A. 小数的乘法怎么简便计算快捷计算
小数乘法的简便运算
一、乘法交换律与结合律的运用。
提示1:以下计算中,有的需要把一个小数拆成两个数相乘,要注意拆分后两数相乘的大小应该与原数相等,特别是小数的位数。如3.2=0.8×4
3.2=0.4×8 0.32=0.04×8 0.32=0.08×4 5.6=0.8×7 5.6=0.7×8
0.56 =0.07×8 0.56 =0.08×7 0.48=0.12×4 0.48=0.04×12
提示2:应用乘法结合律解题的口诀是 连乘用结合
提示3:应用乘法结合律解题的格式是a×b×c=a×(b×c)最后一个步骤是“×”,不要看成是“+”. 如 2.5×0.48=2.5×0.04×12=0.1×12=1.2
A组 4.56×0.4×2.5 12.5×2.7×0.8 12.5×3.2×0.25
B组 2.5×0.48 12.5×5.6 25×0.36
二、乘法分配律的运用。
提示1:A组中的一个因数都具备一个特点,都接近整数1、10、100等,这样的数就可以拆分成两个数相加或者相减。
如 10.4=(10+0.4) 9.9=(10-0.9) 0.99=(10-0.01)
但也有这样的数 8.8=(8+0.8) 4.4=(4+0.4) 0.48=(0.4+0.08)
提示2:应用乘法分配律解题的口诀是 乘加乘减用分配
提示3:应用乘法分配律解题的格式是(a+b)×c=a×c+b×c最后一个步骤是“+”,不要看成是“×”.
如 2.5×0.48=2.5×(0.4+0.08)=2.5×0.4+2.5×0.08=1 + 0.2=1.2
不是 =1 + 0.2= 2
提示4:应用乘法分配律解题的最后一步,有时是数字比较大的两个数相加减,口算容易出错,这时就要打草稿竖式计算。
A组 0.25×10.4 12.5×8.8 9.9×0.35
B组 3.7×1.8-2.7×1.8 95.7×0.28+6.3×0.28-0.28×2 1.08×9+1.08
三、比较乘法结合律与分配律在简便运算时的区别。
下面各题用两种方法简算。
12.5×8.8 12.5×8.8 0.25×4.8 0.25×4.8
四、变一变,能简算。
48×0.56+44×0.48
我来试一试:
0.279×343+0.657×279 0.264×519+264×0.481 9.16×1.53-0.053×91.6
五、拓展提高。
99.99×0.8+11.11×2.8 314×0.043+3.14×7.2-31.4×0.15
B. 小数除法的简便运算方法
小数除法简便计算的基本方法,
1、运用被除数和除数同时扩大或缩小相同的倍数,商不变的规律进行简便运算。
如:420÷35=(420÷7)÷(35÷7)=60÷5=12
2、利用添括号凑整的方法进行简便运算。
如:800÷125÷8=800÷(125×8)=800÷1000=0.8
小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
1、除数是整数的小数的除法
①先按照整数除法的法则去除;
②商的小数点要和被除数的小数点对齐;
③除到被除数的末尾仍有余数时,就在余数后面添0,再继续除。
2、除数是小数的小数除法
①先把除数的小数点去掉使它变成整数;
②看除数原来有几位小数,就把被除数小数点向右移动相同的几位(位数不够时补0);
③按照除数是整数的除法进行计算。
一、被除数和商关系
1、被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
2、除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
二、整数除法的运算法则
1、从被除数的最高位起,取出和除数位数相同的数(如果取出的数小于除数,则要取出比除数多一位的数) ,用除数去除它,就得到商的最高位数和余数(余数可能为零) 。
2、把余数化为下一位的单位,加上被除数这-位上的数,再用除数去除它(除数小于该数时商为0),得到商和余数这样继续下去直到被除数上的数字全部用完,就得到最后的商和余数。
五年级上册数学小数简便计算方法有如下:
1、24.6-3.98/1+5.4-6.02
解析:此题利用加法交换结合律,凑整再计算。
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此题先用加法分配律,把27转换成(26+1),再利用乘法结合律,使得运算简便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、528-99
解析:利用凑整法和减法结合律计算,先利用凑整法把99变换为(100-1),再运用a-b-c=a-(b+c)来简便计算。
528-99
=528-(100-1)
=528-100+1
=428+1
=429
4、1.2×2.5+0.8×2.5
解析:运用提取公因数的方法,公式:ac+ab=a(b+c),提取公因数2.5,1.2和0.8相加正好凑整数,使得运算简便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
5、2.96×40
解析:此题先利用乘法分配律,把2.96×40转换成29.6x4,再利用乘法结合律来简便计算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
D. 五年级小数的简便运算
小数简便运算方法
一、带符号搬家法(根据:加法交换律和乘法交换率)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a×b×c=a×c×b,
a÷b÷c=a÷c÷b,a×b÷c=a÷c×b,a÷b×c=a×c÷b)
二、结合律法
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括
号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,
原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号
前是加号,括号里不变号,括号前是减号,括号里要变号。)
四年级下数学简便运算
a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c),a-b-c= a-( b +c);
2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括
号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,
原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括
号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
a×b×c=a×(b×c), a×b÷c=a×(b÷c), a÷b÷c=a÷(b×c),a÷b×c=a÷(b÷c)
(二)去括号法
1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来
是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变
为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去掉
括号是添加括号的逆运算)
a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+ca-( b +c)= a-b-c
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来
是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为
除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉
括号是添加括号的逆运算)
a×(b×c) = a×b×c, a×(b÷c) = a×b÷c, a÷(b×c) =a÷b÷c , a÷(b÷c) = a÷b
×c
三、乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
11311 24×(---) 12863
2.提取公因式
注意相同因数的提取。
16737 0.92×1.41+0.92×8.59 ×-× 513513
3.注意构造,让算式满足乘法分配律的条件。 777 ×103-×2- 2.6×9.9252525
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意
还哦 ,有借有还,再借不难嘛。
9999+999+99+9 4821-998
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,
如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
运算定律
a+b = b+a
加法结合律:(a+b)+c = a+(b+c)
乘法交换律:a×b = b×a
乘法结合律:(a×b)×c = a×(b×c)
乘法分配律:(a+b)×c = a×c+b×c
(a-b)×c = a×c-b×c 加法交换律:
其它性质
a-b-c = a-c-b 可以变化顺序
a-b-c = a-(b+c) 可以加起来一起减
a-(b-c)= a-b+c 括号前是减号,去掉后变符号
a+(b-c)= a+b-c 括号前是加号,去掉后不变符号
a÷b÷c = a÷c÷b 可以变化顺序
a÷b÷c = a÷(b×c) 可以乘起来一起除
a-b+c = a+c-b 可以变化顺序
a÷b×c = a×c÷b 可以变化顺序
六、总结
1、在简便运算中,运算定律的区别和适用范围最重要,通常情况下,交换律和结合律只适用于同种运算或者同级运算,在交换的时候要注意连同前面的符号一起交换;
2、在减法和除法的性质中,括号外面和里面必须是同级运算才可以用,如果括号前面是减法,括号里面有加法和减法,去括号以后里面的每一个数前面的符号都要改变;如果括号前面是除号,括号里面有乘法和除法,去括号以后每一个数前面的符号都要改变;
3、对于分配律,如果被除数是几个数的和或者差,除数是某一个数,可以用分配律,如果除数是几个数的和或者差,不能用分配律;
4、两种运算技巧:
(1)凑数:把一个数写成是一个与它相近的整十、整百或者整千数与一个较小的数的和或者差,在运用运算定律达到简便运算的效果;
(2)拆数:把一个合数分解质因数,写成几个数的积,然后在运用乘法的运算定律,达到简便运算的目的。
E. 小数简便运算的技巧
小数的简便运算先看,如果有两个小数能凑整的,就先把两个小数加起来,也就先加那两个小数,比如说1.6和2.4加起来就等于4。这个的话数学课本上应该有的,你可以多去看一看数学课本。上课的时候也应该认真听讲。
F. 小数点的简便运算怎么算
题意不是很明确啊。
给你个例子吧:
3.16×238-116×1.38
=316×2.38-116×1.38
=316+316×1.38-116×1.38
=316+(316-116)×1.38
=316+200×1.38
=316+138×2
=316+276
=592
G. 小学小数的简便计算
小学数学中,一直贯穿着一个内容,那就是简便运算。在整数范围、小数范围、分数范围内都做为一个内容重复出现。而这个内容也正是小学数学中的一个难点。
一、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
H. 数学小数简便方法计算
对于数学小数简便方法
最常用的就是
式子0.25*4=0.125*8=1
然后再与乘法分配律和结合律
使用在一起
得到的算式就会简便一些
I. 小数简便计算方法总结
简算是一种简便、迅速的运算,根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,使计算过程简单化,或直接得出结果。根据归纳,常见以下几类题型:
(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。
【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
1、加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好 与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚 才“多加的”要“减掉”。“多减的”要“加上”!
(二)运用乘法的交换律、结合律进行简算。
1、乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
(三)运用减法的性质进行简算,同时注意逆进行。
1、减法
定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】
例如:20-8-2=20-(8+2)
(四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
1、除法
定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)运用乘法分配律进行简算
1、乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
【注意】:有些题目是运用分配律的逆运算来简算:A×C+B×C=(A+B)×C:即提取公因数。
例如:75.3×99+75.3=75.3×(99+1)=75.3×100=7530
(六)混合运算(根据混合运算的法则)
注:数字搭档( 0.5和2、0.25和4、0.125和8)
总的说来,简便运算的思路是:(1)运用运算的性质、定律等。
(2)可能打乱常规的计算顺序。
(3)拆数或转化时,数的大小不能改变。
(4)正确处理好每一步的衔接。
(5)速算也是计算,是将硬算化为巧算。
(6)能提高计算的速度及能力,并能培养严谨细致、灵活巧妙的工作习惯。