导航:首页 > 知识科普 > 函数求极限怎么判断用什么方法

函数求极限怎么判断用什么方法

发布时间:2022-10-07 13:31:56

A. 函数极限怎么

采用洛必达法则求极限。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

存在准则

单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

B. 如何判断一个函数的极限是否存在

设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式.
│f(x)-A│<ε ,
则称数A为函数f(x)当x→+∞时的极限,记作
f(x)→A(x→+∞).

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。
两边夹定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立
(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A
不但能证明极限存在,还可以求极限,主要用放缩法。
单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

函数极限的方法


利用函数连续性:lim f(x) = f(a) x->a
(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)
②恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子是根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。
③通过已知极限

C. 由函数图像怎样判断极限

函数图像在一定区域内若某点左右两边的点均低于它则它为该区域内的极大值、若左右两边均高于它则它为极小值。

可以观察函数,若是连续函数,就直接用四则运算法,则以及复合函数极限运算法,则去求极限值就可以,若极限不是反复振荡的或者不为无穷大,而是就等于一个常数,则极限存在。

若函数在该点不连续,则求在该点的左、右极限,若左右极限都存在,而且相等,都等于一个常数A,则这个函数在该点的极限存在,极限值也为A。

(3)函数求极限怎么判断用什么方法扩展阅读:

当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;

当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;

当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。

D. 总结求函数(数列)极限的方法

求数列极限可以归纳为以下三种形式:
★抽象数列求极限
这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。
★求具体数列的极限
a.可以参考以下几种方法:
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,
从而得到数列的极限值.。
b.利用函数极限求数列极限
如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。
★求n项和或n项积数列的极限,主要有以下几种方法:
a.利用特殊级数求和法
如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。
b.利用幂级数求和法
若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。
c.利用定积分定义求极限
若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。
d.利用夹逼定理求极限
若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。
e.求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

E. 函数极限怎么求技巧

你好
第一种:利用函数连续性:lim f(x) = f(a) x->a
(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)
第二种:恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。
第三种:通过已知极限
特别是两个重要极限需要牢记。

(5)函数求极限怎么判断用什么方法扩展阅读
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。
1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立
(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A
不但能证明极限存在,还可以求极限,主要用放缩法。
2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
3.柯西准则
数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
望采纳祝你好运

F. 如何确定函数是否有极限

在某一点是否有极限的判断方法:
1、直接将该点的x代入表达式,只要没有无穷大出现,而是一个具体的数值,
极限就存在;
2、如果是无穷大比上0,或一个具体的数,极限也存在;
3、如果是0比0型,需要化简,或用罗毕达法则,逐步判断,一定能得出结果,
但是过程可能很艰难;
4、如果是无穷大比无穷大型,方法同3;
5、如果左极限存在,右极限也存在,但是两者不相等,则没有极限;
6、左右极限存在且相等,即使该点无定义,我们也说极限存在。
7、如果是其他形式的不定式,需要用罗毕达法则判断。

G. 求函数极限的方法有几种具体怎么求

1、利用函数的连续性求函数的极限(直接带入即可)

如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。

H. 怎么判断函数极限是否存在

极限是否存在,主要看函数的间断点,而间断点往往都在函数定义域的限制点或者函数形式的变化点。

因为连续函数都有极限,所以,判断函数是否连续,就选择函数的分段连续的端点,检验左、右极限是否相等;凡是左、右极限相等的,就表示函数连续;而左、右极限不相等函数,肯定不连续。

常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

相关信息

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,总存在正整数N,使得当m>N,n > N时,且m≠n,把满足该条件的{Xn}称为柯西序列,那么上述定理可表述成:数列{Xn}收敛,当且仅当它是一个柯西序列。

I. 求函数极限有什么方法

1、利用定义求极限。
2、利用柯西准则来求。
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于
任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求。
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即:夹挤定理。
5、利用变量替换求极限。
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
x->0
(2)lim
(1+1/n)^n=e
n->∞
7、利用单调有界必有极限来求。
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这用得也很经常。

J. 到底怎样判断一个函数的极限是否存在呢

1、结果若是无穷小,无穷小就用0代入,0也是极限。

2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。

3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷大,就是负无穷大,整体的极限不存在。

4、若分子分母各自的极限都是无穷小,那就必须用罗毕达方法确定最后的结果。

(10)函数求极限怎么判断用什么方法扩展阅读:

极限存在准则:

1、夹逼定理:

(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立。

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。

2、单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。

3、柯西准则:

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。

阅读全文

与函数求极限怎么判断用什么方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:539
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:705
对肾脏有好处的食用方法 浏览:100
电脑四线程内存设置方法 浏览:513
数字电路通常用哪三种方法分析 浏览:15
实训课程的教学方法是什么 浏览:526
苯甲醇乙醚鉴别方法 浏览:84
苹果手机微信视频声音小解决方法 浏览:701
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276