导航:首页 > 知识科普 > 图像噪声的典型滤波方法有哪些

图像噪声的典型滤波方法有哪些

发布时间:2022-11-16 06:02:20

A. 图像处理中常用的降噪滤波器有哪些 它们分别适用于哪些场合

图像处理中常用的降噪滤波器有:
(1):电感滤波器;
(2):电容滤波器;
(3):L型即电感与电容组成的滤波器;
(4)π型:LCπ型滤波器,RCπ型滤波

其中可适用于:
(1):由光和电的基本性质所引起的噪声。如电流的产生是由电子或空穴粒子的集合,定向运动所形成。因这些粒子运动的随机性而形成的散粒噪声;导体中自由电子的无规则热运动所形成的热噪声;根据光的粒子性,图像是由光量子所传输,而光量子密度随时间和空间变化所形成的光量子噪声等。
(2):电器的机械运动产生的噪声。如各种接头因抖动引起电流变化所产生的噪声;磁头、磁带等抖动或一起的抖动等。
(3):器材材料本身引起的噪声。如正片和负片的表面颗粒性和磁带磁盘表面缺陷所产生的噪声。随着材料科学的发展,这些噪声有望不断减少,但在目前来讲,还是不可避免的。
(4):系统内部设备电路所引起的噪声。如电源引入的交流噪声;偏转系统和箝位电路所引起的噪声等。

B. 在对图像处理时,图像降噪的方法有哪些,请具体些

最终目的是要数字提取的话,去噪只是为更好的进行提取,建议用中值滤波,这样可以去除尖锐的噪声点,使得图像平滑,接下来可以使用水平投影、垂直投影确定出目标的上下左右边界,就可以提取了。以前做过电表数字识别其中提取就是这样做的,不知道对你有没有帮助。

C. 图像的滤波与增强

(如果您觉得文档不错,能不能麻烦动动小手点个赞啊)

1. 滤波实际上是信号处理得一个概念,图像可以看成一个二维信号,其中像素点的 灰度值 代表 信号的强弱 ;

2. 高频 :图像上变化剧烈的部分;

3. 低频 :图像灰度值变化缓慢,平坦的地方;

4.根据图像高低频,设置高通和低通滤波器。高通滤波器可以检测变化尖锐,明显的地方,低通可以让图像变得平滑,消除噪声;

5. 滤波作用 : 高通滤波器 用于 边缘检测 , 低通滤波器 用于图像 平滑去噪 ;

6. 线性滤波 :方框滤波/均值滤波/高斯滤波;

7. 非线性滤波 :中值滤波/双边滤波;

利用给定像素周围的像素值决定此像素的最终输出值的一种算子;

一种常用的领域算子,像素输出取决于输入像素的加权和:

 方框滤波(box Filter)被封装在一个名为boxFilter的函数中,即boxFilter函数的作用是使用方框滤波器(box filter)来模糊一张图片,从src输入,从dst输出;方框滤波核:

normalize = true 与均值滤波相同       normalize = false 很容易发生溢出

函数:

cv2.boxFilter(src,depth,ksize,normalize)

参数说明:

参数1:输入图像

参数2:目标图像深度

参数3:核大小

参数4:normalize

均值滤波是一种最简单的滤波处理,它取的是卷积核区域内元素的均值,用cv2.blur()实现

函数 :cv2.blur(src, ksize)

参数说明:

参数1:输入原图

参数2:kernel的大小,一般为奇数

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波的卷积核权重并不相同,中间像素点权重最高,越远离中心的像素权重越小。其原理是一个2维高斯函数)

高斯滤波相比均值滤波效率要慢,但可以有效消除高斯噪声,能保留更多的图像细节,所以经常被称为最有用的滤波器。

函数:

cv2.Guassianblur(src, ksize, std)表示进行高斯滤波,

参数说明:

参数1:输入原图

参数2:高斯核大小

参数3:标准差σ,平滑时,调整σ实际是在调整周围像素对当前像素的影响程度,调大σ即提高了远处像素对中心像素的影响程度,滤波结果也就越平滑。

中值滤波是一种非线性滤波,是用 像素点邻域灰度值的中指代替该点的灰度值,中值滤波可以去除椒盐噪声和斑点噪声。

函数:

cv2.medianBlur(img,ksize)

参数说明:

参数1:输入原图

参数2:核大小

双边滤波是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空间与信息和灰度相似性,达到保边去噪的目的,具有简单、非迭代、局部处理的特点。

函数 :cv2.bilateralFilter(src=image, d, sigmaColor, sigmaSpace)

参数说明:

参数1:输入原图

参数2:像素的邻域直径

参数3:灰度值相似性高斯函数标准差

参数4:空间高斯函数标准差

目的

直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。

基本思想

对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。从而达到清晰图像的目的。

函数

cv2.equalizeHist(img)

参数1:待均衡化图像

步骤

统计直方图中每个灰度级出现的次数;

计算累计归一化直方图;

重新计算像素点的像素值

Gamma变换是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系:

目的:

Gamma变换就是用来图像增强,其提升了暗部细节,通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正。

r > 0图像变暗, r < 0图像变亮

D. 图像处理中常用的降噪滤波器有哪些它们分别适用于哪些场合

图像处理中常用的降噪滤波器有:
(1):电感滤波器;
(2):电容滤波器;
(3):L型即电感与电容组成的滤波器;
(4)π型:LCπ型滤波器,RCπ型滤波

其中可适用于:
(1):由光和电的基本性质所引起的噪声。如电流的产生是由电子或空穴粒子的集合,定向运动所形成。因这些粒子运动的随机性而形成的散粒噪声;导体中自由电子的无规则热运动所形成的热噪声;根据光的粒子性,图像是由光量子所传输,而光量子密度随时间和空间变化所形成的光量子噪声等。
(2):电器的机械运动产生的噪声。如各种接头因抖动引起电流变化所产生的噪声;磁头、磁带等抖动或一起的抖动等。
(3):器材材料本身引起的噪声。如正片和负片的表面颗粒性和磁带磁盘表面缺陷所产生的噪声。随着材料科学的发展,这些噪声有望不断减少,但在目前来讲,还是不可避免的。
(4):系统内部设备电路所引起的噪声。如电源引入的交流噪声;偏转系统和箝位电路所引起的噪声等。

E. 图像降噪的图象降噪的方法简介

采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图象中的颗粒噪声。领域平均法有力地抑制了噪声,同时也由于平均而引起了模糊现象,模糊程度与邻域半径成正比。
几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图象细节。
谐波均值滤波器对“盐”噪声效果更好,但是不适用于“胡椒”噪声。它善于处理像高斯噪声那样的其他噪声。
逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。 这种方法保留了大部分包含信号的小波系数,因此可以较好地保持图象细节。小波分析进行图像去噪主要有3个步骤:(1)对图象信号进行小波分解。(2)对经过层次分解后的高频系数进行阈值量化。(3)利用二维小波重构图象信号。

F. 滤除图像中的椒盐噪声采用中值滤波还是邻域均值滤波,为什么

均值滤波器是一种最常用的线性低通平滑滤波器,可抑制图像中的加性噪声,但同时也使图像变得模糊;中值滤波器是一种最常用的非线性平滑滤波器,可消除图像中孤立的噪声点,又可产生较少的模糊。一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。因此,滤除图像中的椒盐噪声采用中值滤波。

G. 中值滤波

一. 中值滤波:

    中值滤波器是一种可以使图像平滑的滤波器。它使用滤波器范围内的像素的中值去代表该范围内所有的像素。中值滤波是消除图像噪声最常见的手段之一,特别是消除椒盐噪声,中值滤波的效果要比均值滤波更好。

二. python实现中值滤波和均值滤波,并用两种滤波器对受到椒盐噪声污染的图像进行去噪

import cv2

import numpy as np

# Median filter

def median_filter(img, K_size=3):

    H, W, C = img.shape

    ## Zero padding

    pad = K_size // 2

    out = np.zeros((H + pad*2, W + pad*2, C), dtype=np.float)

    out[pad:pad+H, pad:pad+W] = img.().astype(np.float)

    tmp = out.()

    # filtering

    for y in range(H):

        for x in range(W):

            for c in range(C):

                out[pad+y, pad+x, c] = np.median(tmp[y:y+K_size, x:x+K_size, c])

    out = out[pad:pad+H, pad:pad+W].astype(np.uint8)

    return out

# Average filter

def average_filter(img, G=3):

    out = img.()

    H, W, C = img.shape

    Nh = int(H / G)

    Nw = int(W / G)

    for y in range(Nh):

        for x in range(Nw):

            for c in range(C):

                out[G*y:G*(y+1), G*x:G*(x+1), c] = np.mean(out[G*y:G*(y+1), G*x:G*(x+1), c]).astype(np.int)

    return out

# Read image

img = cv2.imread("../paojie_sp.jpg")

# Median Filter and Average Filter

out1 = median_filter(img, K_size=3)

out2 = average_filter(img,G=3)

# Save result

cv2.imwrite("out1.jpg", out1)

cv2.imwrite("out2.jpg", out2)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 实验结果

        可以明显看出,对于受到椒盐噪声污染的图像,中值滤波往往比均值滤波的去噪效果要好!

四. 参考内容:

         https://www.cnblogs.com/wojianxin/p/12500348.html

H. 什么是图像去噪

图像去噪

简介:

现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。减少数字图像中噪声的过程称为图像去噪。

去除图像噪声的方法:

采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图像中的颗粒噪声。领域平均法有力地抑制了噪声,同时也由于平均而引起了模糊现象,模糊程度与领域半径成正比。

几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图象细节。

谐波均值滤波器对“盐”噪声效果更好,但是不适用于“胡椒”噪声。它善于处理像高斯噪声那样的其他噪声。

逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。

它能根据图象的局部方差来调整滤波器的输出,局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f^(x,y)与原始图像f(x,y)的均方误差e2=E[(f(x,y)-f^(x,y)2]最小。该方法的滤波效果比均值滤波器效果要好,对保留图像的边缘和其他高频部分很有用,不过计算量较大。维纳滤波器对具有白噪声的图象滤波效果最佳。

它是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。中值滤波器可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,而且,在实际运算过程中不需要图象的统计特性,这也带来不少方便,但对一些细节多,特别是点、线、尖顶细节较多的图象不宜采用中值滤波的方法。

将开启和闭合结合起来可用来滤除噪声,首先对有噪声图象进行开启操作,可选择结构要素矩阵比噪声的尺寸大,因而开启的结果是将背景上的噪声去除。最后是对前一步得到的图象进行闭合操作,将图象上的噪声去掉。根据此方法的特点可以知道,此方法适用的图像类型是图象中的对象尺寸都比较大,且没有细小的细节,对这种类型的图像除噪的效果会比较好。

这种方法保留了大部分包含信号的小波系数,因此可以较好地保持图象细节。小波分析进行图像去噪主要有3个步骤:

(1)对图象信号进行小波分解。

(2)对经过层次分解后的高频系数进行阈值量化。

(3)利用二维小波重构图象信号。

详细资料见网络:http://ke..com/view/4518756.htm

I. 处理表面缺陷图像用什么滤波方法

图像滤波

刚获得的图像有很多噪音。这主要由于平时的工作和环境引起的,图像增强是减弱噪音,增强对比度。想得到比较干净清晰的图像并不是容易的事情。为这个目标而为处理图像所涉及的操作是设计一个适合、匹配的滤波器和恰当的阈值。常用的有高斯滤波、均值滤波、中值滤波、最小均方差滤波、Gabor滤波。

由于高斯函数的傅立叶变换仍是高斯函数, 因此高斯函数能构成一个在频域具有平滑性能的低通滤波器。可以通过在频域做乘积来实现高斯滤波。均值滤波是对是对信号进行局部平均, 以平均值来代表该像素点的灰度值。矩形滤波器(Averaging Box Filter)对这个二维矢量的每一个分量进行独立的平滑处理。通过计算和转化 ,得到一幅单位矢量图。这个 512×512的矢量图被划分成一个 8×8的小区域 ,再在每一个小区域中 ,统计这个区域内的主要方向 ,亦即将对该区域内点方向数进行统计,最多的方向作为区域的主方向。于是就得到了一个新的64×64的矢量图。这个新的矢量图还可以采用一个 3×3模板进行进一步的平滑。

中值滤波是常用的非线性滤波方法 ,也是图像处理技术中最常用的预处理技术。它在平滑脉冲噪声方面非常有效,同时它可以保护图像尖锐的边缘。加权中值滤波能够改进中值滤波的边缘信号保持效果。但对方向性很强的指纹图像进行滤波处理时 ,有必要引入方向信息,即利用指纹方向图来指导中值滤波的进行。

最小均方差滤波器,亦称维纳滤波器,其设计思想是使输入信号乘响应后的输出,与期望输出的均方误差为最小。

Gabor变换是英国物理学家 Gabor提出来的,由“测不准原理”可知,它具有最小的时频窗,即Gabor函数能做到具有最精确的时间-频率的局部化;另外, Gabor函数与哺乳动物的视觉感受野相当吻合,这一点对研究图像特征检测或空间频率滤波非常有用。恰当的选择其参数, Gabor变换可以出色地进行图像分割、识别与理解。如文献提出的基于Gabor滤波器的增强算法。

J. 图像去噪的方法

①高斯滤波:
高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的 加权平均灰度值 去替代模板中心像素点的值。
1.高斯滤波是平滑线性滤波器,在对邻域内像素灰度平均时赋予了 不同位置不同的权值,越靠近邻域中心权值越 大(?)。
2.高斯滤波技能平滑噪声,也能保留图像的整体灰度分布特征;
3.高斯滤波公式是各向同性扩散方程,在图像边缘处沿切向和法向是同等扩散的,所以绝大多数 边缘和细节纹理特征被模糊掉,损失了大量的信息。
4.高斯滤波 适合处理均值为零的高斯噪声,但 处理离散的点噪声时,会损失大量细节信息。
5.一维高斯函数:
二维高斯函数:

②中值滤波
中值滤波是统计排序滤波器,通过对邻域内所有像素的排序,然后取其 中值为邻域中心的像素。
1.该方法 不适合处理高斯噪声,但处理离散的点噪声效果明显。
2.该方法 忽略了像素点间的相关性,当目标图像细节纹理复杂时,中值滤波的结果会破坏其不分纹理。

阅读全文

与图像噪声的典型滤波方法有哪些相关的资料

热点内容
快速识字方法 浏览:184
华为大疆手机云台使用方法 浏览:499
小学语文有效教学方法之探析 浏览:559
和田玉白玉项链的鉴别方法 浏览:679
露娜洁面仪mini2使用方法 浏览:916
阉鸡快速止血的方法 浏览:878
苹果微信清理缓存在哪里设置方法 浏览:748
金钢窗安装方法 浏览:124
测排卵什么方法最准确 浏览:850
抒情方法有哪些 浏览:432
青岛梅毒治疗最好的方法 浏览:998
脸上汗斑的治疗方法 浏览:60
好的教育方法的视频 浏览:58
快速上枕头荷叶边方法 浏览:736
手机拍照的视频在哪里设置方法 浏览:934
什么方法治口臭 浏览:173
幼儿美术活动教学方法 浏览:126
瑞典轻症治疗方法 浏览:616
原始股退出计算方法 浏览:410
水泵间隙的测量方法 浏览:522