① 小学三年级加减乘除运算法则有哪些
四则运算的运算顺序:
1、一般情况下,四则运算的计算顺序是:有括号时,先算括号里面的。只有同一级运算时,从左往右。含有两级运算,先算乘除后算加减。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a
乘法交换律:a×b=b×a
加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(a×b)×c=a×(b×c)
加法:
把两个数合并成一个数的运算/把两个小数合并成一个小数的运算/把两个分数合并成一个分数的运算减法:已知两个加数的和与其中一个加数,求另一个加数的运算。
乘法:
求几个相同加数的和的简便运算。小数乘整数的意义与整数乘法意义相同。一个数乘纯小数就是求这个数的十分之几,百分之几……分数乘整数的意义与整数乘法意义相同。
除法:
已知两个因数的积与其中一个因数,求另一个因数的运算。与整数除法的意义相同。
三年级数学常用的七种简便运算方法:
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,需注意:
1.连续性
2.等差性
计算方法:头减尾。除公差。
③ 乘法巧算方法三年级
1、乘法凑整
第一,找好朋友
2×5=10 25×4=100 125×8=1000
举例:
2×13×5
=2×5×13
=10×13
=130
4×11×25 和125×13×8同理找好朋友。
第二,拆数凑整
举例:
5×32×125
=5×4×8×125
=5×4×(8×125)
=20000
把32拆分成含8的数和125成好朋友凑整。
2、除法凑整(除得尽,无余数)
举例:36×22÷6
=36÷6×22
=6×22
=132
4000÷125
=4×1000÷125
=4×(1000÷125)
=32
3、带符号搬家(只有乘除法)
数和前面的符号一起搬家
举例:28×11÷4
=28÷4×11
=7×11
=77
4、掌握添去括号
×(),括号内所有数不变号
举例:(去括号)
36×(11÷3)÷11
=36×11÷3÷11
=12
÷(),括号内所以数要变号
举例:(去括号)
130÷(13÷3×15)
=130÷13×3÷15
=10×3÷15
=2
添括号同理。
5、乘法分配率
④ 乘法的简便方法是什么
一、30以内的两个两位数乘积的心算速算
1、两个因数都在20以内,任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:
11×11=120+1×1=121 12×13=150+2×3=156 13×13=160+3×3=169 14×16=200+4×6=224 16×18=240+6×8=288
2、两个因数分别在10至20和20至30之间对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:
22×14=300+2×4=308
23×13=290+3×3=299
26×17=400+6×7=442
28×14=360+8×4=392
29×13=350+9×3=377
⑤ 乘法简便运算技巧
乘法简便运算方法
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4 计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5 计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
⑥ 两位数乘两位数简便方法
三年级数学一般就要学到两位数乘两位数运算,对于中年级的小同学来说,这种运算数字较大,相应的也有了难度,很容易在运算当中出错,那么,如何避免出错,更快速地得出结果呢
这里介绍三种竖式速算法
这种竖式法,会出现进位,列竖式的时候,一定要注意数位对齐。而后,先用一个乘数个位上的数去乘另一个乘数,得数的末位与乘数的个位对齐,再用这个乘数十位上的数依次去乘另一个乘数,得数的末位与乘数的十位对齐,最后,把两次所得的结果相加。
这种竖式法的特点,就是容易出现进位,一边乘一边还要加。
竖式速算法
第一步,十位数上下相乘,得数末位与乘数的十位对齐。
第二步,个位数与十位数交叉相乘再把积相加。如这道题当中,4和8相乘得32,5和7相乘得35,32加35就是67。
第三步,个位数进行相乘,得数末位与乘数的个位对齐。这里需要注意一点,如果有进位,就往前一位写。
最后,把所得的结果进行相加,得出积。
这种方法的特点,是熟练运用以后,可以提高运算的速度。
同样是列竖式,先用两个乘数的个位相乘,得数末位与乘数个位对齐。
接下来,两个乘数的个位与十位交叉相乘,需要两次,得数末位都与乘数十位对齐。
第四步,两个乘数的十位相乘,得数末位与乘数百位对齐。
最后,统一相加,得出积。
这种速算方法的特点,是运算当中不需要进位,一目了然,更快得到运算的
⑦ 三年级数学简便算法技巧
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
⑧ 三年级数学计算题52X41如何用方便计算
乘法的简便运算无外乎运用到两个公式:乘法交换律和乘法分配律。
先来温习一下。
乘法交换律:axb=bxa
乘法分配律:ax(b+c)=axb+axc
这道乘法计算题运用乘法分配律可以进行简便运算。
把52拆成50+2,或者把41拆成40+1。
52x41=(50+2)x41=50x41+2x41=2050+82=2132
⑨ 小学数学三年级上册口算乘法的技巧是什么
例子,2400除以200等于12,一看就能看出来了。24和12是倍数关系,所以把0去掉算出24除以12
100乘54等于5400,因为54乘100,100是2个0,就在54后面加2个零整十、整百、整千数乘一位数,先用整十、整百、整千数中零前面的数与一位数相乘,计算出积后,再看因数的末尾有几个0,就在积的末尾添几个0。还有一点就是要熟练九九乘法表,,不要忘了末尾的零
⑩ 乘法简便方法
乘法简便方法例子演示78×98
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
78×98
=78×100-78×2
=7800-156
=7644
(10)三年级上册乘法的简便方法扩展阅读-竖式计算:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:
步骤一:8×78=624
步骤二:9×78=7020
根据以上计算结果相加为7644
存疑请追问,满意请采纳