染风险是指地下水受到污染的概率及污染预期损害程度的叠加。它表示含水层中地下水由于地表的直接活动造成污染的概率。这种污染是基于地下水的用途而制定的一系列标准而言。当污染指标超过该地下水用途所规定的指标时,视其为污染。合并地下水污染源灾害分级图和地下水固有脆弱性图来代替地下水污染的概率,用地下水价值图来代替地下水污染的预期损害性。因此,地下水污染风险性高是指高价值的地下水资源受到灾害性高的污染源的污染。
1.3.2.2 地下水脆弱性及污染风险影响因素
地下水系统是个开放系统,系统变化除了受到含水层系统和地下水流动系统的影响,还受到地表状况、大气、土壤、包气带等过程的影响。表1.1详细列出了可能影响地下水脆弱性各类影响因素。
地下水污染风险影响因素除了表1.1中所列,还包括污染源的各种特征,如污染源种类、排放方式、排放量、特征污染物类别和性质、排放规模以及防护措施等。
表1.1 地下水脆弱性影响因素表
1.3.2.3 地下水脆弱性评价方法
地下水脆弱性的研究程度较高,评价方法较为成熟,目前国内外已有的评价方法主要有迭置指数法、过程模拟法、统计方法、模糊数学方法以及各种方法的综合等,具体信息见表1.2。
迭置指数法是通过选取的评价参数的分指数进行叠加,形成一个反映脆弱性程度的综合指数,包括指标、权重、值域和分级。它又分为水文地质背景参数法(HCS)和参数系统法,后者又包括矩阵系统(MS)、标定系统(RS)和计点系统模型(PCSM)。
表1.2 地下水脆弱性评价的主要方法表
国外对地下水脆弱性评价采取的模型主要包括:DRASTIC(Aller et al.,1987)、GOD(Foster,1987)、SINTACS(Civita,1993)、ISIS(Civita and De Regibus,1995)、Legrand、SEEPAGE(Gogu,2000)等。针对岩溶含水层的脆弱性评价模型有 GLA 法(Holting et al.,1995)、EPIK(Doerfliger et al.,1997)、PI(Goldscheider,2005)等。
目前,DRASTIC模型应用最为广泛(表1.3)。它假设污染物由地表起经土壤层、包气带进入含水层,污染物随降雨入渗到地下水中,污染物随水流动。DRASTIC 模型由7个水文地质评价参数组成,分别为:含水层埋深(D)、净补给量(R)、含水层介质(A)、土壤介质(S)、地形坡度(T)、包气带介质的影响(I)及水力传导系数(C)。模型中每个指标都分成几个区段(对于连续变量)或几种主要介质类型(对于文字描述性指标),每个区段根据其在指标内的相对重要性赋予评分,评分范围为1~10分。每个指标根据其对脆弱性影响重要性赋予相应权重,最后脆弱性指数为7个指标的加权综合,记为DI,值越高,地下水脆弱性越高,反之脆弱性越低。
DI=DRDW+RRRW+ARAW+SRSW+TRTW+IRIW+CRCW(1.2)
式中:R——指标值;
W——指标的权重。
该模型通过增减指标的改进模型应用于美国各地、加拿大、南非、欧共体的各地潜水和承压水脆弱性评价。从表1.4中可看出,许多学者多将土地利用类型指标纳入评价指标体系中,并取得了更加客观的评价结果。不同的土地利用类型对于污染物进入到含水层的影响作用是不同的,它可以改变污染物的种类、数量和污染物进入含水层路径的长度和途径。
表1.3DRASTIC模型及农药DRASTIC模型中各指标权重表
(据Aller et al.,1987)
表1.4 地下水污染风险定义的发展历程表
国内研究者根据不同地区自然属性特征和污染物特征提出了3~11个不等的指标,采用不同的方法对权重加以优化,然后借助GIS技术或模糊数学方法进行地下水脆弱性分区。
过程模拟法是在水分和污染物运移模型基础上,建立一个脆弱性评价数学公式,将各评价因子定量化后,得出区域脆弱性综合指数。过程模拟法研究地下水脆弱性,不仅可以告诉决策者哪里可能会发生污染,而且会表明为什么会发生污染,什么时间可能发生污染,从污染机理上研究了污染物对于地下水系统影响程度和过程。认识地下水的来源和运动是过程模拟法研究地下水本质脆弱性的重点,关注污染物的来源、运移和转化是特殊脆弱性的评价重点。
统计方法是通过对已有的地下水污染信息和资料进行数理统计分析,确定地下水脆弱评价因子并用分析方程表示出来,把已赋值的各评价因子放入方程中计算,然后根据其结果进行脆弱性分析。利用统计方法解决非点源的地下水脆弱性在近几年中研究很多,逻辑衰减和贝叶斯方法是最常用的方法。常用的模型包括逻辑回归分析、线性回归分析法、克里格方法、实证权重法。目前统计法不如迭置指数法和过程模拟法应用广泛。
总的来说,国内外对地下水污染风险评价采用的主要方法是基于地下水脆弱性评价,在其基础上,增加诸如土地利用状况、污染源分布、污染源危害分级、地下水社会经济价值、开采井的集水范围等相关指标。但总体上,缺乏系统的地下水污染风险评价方法与参数体系。地下水污染风险不仅没有一个公认的定义,而且地下水污染风险评价所涉及的评价内容和方法在不断地探索、深入,但远远没有完善,更没有形成规范性的技术体系。
1.3.2.4 地下水污染风险评价方法
最初脆弱性研究只关注地下水系统的固有脆弱性或者叫易污性,随着研究的深入,人们关注的焦点转向了地下水系统抵御污染源荷载的脆弱性,称为特殊脆弱性。特殊脆弱性对污染源荷载比较敏感,污染源的轻微变化就能导致系统的变化;特殊脆弱性一般表现为污染源荷载作用下系统所遭受损失的大小或程度;特殊脆弱性与人类活动关系密切,人类的各种排污活动增加了自然系统的特殊脆弱性,相反减排和环境保护措施则会减小对自然系统的扰动。目前,国内外学者关于脆弱性的研究主要集中在3个方面:系统固有脆弱性的研究、系统特殊脆弱性研究和区域灾害脆弱性研究。关于地下水污染风险国际上还没有形成统一的定义,其发展历程见表1.4。
针对地下水系统,污染源荷载是指点源、面源等各种污染源对地下水造成污染的可能性和危害后果的严重性,影响污染源荷载的主要因素有污染源的量、排放或泄漏位置、污染源的类型、毒性、开采井的位置、开采层位,以及污染物在土壤和地下水中的迁移转化特征等。污染源荷载的大小反映污染源对地下水造成污染的可能性大小。
存在的主要问题:地下水污染风险评价是近十年来才成为的一个正式的概念,而且至今没有一个公认的定义。地下水污染风险评价所涉及的评价内容在不断地探索、深入,但远远没有完善,更没有形成规范性的技术体系;而且地下水污染风险评价一般是建立在地下水脆弱性评价的基础上,这样所评价的地下水污染风险往往只是在空间层面上,而对于时间上的风险评价往往很少提及。
可见,地下水污染风险评价所涉及内容及技术体系的完善化、规范化及地下水污染风险在时间层面的评价是地下水污染风险评价可能的发展方向。
㈢ 评价原理与方法
(一)主要影响因子
由于地下水系统是一个开放系统,所以其脆弱性与其埋藏条件、补给源等有着密切的关系,包括包气带岩性、地形地貌、含水层水文地质条件等,还与人类活动也有一定的关系(图4-6)。因此,地下水脆弱性评价需要考虑的因素较复杂,应结合具体问题遴选主要影响因子。
地下水脆弱性评价因子,包括两部分:一是固有脆弱性评价因子;二是特殊脆弱性评价因子。固有脆弱性评价因子主要有土壤性质、包气带特征、含水层特征、补给量、地形、含水层的下伏地层以及与地表水或海水的水力联系状况。在地下水特殊脆弱性评价时,除考虑了以上因子外,还需要考虑与人类活动有关的影响因子和影响污染物发生降解的地质条件和污染物特性。
1)土壤(soil media)是地球最表层风化地带,它对地下水的补给有很重要的影响作用。一般情况下,土壤的颗粒愈小,地下水入渗补给量愈小,入渗水流所携带进入地下水中的污染物愈少。另一方面,土壤中含有大量的微生物,是污染物进行物理-化学分解的重要条件。
图4-6 地下水脆弱性评价有关因子
2)包气带(vadose zone)位于土壤层之下、地下水位以上非饱水区,通常将土壤层纳入其中。包气带的厚度决定污染物下移进入地下水含水层的所需时间。包气带厚度愈大,地下水脆弱性愈弱,地下水愈不容易遭污染。包气带的岩性以及其渗透性,也是重要影响因素。粘土地层组成的包气带,有利于地下水免遭受污染。
3)净补给(net recharge)是指来自研究区含水层以外的水分对地下水净补给量,它增加储存资源(水量)。这部分水量在补给地下水的同时,还携带一定数量的污染物进入含水层中。补给量愈大,进入含水层中的污染物几率或数量愈大,地下水脆弱性愈强,愈容易遭污染。
4)含水层特征(aquifer media)是指含水层岩性、厚度、有效孔隙度、水力传导系数和储存能力等,这些因素都影响污染物在含水层中迁移、聚集和稀释状况。
5)地形(topography)主要是指陆地表面的坡度和植被覆盖率。陆地表面的坡度控制污染物随着雨水产汇流而迁移状况。当地形坡度较缓,降雨就不容易形成径流,污染物进入地下水中潜在性较大;反之,地形坡度较大,则降雨易形成快速径流,不利于污染物进入地下水中。植被覆盖率通过延缓降雨地面产流的时间,增大入渗速率而影响污染物进入地下水中情势。
6)含水层导水系数是决定污染物在含水层的传播速度,传导系数愈大,污染物传播速度愈快,地下水的脆弱性愈强。
(二)评价方法
地下水脆弱性评价方法很多,一般包括4个步骤:①建立评价指标体系;②确定指标体系中各因子的权重;③应用数学方法计算;④评价分级与编绘地下水脆弱性分布图。
地下水脆弱性评价方法的选取,应根据研究区的自然地理状况、相关数据情况及研究目的来确定。比较常用的评价方法,有:过程数学模拟法、统计方法、模糊数学法和叠置指数法(表4-13)。
表4-13 地下水脆弱性评价方法对比
注:引自姜桂华,2002。
1.过程数学模拟法
过程数学模拟法是在水流和污染质运移模型基础上,建立一个脆弱性评价数学表达式,然后将各评价因子量化处理之后应用该式进行求解,由此可得出一个有关地下水脆弱性的综合指数。
该方法最大的优点是它可以描述影响地下水脆弱性的物理、化学和生物等过程,但只有在充分认识污染质在地下水环境中迁移过程,并有足够的水文地质资料和长序列污染质迁移监测数据,才能取得比较好的结果。尽管描述污染质运移的二维、三维等模拟模型很多,但在区域地下水脆弱性评价中,多数采用包气带的一维过程模型。例如 Britt等(1996)从包气带的衰减能力、污染质的对流-弥散以及污染质代谢物的毒理性等角度,应用衰减因素指数模型、污染质渗漏潜势指数评价模型和分级指数模型开展了相关研究。这3种方法,需要输入的数据较少,便于广泛应用;缺陷是不能模拟污染质迁移、转化详细过程。
2.统计方法
统计方法是通过对已有的地下水污染监测数据进行数理统计分析,确定地下水脆弱性评价的主要因子,然后采用分析方程进行计算,再根据计算结果进行脆弱性分析(Mi⁃chael,1999)。Tesoruero等(1997)和Sophocleous等(1998)分别采用逻辑回归分析和线性回归分析方法,评价了
应用统计方法进行地下水脆弱性评价,需要有足够的相关监测资料。在地下水脆弱性评价中,这种方法不如叠置指数法和过程数学模拟法应用广泛(姜桂华,2002)。
3.模糊数学法
模糊数学法是在确定评价因子、各因子的分级标准和因子赋权的基础上,采用单因子模糊评判和模糊综合评判进行地下水脆弱性评价的。这种方法在我国地下水脆弱性评价中应用较多(陈守煜,2002;周金龙,2004)。
4.叠置指数法
叠置指数法是通过选取评价参数的分指数进行叠加,然后形成一个反映地下水脆弱程度的综合指数,再根据综合指数进行评价。该方法又分为“水文地质背景参数法”和“参数系统法”。前者是通过条件类似地区的已知脆弱性标准,进行比较分析来确定研究区地下水脆弱性。这种方法需要建立多组地下水脆弱性评价的标准模式,且多为定性或半定量性评价,一般适用于地质、水文地质条件比较复杂的大区域。后者是将选择的评价参数,构建成为参数系统,每个参数都有一定的取值范围,这个范围又分为几个区间,每一个区间给出相应的评分值或脆弱度(即参数等级评分标准),然后将各参数的实际资料与该标准进行比较评分,进而获得评分值或脆弱度。该方法又分为“矩阵系统法”、标定系统法和计点系统法。
叠置指数法所需数据比较容易获得,算法简单,易于掌握,是国外最常用的一种方法(孙才志,2000)。它的缺陷是评价指标分级和评分没有统一的标准,具有很大的主观性。
(三)评价因子权重确定
确定各影响因子对目标影响的权重,是地下水脆弱性评价的基础工作,对评价结果具有显着的影响。确定权重方法主要有主观赋权法和客观赋权法两类。主观赋权法是指由专家根据经验主观判断确定评价因子权重,评价结果具有一定的主观性,这类方法有层次分析法、最小平方法、专家调查法、环比评分法和TACTIC法。客观赋权法是指根据原始数据之间关系来确定评价因子的权重,它具有较强的数学理论依据,这类方法有主成分分析法、熵值法、神经网络法和灰色关联度法等。目前比较普遍的做法是通过多种方法确定权重,然后相互验证确定权重的合理性。
1.层次分析法
层次分析法(AHP)是一种定量与定性相结合的多目标决策分析方法,它是将决策者的经验判断给予量化,在目标结构复杂且缺乏必要数据情况下更为实用。该方法是在建立有序递阶的指标系统基础上,通过指标之间两两比较对系统中各因子给予优劣评判,进而确定各因子权重系数。具体步骤:①建立层次结构,构造判断矩阵,明确上一层次因子与其所属层次因子之间的权重关系;②所有因子权值层次排序及求解权向量;③检验和修正各判断矩阵的一致性。
与其他方法相比,AHP方法的最大优点是通过一致性检验保持逻辑上的一致性,当出现3个以上的指标相互比较时,不会出现内部相互矛盾、不协调一致问题。
2.BP神经网络法
人工神经网络法(ANN)是指在计算机上采用一定算法模拟人脑智能的技术,它是由大量具有非线性响应运算功能的神经元构成,形成一种并行分布式的信息处理系统,各神经元之间权值可以不断调整,使系统具有自学习能力(尚丽,2002)。
BP(Back Progagation)网络算法又称为反向传输算法,是一种多层学习算法。BP网络算法模型为:
设n维m个学习样本X=(x11,x12,…,xmn),已知与其对应的教师d=(d1,d2,…,dm),同时存在一个连接权W=(w1,w2,…,wn),通过输入样本、连接权和作用函数,产生一个输出项Y=(y1,y2,…,ym),于是有
区域地下水功能可持续性评价理论与方法研究
f(x)=1/(1+ex) (4-64)
式中:netji为节点i在学习第j个样本时的输出项;Yj为第j个样本的输出项;m为学习样本;n为样本节点;f(x)为输出作用函数。
每个输入样本,网络输出(ym)与期望输出(dm)之间误差为
E=Ej=(dm-ym) (4-65)
则,总误差为
权重修正为
ΔW(j,i-1)=ηyj(dj-yj)(4-68)
当E小于某一数值时,权重修正的网络学习结束。
假设有m个n维变量,则求取权重的计算模型为
区域地下水功能可持续性评价理论与方法研究
权向量为
区域地下水功能可持续性评价理论与方法研究
该模型为数据输入层、中间隐含层(权重层)和输出层3层。在输入向量、权向量和作用函数后,会产生m个1维输出向量:
dT(m)=(d1,d2,…,dm)
同时,根据实际资料,得到m个1维实际结果向量:
YT(m)=(y1,y2,…,ym)
于是,有
W(m+1)=W(m)+ΔW(m)
ΔW(m)=η[dm-f(ym)]f(ym)sgn[dm-f(ym)]
已知样本变量X(n)和实际结果向量Y(m),则可以求得连接权W(n)。
3.灰色关联度法
灰色关联度法是一种比较常用的方法,具体算法如下。
设有m个子因素(X1,X2,…,Xm),它们都与母因素(X0)有一定关联。每个评价指标都有N个统计值,构成母序列和子序列:
母序列{X0(i)},i=1,2,…,N
子序列{Xk(i)},i=1,2,…,M
为了进行比较,将母序列和子序列进行标准化处理,使所有的值在0~1之间。
区域地下水功能可持续性评价理论与方法研究
式中:
经标准化后的数列,无量纲,则第k条子线在某一点t与母线在该点的距离:
Δ0k(t)=|X0(t)-Xk(t)| (4-70)
可用Δ0K(t)值衡量它们在t处的关联性。Δ0k(t)愈小,子线与母线在t处的关联性愈好。母、子序列在t=1到t=N的关联性,用关联系数表示,有
区域地下水功能可持续性评价理论与方法研究
式中:ξ0k(i)为第k条子线与母线X0在i点关联系数,其值满足0≤ξ0k≤1,ξ0k愈接近1,它们的关联性越好;Δmin,Δmax为m条子线在区间[1,N]母线的距离Δ0k(i)的最大值与最小值;ζ为分辨系数,一般取0.5。
于是,有第k条子线与母线在[1,N]间的关联度为
区域地下水功能可持续性评价理论与方法研究
采用下式使关联度之和为“1”,对关联度进行标准化。标准化后的关联度,可作为每个评价指标的权重。
区域地下水功能可持续性评价理论与方法研究
(四)脆弱性评价方法
1.DRASTIC模型
DRASTIC法是一种评价地下水污染潜势的分级标准化系统方法,也是地下水脆弱性评价中参数系统法的一个经典方法,被较广泛应用。该方法由美国水井协会(NWWA)和美国环境保护局(USPEA)于1987年合作研发,它综合了40多位水文地质学专家的经验,适用于大尺度区域性地下水脆弱性评价。DRASTIC模型取7个参数的开头字母组成DRASTIC模型名称,D为地下水位埋深(Depth to Water)、R为净补给(Net Recharge)、A为含水层介质(Aquifer Media)、T为地形(Topography)、S为土壤介质(Soil Media)、I为非饱和带影响(Impact of Vadose Unsaturated Zone)和C为含水层水力传导(Hydraulic Conctivity of the Aquifer)。DRASTIC法已被美国40个县和许多国家采用,包括不同水文地质条件地区,例如喀斯特地区多含水层系统。
DRASTIC方法有4个主要假定:①污染物存在于地表;②污染物通过降雨渗入地下;③污染物随水迁移;④研究区面积不小于100英亩(约0.4km2)。
DRASTIC评价模型为
DrDw+RrRw+ArAw+SrSw+TrTw+IrIw+CrCw=DRASTIC(4-74)
式中:D,R,A,S,T,I和C分别为地下水位埋深、净补给、含水层介质、土壤介质、地形、非饱和带影响和含水层水力传导系数;r和w分别为评价指标等级和权重;DRAS⁃TIC为综合指数,该值代表地下水脆弱性的不同程度。DRASTIC值愈小,地下水脆弱性愈低;DRASTIC值愈大,地下水脆弱性愈高。
2.评价指标及特征值
DRASTIC模型的各评价因子含义及其对地下水脆弱性影响情况如下。
1)地下水位埋深(Depth to Water):地下水位埋深是指从地面至地下水位的距离。地下水位埋深愈浅,地下水愈容易遭污染,地下水脆弱性愈高;反之,地下水愈不容易遭污染,地下水脆弱性愈低。地下水位埋深分级及特征值,如式4-75所示
区域地下水功能可持续性评价理论与方法研究
式中:f(h)为地下水位埋深评分;h为地下水位埋深(m)。
2)净补给(Net Recharge):是指每年在单位面积到达地下水位的总补给水量。地下水入渗补给量愈小,随之进入地下水中污染物愈少,则地下水脆弱性愈低;反之,地下水入渗补给量愈大,随之进入地下水中污染物愈多,则地下水脆弱性愈高。
降雨入渗影响评分表达式,如下式4-76(Jeffrey D.,2001):
RN=(Recharge×0.265722)1/2+1 (4-76)
式中:RN为降雨入渗影响评分;Recharge为单位面积的地下水净补给量(m3/km2·a)。
3)地形(Topography):是指地表面的倾斜度。地形坡度愈小,愈不利于降雨在地面形成径流,而污染物愈容易通过入渗进入地下水中,脆弱性愈高;反之,地形坡度愈大,愈利于降雨在地面形成径流,而污染物愈不容易通过入渗进入地下水中,脆弱性愈低。
地形坡度影响评分表达式,如式4-77:
区域地下水功能可持续性评价理论与方法研究
式中:RT为地形坡度影响评分;a为地形坡度。
4)包气带影响(Impact of the Vadose Zone):包气带评分值与含水层岩性评分相似。当含水层上覆为渗透性较弱的粘土时,则评分较低;当含水层上覆为渗透性较弱的砂性土时,则评分较高。
5)含水层岩性(Aquifer Media):岩土颗粒愈大,或裂隙较多,则脆弱性评分愈高。
6)含水层水力传导系数:它影响污染物在含水层的迁移速度。传导系数愈大,污染物迁移速度愈大,则脆弱性评分愈高。
7)土壤类型(Soil Media):土壤颗粒愈小,或含有大量微生物,则脆弱性评分愈低。
3.权重体系
在建立DRASTIC评价模型时,根据评价不同目的,赋予每个评价因子一个分级特征值(1~10之间),并建立两套相关的权值系列(1~5),其中显着性最高的权值为5,最低为1。
㈣ 区域地质环境脆弱性评价方法
基于ArcGIS平台,将区域地壳稳定性、断裂带分布、海拔、地表起伏度、植被覆盖度、地表湿润指数、土壤可蚀性、土壤侵蚀强度和岩溶分布等9个脆弱性指标图层进行线性变换归一化处理,使结果落到[0,100]区间,得到各指标标准值图层;运用因子相关分析法,分析9个脆弱性指标间相关性;应用主成分分析法,将相关性显着的重复的要素删去多余,重新组合成一组新的互相无关的综合脆弱性要素;以主成分要素对应的方差贡献率作为权重,应用综合指数模型,完成地质环境脆弱性综合评价;在区位理论及空间统计的支持下进行分区,将全国划分为微度、轻微度、轻度、中度、重度和极度等六类脆弱区。
(一)归一化
归一化处理,线性变换转换函数如下:
生态文明视角下地质环境调查战略研究
式中:X为指标x的标准值;xmax为指标x样本数据的最大值;xmin为指标x样本数据的最小值。
(二)因子相关分析
在spatial analyst工具的多元分析中进行波段集统计,分析上述9个指标的相关方向和相关程度。皮氏积矩相关系数是衡量两个随机变量之间线性相关程度的指标。它由卡尔·皮尔森在1880年提出,现已广泛地应用于科学的各个领域。对于变量x、y,皮氏积矩相关系数为:
生态文明视角下地质环境调查战略研究
式中:rxy为皮氏积矩相关系数;
(三)主成分分析
基于ArcGIS平台,在spatial analyst工具的多元分析中进行主成分分析。主成分分析工具用于将输入多元属性空间中的输入波段内的数据变换到相对于原始空间对轴进行旋转的新的多元属性空间。新空间中的轴(属性)互不相关。第一个主成分V1(第一个线性组合,即第一个综合指标)将具有最大的方差,Var(V1)越大,表示V1包含的信息越多;如果第一主成分不足以代表原来m个指标的信息,再考虑选取V2即选第二个线性组合,V1已有的信息就不需要再出现在V2中,用数学语言表达就是要求Cov(V1,V2)=0,则称V2为第二主成分,第二个主成分将具有未通过第一个主成分描述的第二大方差;依此类推,可以构造出其他主成分。
(四)综合指数模型
地质环境脆弱度采用下式计算
生态文明视角下地质环境调查战略研究
式中:V为区域地质环境脆弱度;Vi为采用主成分分析方法所获得的第i个综合变量;n为综合变量个数;m为一级指标个数;λ为主成分变量对应的特征值。
㈤ 地下水脆弱性评价步骤
4.3.3.1 评价单元的划分
4.3.3.1.1 评价单元划分方法
(1)按照自然地理单元、行政区划单元或经济开发(土地利用)单元等一定的标准将整个评价区划分成有限数量的自然评价单元;
(2)抛开自然边界,将之剖分成数量众多但形状和大小都相同的网格单元。剖分单元间距可根据评价区域的大小、数据资料丰富程度、评价区的复杂程度,以及评价精度要求来确定,并可根据实际情况在复杂地段加密。
4.3.3.1.2 评价单元编号原则
(1)同一区域单元编号应该连续;
(2)评价单元编号不能重复。
4.3.3.2 数据获取及预处理
4.3.3.2.1 所涉及的参数及相关要求
本技术要求推荐采用基于DRASTIC的模糊评价模型来评价地下水脆弱性。基于DRASTIC的模糊评价模型是将以下每个参数分成几个区间,每个区间都赋以一个分值,而每个参数赋以一个权重,运用模糊评价模型评价地下水的脆弱性。评价单元各指标特征值的选取按照附件1执行。
4.3.3.2.1.1 含水层埋深D(Depth to Water)
如果是潜水含水层,由地下水位确定含水层埋深;如果是承压含水层,则取承压含水层顶板为含水层埋深。单位统一为m。
4.3.3.2.1.2 净补给量R(Net Recharge)
净补给量主要来源于降雨量,可用降雨量减去地表径流量和蒸散量来估算净补给量,或者用降水入渗系数计算。单位统一为mm。
4.3.3.2.1.3 含水层组介质类型A(Aquifer Media)
本技术要求中将含水层组介质分为以下10类:
(1)块状页岩、粘土;
(2)裂隙发育非常轻微的变质岩或火成岩、亚粘土;
(3)裂隙中等发育的变质岩或火成岩、亚砂土;
(4)风化变质岩或火成岩、粉砂;
(5)裂隙非常发育的变质岩或火成岩,冰碛层、粉细砂;
(6)块状砂岩、块状灰岩、细砂;
(7)层状砂岩、灰岩及页岩序列、中砂;
(8)砂砾岩、粗砂;
(9)玄武岩、砂砾石;
(10)岩溶灰岩、卵砾石。
4.3.3.2.1.4 土壤介质类型S(SoilMedia)
本技术要求所指土壤层通常为距地表平均厚度2m或小于2m的地表风化层。在此,土壤介质分为以下10类:
(1)非胀缩和非凝聚性粘土;
(2)垃圾;
(3)粘土质亚粘土;
(4)粉砾质亚粘土;
(5)亚粘土;
(6)砾质亚粘土;
(7)胀缩或凝聚性粘土;
(8)泥炭;
(9)砂砾石;
(10)卵砾石。
4.3.3.2.1.5 地形坡度T(Topography)
单位统一为‰。
4.3.3.2.1.6 渗流区介质类型I(Impact of the Vadose Zone Media)
渗流区是指潜水水位以上或承压含水层顶板以上土壤层以下的非饱和区或非连续饱和区。分为以下10种类型:
(1)粘土为主;
(2)亚粘土为主;
(3)亚砂土为主;
(4)粉砂为主;
(5)粉细砂为主;
(6)细砂为主;
(7)中砂为主;
(8)粗砂为主;
(9)砂砾石为主;
(10)卵砾石为主。
4.3.3.2.1.7 含水层渗透系数C(Conctivity of the Aquifer)
影响渗透系数大小的因素很多,主要取决于含水层中介质颗粒的形状、大小、不均匀系数和水的黏滞性等,通常可通过试验方法或经验估算法来确定K值。单位统一为m/d。
4.3.3.2.2 数据的预处理
数据的处理方法视数据类型的不同而不同。
(1)对通过测量不能直接得到的3项指标:含水层组介质类型(A)、土壤介质类型(S)和渗流区介质类型(I),分别按照附件1的要求进行分级(分类)并给出相应的定额(参照附件1中表2,3,4);
(2)对通过测量可以直接得到的4项指标:含水层埋深(D)、净补给量(R)、地形坡度(T)和含水层渗透系数(C),直接选取实际测量值。
举例说明:选取5个备选的水文地质单元,将7项评价指标特征值按照图4.3.1格式要求在Excel中输入并保存。
4.3.3.3 权重的确定
本技术要求中提供两种确定权重的方法,用户可以根据自己对研究区的了解程度及需求选择不同的方法,目的是使所取的权重更加合理。
图4.3.1
4.3.3.3.1 参考DRASTIC中给定的权重
由国内外大量实验综合,并借鉴DRASTIC方法提供给定的7项指标不同的权重,见表4.3.1所示。
表4.3.1 DRASTIC方法中各指标的权重
按照 的要求归一化后得到两种情况下的指标权向量。
正常情况下脆弱性的归一化权重wi为
地下水资源调查评价技术方法汇编
有农药污染的情况下脆弱性的归一化权重wi为
地下水资源调查评价技术方法汇编
4.3.3.3.2 方根法确定权重
在DRASTIC中,根据指标的相对重要性给7项指标赋予1~5大小不等的权重。但是,实际上影响地下水脆弱性的实际水文地质条件情况相当复杂,应根据实际水文地质条件,运用经验知识确定指标权重。本技术要求推荐采用方根法确定7项指标的权重。
(1)根据项目特点构建判断矩阵,矩阵中各元素为相对重要性标度。如表4.3.2所示。
表4.3.2 构建判断矩阵
对于某地区的脆弱性,其评判指标集合为:
地下水资源调查评价技术方法汇编
按各个指标的影响大小,把集合内的评判指标进行两两比较,并赋予一定的确定值,用bij表示bi对bj的重要性。根据心理学家的研究结果,人们定性区别信息等级的极限为7±2。故采用如表4.3.3所示的1~9比例标度规则。
评判矩阵具有如下性质:
bij>0;bij=1/bji;当i=j时,bij=1。其取值见表4.3.3。
表4.3.3 评判规则
(2)针对指标相互比较得到的判断矩阵,计算指标权重。这些权重反映了这些互相联系的指标的相对重要性。基本思路是:求判断矩阵的最大特征值和特征向量(即指标的权重)。
判断矩阵的最大特征值和特征向量采用方根法计算。其计算步骤为:
a.计算矩阵各行各元素乘积:
地下水资源调查评价技术方法汇编
b.计算7次方根:
地下水资源调查评价技术方法汇编
c.对向量进行规范化:
将上述7次方根所得的7个向量组成矩阵,并对其进行规一化。
地下水资源调查评价技术方法汇编
归一化方法如下:
地下水资源调查评价技术方法汇编
得到 为所求特征向量近似值,即各指标的权重。
d.计算矩阵的最大特征值λmax:
地下水资源调查评价技术方法汇编
e.由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)是否合理,需要对判断矩阵进行一致性和随机性检验。
矩阵的随机一致性比例CR检验公式为:
地下水资源调查评价技术方法汇编
式中:CR———判断矩阵的随机一致性比率。CI———判断矩阵的一致性指标,它由下式计算:
地下水资源调查评价技术方法汇编
λmax———最大特征根,n———判断矩阵阶数。RI———判断矩阵的平均随机一致性指标,由表4.3.4查出。
RI由大量试验给出,对于低阶判断矩阵,RI取值列于表4.3.4。对高于12阶的判断矩阵,需要进一步查资料或采用近似方法。
表4.3.4 平均随机一致性指标
当阶数≤2时,矩阵总有完全一致性;当阶数大于2时如果CR<0.1,即认为判断矩阵具有满意的一致性,说明权数分配是合理的;否则,就需要调整判断矩阵,直到取得满意的一致性为止。
对于通过一致性检验的最大特征根所对应的特征向量,按照图4.3.2的格式保存在Excel中,以备运行评价程序时调用。
图4.3.2
4.3.3.4 基于DRASTIC的模糊评价模型
本技术要求使用基于DRASTIC的模糊评价模型进行脆弱性评价。由于该方法运算量大,考虑其可操作性,技术要求中提供程序对定量的评价进行计算。在此只说明使用程序的基本步骤,基于DRASTIC的模糊评价模型的理论方法在附件2中具体说明。
4.3.3.4.1 加载元数据
运行基于DRASTIC的模糊评价模型的程序,读入保存好的Excel格式的数据。如果操作成功,会返回相应的内容(图4.3.3);反之则会提示操作失败的原因(图4.3.4)。
4.3.3.4.2开始评价
从模型中读入权重,在4.3.3.3中提到两种方法确定权重,故应用程序时存在两种情况图4.3.5:
(1)默认权重。读入基础数据提示成功之后,选择默认权重,会提示读入权重成功,点击开始评价,评价成功则会显示评价结果;如果失败,则会提示失败的原因。
(2)自定义权重。读入基础数据提示成功之后,选择自定义权重,会提示读入权重成功图4.3.6, 点击开始评价,评价成功则会显示评价结果;如果失败,则会提示失败的原因。
评价者根据确定权重的方法选择读入权重的类型。
图4.3.3
图4.3.4
图4.3.5
图4.3.6
4.3.3.4.3 评价结果显示与输出
评价程序计算出来的评价结果,是按照本技术要求提出的地下水脆弱性的10个级别及对应的脆弱性描述显示(图4.3.7)。
图4.3.7
此评价程序提供评价结果的输出,在“文件”中点击“保存”则自动以Excel的格式保存(图4.3.8)。
此表的设计与脆弱性评价成果表紧密结合,利于操作(注:由于版面大小限制,以上图片显示的结果并不是全部结果)。
图4.3.8
㈥ 水源地地下水固有脆弱性评价方法
4.2.1.1 评价指标体系
选取影响地下水固有脆弱性影响因素指标体系的原则是:指标具有代表性、系统性、简洁性、独立性、动态性、科学性、可操作性。
1)代表性:指标充分反映了研究区典型区域特征对地下水污染风险的影响。
2)系统性:地下水污染风险关系到地下水系统的各个方面。在构建评价指标体系时,应该全面系统地考虑地下水污染风险的各种影响因素,尽可能将这些因素的各个方面都纳入到评价指标体系中来,在保证评价指标没有重复意义基础上,保证其评价结果的可靠性。
3)独立性:系统的状态可以用多个指标来描述,但这些指标之间往往存在信息交叉,在构建指标体系过程中,应该在诸多交叉信息中,通过科学的剔除,选择具有代表性同时又相互相对独立性较强的指标参与评价过程,提高评价的准确性和科学性。
4)简洁性:影响地下水污染风险的各种潜在因素很多,要建立一个包含所有因素的庞大指标体系在实际应用中是很难实现的。一方面这些因素所包含的指标有一些很难取得,另一方面指标过多,它们之间的关系也错综复杂,并且它们之间还存在着协同和拮抗等作用。这就要求在进行地下水脆弱性评价时,应根据不同地区的情况具体问题具体分析,尽量找出影响地下水污染风险的主要因素,并且选取的指标不宜过多,否则会冲淡主要指标的作用。
5)动态性:不仅要考虑现状条件下影响地下水污染风险的因素,还要考虑地下水环境和地下水系统在自然或人类活动影响下发生变化情况时的影响因素。
6)科学性:指标体系应建立在一定的科学基础之上,体系中各指标概念的内涵和外延应明确,能够从各个侧面全面完整地反映和度量评价对象。
7)可操作性:指标的获取具有现实性,在我国现有统计制度存在或者通过实验和调研能够得到相应的数据资料(如统计年鉴、统计资料、抽样调查、典型调查或相应的内部资料等)。
4.2.1.2 地下水型水源地固有脆弱性评价指标体系
目前评价地下水脆弱性最常用的方法是DRASTIC模型。模型将地下水埋深D、净补给量R、含水层介质A、土壤带介质S、地形T、包气带介质I及水力传导系统C等7个水文地质参数组成评价指标体系。虽然DRASTIC模型可以较客观地评估不同地区的地下水本质脆弱性,但其前提是假设各地区的含水层都分别具有均一趋势。实际上由于各国各地区的地质、水文地质等条件不同,以及模型计算方法的缺陷,DRASTIC法存在一定的局限性,需要对模型进行一定的改进,使其具有更强的适用性,其中针对地表水域发育地区需要考虑河网的密度,而土地利用类型可以表征入渗污染物分布大致类型和状态,需要被引入到评价过程中,改进后的指标体系见表4.1所示。
(1)地下水埋深
地下水埋深即包气带厚度。包气带是污染物从地表进到含水层中的第一道屏障,包括土壤和土壤下方的包气带土层。土壤黏土矿物含量、有机质含量、含水量、土壤类型与分布、包气带介质、厚度、结构及区域分布特征等都是地下水脆弱性的影响因素。包气带厚度决定了污染物进入含水层所必经的路程长短,水位埋深越浅,污染物和包气带介质发生各种物理化学生物作用的机会和时间越少,因此,地下水脆弱性越高。
表4.1 地下水固有水脆弱性评价指标表
(2)垂向净补给量
垂向净补给量指单位面积内从地表垂直渗入地下水位的水量,是评价中最不容易确定的因素,补给水量不仅是污染物运移载体,而且对污染物起到一定的稀释作用。垂向净补给量对地下水脆弱性具有双重影响:当垂向净补给量大时,携带的污染物量多,同时污染物被稀释的可能性增大,所以这两种相反的作用和决定了垂向净补给量对地下水脆弱性的贡献。大部分研究中认为,研究区内的垂向净补给量没有大到可以产生稀释作用,所以一般采用简化的方法表示垂向净补给量对地下水脆弱性的影响,即垂向净补给量越大,污染物进入到地下水中的可能性越高,因此,地下水脆弱性越高。
垂向净补给量通常由降雨量、河流补给量、渠系渗流量、灌溉水和回灌水入渗量等各种补给源减去蒸散发量组成,这些物理量都存在着年内和年际变化,因此,垂向净补给量是随时间变化的物理量,地下水脆弱性也存在着动态变化。垂向净补给量可根据水均衡方程来估计,但结果精度不高。在降雨量占地下水补给量绝对优势的情况下,一般采用降雨补给入渗量代替垂向净补给量,用降雨量乘以降雨入渗系数获得降雨补给入渗量。
(3)地形坡度
地形坡度指地表面的倾斜程度,它可以控制污染物迁移或积累的过程。如果坡度较陡,污染物随降雨、灌溉水等载体而迁移,不易渗入地表以下,因此,地下水脆弱性较低;反之,则较高。
(4)土壤介质类型
土壤介质类型控制着渗透途径和渗流长度,并影响污染物衰减和与介质接触时间。颗粒结构越细,介质越密实,孔隙度越小,渗透性就越差,防护能力越强,地下水脆弱性越低。
(5)包气带介质黏性土层厚度
黏性土层相比于其他介质更容易对污染物进行截滞、转化或积累,降低了对地下水环境污染的可能性。包气带中黏土层对污染物进入地下水起到极大的截污与阻碍作用,黏土层越厚,污染物到达含水层的时间越长,污染物接受稀释、降解的机会就越大,防污性能越好,地下水脆弱性越低。
(6)含水层介质渗透系数
岩石的颗粒越大,或是存在与含水层有密切水力联系的断裂构造(节理和断层),则含水层具有较高的渗透性,地下水脆弱性越高。在松散含水层中,渗透性取决于岩石颗粒类型和细颗粒物质含量;在裂隙或岩溶含水层中,渗透性取决于断层面和层理面的原生空隙和次生空隙的数量。断裂带的性质、产状、宽度、富水性及导水性等是影响地下水脆弱性的主要因素。此外,含水层厚度也决定了含水层对污染物的稀释能力。含水层厚度越大,对污染物的稀释作用越强,地下水脆弱性越低。
(7)土地利用类型
土地利用类型是区分土地利用空间地域组成单元的过程。这种空间地域单元是土地利用的地域组合单位,表现人类对土地利用、改造的方式和成果,反映土地的利用形式和功能。地下水系统对流域土地利用具有强烈的响应。
土地利用类型既可以作为地下水脆弱性的影响因素,也可以作为地下水污染风险的影响因素,但影响意义不同。土地利用类型对地下水污染风险的影响主要体现在不同土地类型对应的污染源特征以及污染物进入地下水的途径不同。例如,耕地的农作物上施用的化肥和农药入渗污染地下水,耕地面积越大,植物耕种的密度越大,则施用的化肥和农药就越多,则地下水污染风险越高;在地表水体与地下水的水力联系密切之处,地表水体的污染容易通过连续入渗方式对地下水污染风险产生影响。土地利用类型作为地下水脆弱性的影响因素,并不将其作为体现污染源种类或负荷的表征,而是作为影响污染物在土壤或包气带中迁移转化规律的体现。不同土地利用类型下的包气带中污染物的垂直入渗、微生物作用及污染物的净化过程会有明显的不同。
(8)河网密度
河网密度为单位面积内河道总长度。水系密布性与DEM的分辨率直接有关,当分辨率较低时,某些小河道就无法表达出来,反之,当分辨率较高,则就能将细小的河道表达出来。在地表水体与地下水有密切水力联系地区,地表水也是地下水的一个重要补给来源。地表水系发达地区的地下水不仅接受地表水体下渗的补给,而且也受到河流侧向相互补排的影响。此外,包气带土层也受到河网切割侵蚀的影响。一般认为,河网稀疏区域的地下水脆弱性低;河网密集区域的地下水脆弱性高。
4.2.1.3 地下水固有脆弱性评价方法
地下水脆弱性的研究程度较高,评价方法较为成熟,目前国内外已有的评价方法主要有迭置指数法、过程模拟法、统计方法、模糊数学方法以及各种方法的综合等,具体信息见表4.2。
表4.2 地下水脆弱性评价的主要方法表
其中,迭置指数法是通过选取的评价参数的分指数进行迭加形成一个反映脆弱性程度的综合指数,包括指标、权重、值域和分级。它又分为水文地质背景参数法(HCS)和参数系统法,后者又包括矩阵系统(MS)、标定系统(RS)和计点系统模型(PCSM)。它是通过对选取指标进行等级划分和赋值以及赋予权重,然后进行加权求和得到一个反映程度的综合指数,并通过对综合指数进行等级划分表征评价对象一种方法。
根据建立的指标体系,对模型中每个指标都分成几个区段,每个区段赋予1~10的评分。然后根据每个指标对脆弱性影响大小赋予相应权重(5,4,3,2,1,5和3),最后通过加权求和下式得到地下水脆弱性指数,记为DI,值越高,地下水脆弱性越高,反之脆弱性越低。
DI=DRDW+RRRW+ARAW+SRSW+TRTW+IRIW+CRCW(4.1)
式中:下标R——指标值;
W——指标的权重。
其中各个评价指标的分级标准和评分表如下表4.3所示:
表4.3 地下水脆弱性DRASTIC评价指标的分级标准和评分表
国内研究者根据不同地区自然属性特征和污染物特征提出了3~11个不等的指标,采用不同的方法对权重加以优化,然后借助GIS技术或模糊数学方法进行地下水脆弱性分区。
㈦ 灾害脆弱性分析是什么
严重性的分值相加所得值除以严重性的最大值,也就是18.所得数乘以100%。得相对风险值。17/18*100%=94%。
首先找资料学习以下脆弱性的基本概念和分析方法,组织小组,列出可能发生的灾害、进行风险评估和危害程度评估,根据评估结果制订响应预案和措施,员工培训、演练,应对措施的修正。
释文:
然而,不同受灾体对应于不同种类以及不同强度的自然灾害的脆弱性有很大差异。例如,各种农作物和农业生产对旱灾就很敏感,因此可能造成农作物减产或绝收,而各种工程设施、交通工具、机械等则基本不受旱灾影响。受灾体脆弱性是评估灾情、预测灾害损失的重要内容。
㈧ 风险评估的方法有哪些
一、风险评估的准备
风险评估的准备过程是组织进行风险评估的基础,是整个风险评估过程有效性的保证。组织对自身信息及信息系统进行风险评估是一种战略性的考虑,其结果将受组织的商业需求及战略目标、文化、业务流程、安全要求、规模和结构所影响。不同组织对于风险评估过程中的各种子过程可能存在不同的要求,因此在风险评估实施前,组织应:
1.确定风险评估的范围; 2.确定风险评估的目的,为风险评估的实施提供导向; 3.建立适当的组织结构; 4.建立系统性的风险评估方法;5.获得最高管理者对风险评估策划的批准。
二、风险评估的实施
组织应根据策划的结果,由评估的人员按照相应的职责和程序进行资产评估、威胁评估、脆弱性评估。在考虑已有安全措施的情况下,利用适当的方法与工具确定威胁利用资产脆弱性发生安全事件的可能性,并结合资产的安全属性受到破坏后的影响来得出资产的安全风险。
风险计算
我们以下述函数进行表示:
R= f(A,V,T)=f(Ia,L(Va,T))
其中:R表示风险;A表示资产;V表示脆弱性;T表示威胁; Ia表示资产发生安全事件后对组织业务的影响(也称为资产的重要程度); Va表示某一资产本身的脆弱性,L表示威胁利用资产的脆弱性造成安全事件发生的可能性。
具体而言分为以下几个步骤:
1.首先对资产的弱点进行排序;
2.针对每一个弱点,确定可能利用此弱点造成安全事件的威胁的类型;
3.给确定的威胁赋值;
4.将威胁值与脆弱点值相乘,得出安全事件发生的可能性;即:安全事件发生可能性=L(威胁可能性,脆弱点严重性);
5.根据资产的重要程度以及安全事件发生的可能性计算风险值,即:风险值=R(资产重要程度,安全事件发生的可能性)。
四、风险识别
风险识别包括三个部分:分析风险来源;识别区域风险;风险关联分析。
1.分析风险来源
经过资产、威胁、脆弱性的计算后形成一个风险列表,需要对该列表的风险进行分类,并在分类的基础上进行风险合并。在对风险进行分类合并时,首先需要考虑风险所发生的位置,然后考虑风险的来源。风险的来源可以从威胁、脆弱性和安全管理三个方面进行。
风险发生的位置可以从资产所在的安全域或从信息安全发生的层次进行划分。资产所在的安全域指具有相同安全属性的某一物理区域或逻辑区域,该区域和其他安全区域具有明显的边界;信息安全发生的层次指物理层安全、网络层安全、操作系统层安全、应用层安全、数据层安全。风险的来源从威胁角度进行合并,可以从威胁的来源,发生的途经,影响的大小角度进行划分整理。风险的来源从脆弱性角度进行合并,从大的方面有两类,一类是IT技术类脆弱性,另一类是管理类脆弱性。安全管理类脆弱性可以从设计、开发、验收、运行、维护、人员、业务持续性管理等方面进行分析。
㈨ 地下水水质脆弱性评价方法研究的目的和意义
一、概述 对可作为饮用水源的地下水进行研究的结果表明,地下水不仅是一种有用的天然资源,而且也是环境的重要组成部分。因此,环境的变化(降水、河流径流等)会造成地下水状态、水质和水量的变化;相应地,地下水平衡的变化也会造成环境的变化。由于对水资源需求的增长,造成了安全抽取地下水和人类用水需求之间的矛盾日益增加,因此保护地下水以防污染就显得非常重要。此外,这一问题与环境保护中普遍存在的问题密切相关。天然的和人为的污染物可以通过不同途径进入到地下水。在地表蓄水时,污染物会穿透土壤和包气带到达含水层。如果污染物总量较小,或不能全部分解,则污染物会在土壤和包气带中积累,随后可能会造成二次污染。目前已有许多评价地下水脆弱性的方法,一般是针对特定的污染物进行的。包括定性评价方法(叠加法、野外采样法等)和定量评价方法(数字仿真和数值模拟方法)等。在实际工作中,判断污染物到达地下水水位所需的时间非常重要;当然,只有当包气带和含水层的吸附特征和污染物迁移参数有效,才能通过详细的研究确定污染物到达含水层的运移时间和迁移速度。选择了两个地区分析问题,一个是俄罗斯典型的山麓区,另一个是意大利的沿海地区。针对地下水易污染的脆弱性问题,用两种不同的方法进行了计算。二、研究区概况 在俄罗斯选择高加索地区作为研究对象,这是一个典型的山麓区,南部和西南部地形切割严重,而北部和东北部则是平原区,在平原中部为岛山和岩盖发育良好的罕见火山岩区。水系由三条大河组成:Kuma河(北部)、Podkumok(南部)和Surkul河(西北)。河水的主要来源是大气降水,Kuma河和Podkumok河的补给来源还有上游雪山的融雪水。上新世和中新世的含水层系统是当地居民的饮用水源。由于第四纪气候的急剧变化,含水岩层的水力传导性质也明显不同。该区以砂砾为主要组成部分,但细粒物(如粘土、亚粘土和壤砂土)的含量有所不同。含水层的厚度在0.5~15m之间,含水层主要是接受大气降水(年降水量约为600mm)和该区无数支流的地表水入渗补给。需要指出的是,该区的主要供水水源地位于大河流域。在意大利,选择的研究区是台伯河下游伊特鲁里亚海岸的天然公园,这是典型的沿海区。该区的地形特征如下:是Malafede河流域的一部分、地势平坦,有两条山脊线的海岸带。山脊将该区分为西北和东南两个部分。西北地区位于Castelporciano地区以北,是台伯河左侧支流Malafede河形成的冲积平原;东南地区是由海侵形成的海滩和古沙丘经固结形成的沿海高地组成。该区所有的含水层都是由不同起源的砂沉积物组成,可以识别出其中的两个主要地层。其中一个是沿海沙丘的古海相和现代海相沉积物,由中粗砂组成;另一个是由变质为河流-湖泊和海洋沉积物的早更新世砂沉积物组成。钻孔和电测探资料表明,沙丘层直接覆盖在粘土层上。在内部地貌沿海山脉上部,砂沉积物变质为与河流-湖泊沉积物同期形成的火山凝灰岩,是这些地区的主要岩石,这一地层规模不大,厚度较小(只有几米)。西部的一些地区,砂层下伏于非常不均匀的三角洲沉积物上(粘土层、粉砂、泥岩和砾石)。非承压含水层的厚度小于14m,但是有望到南部地区的西南边界(Castelfusano)增加到40m。在该区的东北部,含水层厚度减小至15m,这是由隔水底板抬升造成的。整个地区的不透水层由粘土、砂粘土和晚更新世的大陆成因和海相成因灰岩组成。该地区的地下水流向:向北流入台伯河和Malafede河,向南流入西部边界(Infernetto和Castelfusano)和海洋。在海拔较高的平原区,凝灰岩沉积物上覆于砂层上,具有一定的渗透性,因此,它被认为是这一区域主要的饮用水源。Castelfusano地区从Malafede河口到海洋,所有地下水的物理化学组成都是一致的,都依靠大气降水的补给。三、地下水脆弱性的评价方法 (一)采用计分制评价地下水脆弱性在Castelfusano地区,通过DRASTIC方法(D是地下水埋深,R是补给,A是含水层岩性,S是土壤层结构,T是地形,I是渗流区影响,C是水力传导系数)来评价地下水的脆弱性。这一方法基于以下假定:污染物随大气降水从地表进入地下水,其迁移速度与降雨入渗速度一致;应用DASTIC方法进行评价的地区,面积不得小于100公顷(即是在区域范围内进行评价)。根据现场研究和抽水试验结果对上述特征进行分析,用获取的数据来编制一系列图件。每一特征都用相应的值和权重(转换因子)来反映其重要性。对获取的值求和就是DRASTIC指数,用这一指数来反映该区的脆弱性。该区的脆弱性指数在26~256之间。根据计算结果编制含水层脆弱性分布图,研究结果表明,最脆弱的地区是Malafede河流域,Castelporziano整个地区含水层的脆弱性表现为中等偏高。(二)根据污染物的穿透时间评价地下水脆弱性根据下式通过污染物到达含水层所需的时间评价地下水脆弱性:
</FONT></SPAN></SPAN></p>其中,t是运移时间,m是渗流区厚度,n是有效孔隙度,Kd是分配系数,是容重,W是渗透补给率。编制含水层易污染的脆弱性分布图,需要建立脆弱性评价标准,这就需要计算污染物浓度达到可接受水平所需的时间t*:
</SPAN></p>其中,是半衰期,C0是污染物的起始浓度,C*是最大容许浓度(MAC)。根据这些计算结果编制图件,可以定量地评价地下水易污染的脆弱性,同时也指出了需要采取防护措施的地区。(三)组合法以上两种方法有各自的优缺点。应当强调的是,DRASTIC方法主要是进行初步评价,不能精确地预测污染物的行为,但是根据脆弱性差异,可以对地区进行分类。另外,与其它定量方法结合,这一方法的优点可以充分体现出来。尽管有以上的优点,但是也存在着一定的缺点。DRASTIC方法需要假定污染物从地表入渗到含水层,然而,一些特殊情况妨碍了污染物从地表的入渗,这些污染物甚至是从用作废水贮存的深部含水层进入的。在这种情况下,根据这一方法不能得到准确的结论。另外,不能根据DRASTIC方法确定承压和非承压含水层中决定地下水是否受保护的因素。在所有地区,都可以只根据系统的地质特征和水文特征判断地下水的脆弱性,然而,没有考虑参数值的空间变化和人类活动对环境的影响。例如,根据这一方法判断一个含水层为中等脆弱性或低脆弱性,但这一含水层可能是在城市附近,这一判断结果实际上增加了含水层受污染的风险。对于含水层只作饮用水源的地区,这一点特别重要。地下水的定量评价也有其优缺点。最重要的优点之一是采用了分布系数,这可以近似地判断地下水-岩石-污染物之间发生的物理化学反应过程。此外,从数学的角度提供了一种用以确定由人类活动造成的不同程度污染的区域的可靠标准。当引用文献中的资料时,可以根据这一方法得到合理的结果。在采用这一方法时,即使污水是泵入到地下水,也可以对地下水的脆弱性进行评价。这一方法的局限性是不易计算一组污染物的行为,而在实际工作中,这一现象非常普遍,这就需要通过现场测量来确定某些参数。另外,当污染物随渗透流穿过保护层渗透到地下水中时,可以采用这一方法。因此,污染物穿过土壤和渗流区的迁移速度理论上等于地表水的入渗速度。这一简单的假定可以避免复杂的计算量,而且可以得到污染物通过障碍区的速度。事实上,在保护区,有许多水力、水文和地质因素都会影响污染物的迁移速度。考虑到两种方法各自的优缺点,有必要建立一种综合的地下水的脆弱性评价方法,综合方法的基础是DRASTIC方法。采用一些定量特征,根据污染物到达地下水位的运移时间划分不同的污染区和脆弱程度标准,对脆弱性进行评价。渗流区厚度是确定地下水埋深和污染物迁移岩层厚度的参数。另外,当污染物迁移到含水层时,一些反应(首先是氧化反应)只是在上部时才会发生,因此,这一参数对于该区发生的不同物理化学过程有一定的影响。根据下式可以获得入渗补给率:W=P-(E+Y)。其中,P是降水量;E是蒸发蒸腾量;Y是径流量。可以对观测周期较长的气象资料取平均值获得降水量值,根据现有数据进行半经验计算获得E和Y。根据岩性组成和饱水岩石的性质描述含水层特征,由于不同沉积物的吸附容量有所不同,因此,Kd是一个特征值(specific characteristic)。然而,在野外很难确定Kd,只能通过室内实验或查阅特定的参考文献才能获得。土壤是指地壳上部1米到几米以内的耕作层,主要由岩石的风化物和有机质组成。土壤的水力传导系数会影响大多数的物理化学过程(如吸附、沉积和微生物分解作用等),以及污染物到达地下水水位的速率,因此,这一参数对于评价地下水水质相当重要。可以根据下式得出无吸附性的惰性污染物(示踪剂)通过土壤层的运移时间:ts=ms/v。其中,ms是土壤层厚度,v是污染物通过土壤层的迁移速度,等于水的入渗速度。由于污染物运动受不同物理化学过程的影响,因此,有下式: 。其中,ti是第i个物理化学过程影响下污染物的运移时间。考虑到在实际工作中,不可能顾及土壤层中的所有物理化学过程,因此假定污染物迁移主要是受吸附作用的影响。此时可以根据下式进行计算:,</SPAN></p>其中,R是延迟系数,FC是田间含水量,W是地下水补给(或入渗)率,是污染物在土壤中的分布系数。主要是根据地表坡度来描述地形,另外,地形与R紧密相关,因此也与W紧密相关。渗流区域和土壤层对污染物的影响作用对于评价地下水脆弱性非常重要,这是由于某些污染物不能被土壤中的有机质完全吸附,其中的一部分会随降水入渗穿透渗流区,从而到达地下水水位。确定污染物通过渗流区的迁移时间tvz主要取决于体积含水率。因此,污染物到达上部含水层的运移时间可以通过下式计算:
其中,mvz是渗流区厚度。由于与通过与含水层的地质条件和水文条件有关,因此,计算tvz比较复杂。这样,可以通过下式来计算污染物的穿透时间:。其中n是孔隙度。获得的tvz表示了污染物穿透渗流区到达含水层的迁移时间,因此,可以更准确地来预测含水层受污染的可能性。将水力传导系数和其它一些特征(污染物毒性和浓度等)相结合,就可以评价污染物到达某一特定点(如取水建筑物)的可能性,可以通过下式进行计算:</A>其中, 是污染源和抽水点的距离,k是水力传导系数,是水头差。四、结论 评价脆弱性的方法有各自的优缺点,组合方法无论是在区域还是局部研究中都比较适合;根据这一方法可以预测地下水保护区(土壤层和渗流区)中污染物的行为,评价污染物到达地下水水位的可能性,此外,当污染源不仅位于地表,而且具有一定深度时,也可以根据该方法从定性和定量两个方面对地下水的脆弱性进行评价。
㈩ 岩溶水系统脆弱性评价因素
一、岩溶水系统脆弱性评价因素
1.岩溶水系统水量脆弱性评价的因素
与水量有关的岩溶水环境问题包括了泉水断流与过量衰减、区域水位持续下降、水资源超采以及相关的岩溶塌陷、地裂、海水入侵和由于区域流场变化引起的水文地质条件改变等等。岩溶大泉作为北方岩溶水系统最普遍的一种自然排泄形式,除了供水功能以外,还有重要的旅游、生态等功能,因此岩溶泉水是在水量脆弱性评价以及水量保护区划分中着重考虑的因素。从岩溶水系统整体出发评价其水量脆弱性需要考虑以下因素:
1)系统规模大小。岩溶水系统规模大小一定程度上能够反映出岩溶水系统的调节性能和资源量大小。规模小的系统极容易引起资源超采、区域水位下降及相关的问题。
2)可开采资源量多少。
3)资源要素构成数量及动态。
4)系统结构模式。系统结构模式对岩溶水水量环境问题影响较大。例如,顺置型系统模式泉水多由隔水顶板阻挡排泄,在岩溶含水层与隔水顶板一定埋藏深度(一般在100~250m)的接触位置往往发育岩溶地下水强径流带,泉口下游存在承压自流区。因此,在这种结构模式的排泄区打井或采煤活动,与由隔水底板隔水形成排泄的“单斜逆置型”系统的泉水更容易出现断流。例如,太行山东部山前岩溶大泉,多数断流。
5)泉水排泄出露形式。多数北方岩溶大泉的出露排泄与阻水体有关,除了岩溶含水层隔水顶、底板阻水作用形成的泉水外,断层和火成岩体的侧向阻隔出流形成的泉水也占有一定比重。由于岩溶水在阻水体一侧富集,因此,这类泉水也容易出现断流。例如,在内蒙古桌子山地区的拉僧庙泉系由老石担山东缘断层使得桌子山组(马家沟组)碳酸盐岩含水层与克里磨里组(相当于平凉组)隔水层接触而排泄(图7-2),沿导水性很强的老石担山东缘断层大量开采岩溶水而导致拉僧庙泉水断流。这种情况在汾渭地堑区最为普遍,区内多数泉水在山前受断裂带一侧相对弱透水的地层阻水出流。由前述所知,区内泉水多与张扭性的裂谷山前断裂构造有关,这些断裂形成的岩石破裂以及沿断裂岩溶发育强烈,从而导致具有很高的导水能力,沿断裂带开采岩溶水极易造成泉水干涸或搬家。例如,太原晋祠泉,1954~1958年实测泉水平均流量为1.94m3/s,1977~1978年,清徐县在距晋祠泉10余千米的平泉和梁泉建成两处自流井群,共14眼深井,最大自流量达1.03m3/s。开采使泉水流量逐年减少,直到1994年4月30日彻底断流。中条山岩溶水系统内的南梁泉,20世纪80年代前流量为0.52m3/s,由于岩溶水开采流量逐年减少,2002年初在距其10km的太子滩凿成一岩溶热水井,井深1547.46m,自流水头0.9MPa,使海头泉流量严重衰减并于当年3月20日断流,同时泉口处水位也降至地面以下10~12m。山西介休洪山泉的严重衰减也是在山前断裂带大量开采以及采矿排水的结果。陕西周公庙泉出露于亚柏断裂带,岐山自来水公司在断裂带内打井取水也使泉水失去了复出的可能。总体上,区域隔水顶板、侧向地层或隔水岩体阻水出露的泉水水量敏感程度较高,相对而言,由区域隔水底板阻水形成的泉水水量敏感程度较低。
图7-2 拉僧庙泉出流条件示意图
2.岩溶水系统水质脆弱性评价的因素
(1)系统的规模
系统规模大虽然能在水量方面体现出较强的调蓄能力,但对水质而言就存在地下水循环更替速度慢的问题,一旦地下水遭受污染,恢复治理的难度将大大增加。另一方面,系统规模大小一定程度上也意味着系统资源要素构成的多少,一般系统规模越大,岩溶水的补给项构成越多,岩溶水水质的影响要素也就越复杂。
(2)系统内降水量
降水量作为岩溶水系统最重要的补给源,总体上水质质量相对较好,降水量大小所体现的是系统岩溶水“纳污能力”。降水量大小也体现雨水对包气带岩土的溶滤程度,因此降水量对系统水质脆弱性具有正效应。
(3)系统结构模式
从水质方面,“单斜逆置型”岩溶水系统其上游往往存在煤系地层、容易遭受矿坑污水的渗漏污染,而“向斜-盆地型”岩溶水系统由于水位埋藏浅、浅覆盖型岩溶区分布面积广,地表水、地下水向心汇流,更容易遭受农业施肥等的污染。
(4)地球化学背景
煤系地层分布面积比重,中奥陶统碳酸盐岩含水层中是否存在有石膏,覆盖区分布的面积比重等等都是在评价系统岩溶水质脆弱性时需要考虑的因素。
(5)岩溶水系统包气带平均厚度
岩溶含水层包气带可以吸附降解部分污染物,总体上包气带越厚其自净能力越强,岩溶水系统防污性能也越强。
岩溶水系统脆弱性是不同系统间脆弱性比较,是一个相对的概念,评价中各项因素的分级指标的确定将直接影响到评价结果。然而迄今为止,对岩溶水系统整体脆弱性评价的概念及方法尚未见探讨,同时就目前所拥有的资料开展评价指标的定量化分类的条件还不具备,需要参与评价的要素不尽合理完备(比如人口密度等因素),这项工作只能随着资料积累和评价方法的完善成熟逐步开展。
二、岩溶水系统含水层脆弱性分区评价因素与方法
岩溶含水层的脆弱性评价是系统内部岩溶含水层分布区环境问题的易发性分区评价。岩溶含水层的脆弱性同样要分为“水量脆弱性”和“水质脆弱性”两种。
1.含水层水量脆弱性分区评价的因素与方法
岩溶含水层的“水量脆弱性”是含水层对外界干扰的响应程度并引发水量方面水文地质环境问题可能性的表征,这种敏感程度表现在时间和空间上。例如,在北方东部岩溶相对发育且覆盖层厚度小的区域,开采岩溶地下水就容易发生岩溶塌陷,可认为这些地区具有含水层水量脆弱性特征。同样,如果某一地区开采岩溶水,在一定时间内会引起泉水流量(或水源地出水量)较大的削减量,也可认为含水层具有水量脆弱性。水量脆弱性的实质是含水层导水性能的综合体现。由于与岩溶含水层水量相关的水文地质环境问题包括了纯水量的问题以及特殊水量问题,因此水量脆弱性评价因素要与水文地质环境问题相结合。
(1)纯水量脆弱性分区评价
纯水量脆弱性是系统内某点的岩溶水位(包括区域或重点位置的水位)或流量(泉水流量或水源地出水量)对其他点在水量激励下的时空响应,其制约的因素主要是岩溶含水层的导水性能。总体上,北方岩溶地下水符合达西渗流理论,能够描述系统含水层渗流的数值模型更适用于纯水量脆弱性评价,在后面的典型岩溶水系统(娘子关泉域岩溶水系统)实例中,我们采用了响应矩阵法进行评价。
(2)特殊量脆弱性分区评价
特殊水量脆弱性分区评价中需要把水位与具体问题的相关地质条件结合起来进行评价,北方最常见的主要有岩溶塌陷问题和矿坑突水问题。
在岩溶塌陷的脆弱性(或风险性)评价中,需要考虑岩溶发育程度、覆盖层因素(包括厚度、岩性、结构及地貌条件)、地下水因素(包括埋深、变幅及地下水动态变化的动因)等因素。目前采用的评价方法有模糊数学法、神经网络法、GIS方法以及一些统计学方法等。在后面的典型岩溶水系统(枣庄十里泉泉域岩溶水系统)实例中,我们采用了模糊数学法进行评价。
对煤矿底板突水的脆弱性(或风险性)评价,20世纪30年代苏联学者斯列萨列夫提出了临界水压值公式,是一个纯水量问题,后经实践中不断改进,中国煤炭研究院西安分院提出了突水系数并由此预测煤矿突水的风险大小,突水系数的表达式为
中国北方岩溶地下水环境问题与保护
式中:Ts为突水系数(MPa/m);P为隔水底板承受的水压力(MPa);M为底板隔水层的厚度(m);h1为矿山压力破坏隔水层的厚度(m);h2为隔水层中导升高度(m)。
1984年,煤炭工业部的《矿井水文地质规程》中,以突水系数0.6线为界,划分安全区及危险区。然而大量统计结果表明,80%以上的煤矿突水与断层有关,突水系数低于0.6的地区同样出现底板突水问题。2007年中国矿业大学武强教授根据多年研究,提出了煤层底板突水评价的脆弱性指数法,采用GIS与人工神经网络、证据权法、Logistic回归法及层次分析法耦合的方法对煤层底板突水脆弱性进行分区评价,为煤矿底板突水风险性评价提供了新的思路。但由于影响煤矿突水的因素比较多且较复杂,而且一些准确的数据难于获取,因此,评价方法还有待完善。
2.含水层水质脆弱性分区评价的因素与方法
国外对狭义的地下水脆弱性(指水质脆弱性)评价方法目前主要有叠置指数法、过程数学模拟法和统计方法(Barnali Dixon,2007),单防污性能评价指数模型有30多种,其中,DRASTIC模型(D为地下水埋深;R为净补给量;A为含水层介质;S为土壤介质;T为地形坡度;I为包气带影响;C为水力传导系数)应用最为广泛,它是美国环保局1985年提出的。在美国许多地区曾用DRASTIC模型进行地下水防污性能编图,该方法在其他一些国家或地区也曾应用,例如,欧盟、南非、葡萄牙、尼日尔爾利亚、韩国、以色列等。然而一般认为DRASTIC模型更适合于松散层孔隙地下水脆弱性的评价。针对岩溶含水层的特殊性,欧洲制定比较多的岩溶含水层脆弱性评价方法,特别在COST620项目中广泛应用并完善。评价中一般考虑的因素有覆盖层(O因子,包括厚度、岩性等)、径流特征(C因子)、降雨(P因子,大小及动态)和岩溶网络发育特征(K因子)。如基于起源-路径-目标模型的EPIK法、PI法、COP法和基于示踪试验的VULK方法等。结合我国北方具体情况,我们认为含水层水质脆弱性评价中需要考虑因素有:
1)岩溶地下水的天然补给强度(降水量是其中之一,还应该包括河流、水库以及其他类型地下水对岩溶水的补给)。
2)碳酸盐岩分布埋藏类型。
3)包气带厚度。
4)岩溶含水层的导水性能。
5)到主排泄区(或水源地)的距离(可体现在渗流模型中)。
在各评价因素的分级中,结合我国北方岩溶水系统的具体情况进行了调整,具体方案在典型岩溶水系统实例中进行叙述。