1. fmea分析五步法是什么
FMEA分析五步法是一种简单高效的质量问题分析方法,FMEA(Failure Mode EffectsAnalysis)故障模式与影响分析,其中failure的含义不限于“故障”,而是包含了各种质量问题在内。
分析产品或生产过程中潜在的故障模式及其产生的影响或后果,并对可能出现的各种故障模式采取设计、工艺或操作方面的改进或补偿措施。潜在失效模式是指产品在使用过程中可能发生的功能丧失或造成相关零部件失效情况的“模式”。
FMEA方法的适用范围包含工艺设计、产品生产过程中各种质量问题的分析。在国际标准IS09004:2000《质量管理体系业绩改进指南》中,己将FMEA作为对“产品和过程的确认和更改”以及对“设计和开发”进行风险评估的工具。
FMEA的作用:
1、深化设计要求,对设计方案进行评价:
2、对失效模式进行量化;
3、使设计认证试验更有效;
4、以不同领域专业人员参与讨论,提高质量降低失效;
5、为产品的使用信息反馈和跟踪服务提供便利,也为改进设计提供参考。
2. 轴承常见疲劳失效形式及抗疲劳方法有哪些,你知道吗
大量的应用实践和寿命实验都表明,轴承失效多为接触表面疲劳。将疲劳列在轴承六种常见失效模式之首,被列在第六位的断裂在形成过程中也因有疲劳的原因,被称为疲劳断裂。典型的疲劳失效分为次表面起源型和表面起源型。
一.次表面起源型疲劳
滚动接触最大接触应力发生在表面下一定深度的某处,在交变应力的反复作用下,在该处形成疲劳源(微裂纹)。裂纹源在循环应力下逐步向表面扩展,形成开放式的片状裂缝,进而被撕裂为片状颗粒从表面剥落,产生麻点、凹坑。如该处轴承钢存在某种薄弱点、或缺陷(常见的如非金属夹杂物、气隙、粗大碳化物的晶界面),将加速疲劳源的形成和疲劳裂纹的扩展,大大降低疲劳寿命。
二.表面起源型疲劳
接触表面处有损伤,这些损伤可能是原始的,即制造过程中形成的划伤、碰痕,也可能是使用中产生的,如润滑剂中的硬颗粒,轴承零件相对运动产生的微小擦伤;损伤处可能存在润滑不良,如润滑剂贫乏,润滑剂失效;不良的润滑状态加剧滚动体与滚道之间的相对滑动,导致表面损伤处的微凸体根部产生显微裂纹;裂纹扩展导致微凸体脱落,或形成片状剥落区。这种剥落深度较浅,有时易与暗灰色蚀斑相混淆。
三.疲劳断裂
疲劳断裂的起源是过度紧配合产生的装配应力与循环交变应力形成的疲劳屈服,装配应力、交变应力与屈服极限之间的平衡一旦失去,便会沿套圈轴线方向产生断裂,形成贯穿状的裂缝。
实践中正常使用失效的轴承,其损坏大多如上所述,即接触表面疲劳,而三种疲劳失效类型又以次表面起源型疲劳最为常见,ASO281和ISO281/amd.2推荐的轴承寿命计算方法就是以次表面起源型疲劳为基础得出的。
常用的抗疲劳方法有:
A. 热处理技术
热处理是常用的改善材料力学性能的工艺方法,为了适应不同材料零件的不同使用要求,需要选择不同的热处理工艺,预先热处理组织、淬火加热温度、加热速度、冷却方式(介质与速度)、回火温度与时间等都对机械性能有明显影响,要对诸多热处理参数进行优化、组合,以求得适应使用条件的最佳性能,从而延长零件的耐疲劳寿命。构建热处理虚拟生产平台,推动热处理技术向高新技术知识密集型转变。热处理工艺参数的优化及发展数字化热处理技术是实现抗疲劳制造的重要前提。
B. 表面化学热处理
表面化学热处理的改性作用主要在表面,可根据不同的使用要求,选择渗入的化学元素,如渗碳后淬回火以提高表面硬度,但工件畸变不易控制:渗氮后形成金属氮化物可获得更高的表面硬度及耐磨性、耐蚀性和抗疲劳性能,且工件畸变小,但效率不高;共渗工艺使硬度、耐磨、耐蚀、抗疲劳性能更优,且淬火畸变少,但硬化层薄,不宜于重载工件。表面化学热处理的发展方向是扩大低温化学处理的应用,提高渗层质量,加速处理过程,发展环保型工艺、复合渗工艺及模拟数字化处理技术。
C. 表面强化技术的应用
传统的表面强化技术源于冷作硬化原理,如抛丸、喷砂、喷丸等,新的表面强化技术如激光表面硬化、激光喷丸表面硬化、超声滚光硬化、化学方法表面硬化,复合各种工艺的表面硬化新技术已在许多领域中被成功应用,如激光一喷丸工艺(激光冲击处理),使用高能脉冲激光在零件表面形成冲击波,使表面材料产生压缩和塑性变形,形成表面残余压应力,从而增强了抗疲劳能力(如抗应力裂纹、耐腐蚀疲劳等)。
D. 表面改性技术
常用的表面改性技术主要有离子注入和表面涂覆。
离子注入是非高温过程,没有冶金学和平衡相图的限制,可根据不同需要选择不同注入元素与剂量以获得预期的表面性能。如:注入铬离子以增强基体材料的抗腐蚀和耐疲劳能力;注入硼离子以增强基体的抗磨损能力。
表面涂覆技术包括物理气相沉积(PVD),化学气相沉积(CVD)射频溅射(RF)离子喷镀(PSC),化学镀等。
此外,离子渗工艺在一定真空度下利用高压直流电使被渗元素处于离子状态,使产生的离子流轰击工件表面,在表面形成化合物达到降低摩擦、提高耐磨性的目的。
E. 微细加工与光整技术
作为一种先进的制造技术,高精度的微细加工与调配、光整技术,也为提高基础零件的抗疲劳能力发挥出重要作用。超精密的研磨加工、涡流光整加工,以降低工件表面粗糙度为目的,加工后的表面理化特性、力学特性、接触处的轮廓形状都发生有益的改变,可修正接触应力分布,利于动力润滑油膜的形成,提高疲劳寿命。
F. 协调硬度匹配
不同零件的硬度匹配关系,也能协调滚动接触处的应力与应变传递状态,对延长零件的疲劳寿命产生明显效果。
3. 什么是品管常用手法,如FMEA,QC七大手法
FMEA 简介
FMEA(Failure Mode and Effect Analysis,失效模式和效果分析)是一种用来确定潜在失效模式及其原因的分析方法。
具体来说,通过实行FMEA,可在产品设计或生产工艺真正实现之前发现产品的弱点,可在原形样机阶段或在大批量
生产之前确定产品缺陷。
FMEA最早是由美国国家宇航局(NASA)形成的一套分析模式,FMEA是一种实用的解决问题的方法,可适用于许多工程
领域,目前世界许多汽车生产商和电子制造服务商(EMS)都已经采用这种模式进行设计和生产过程的管理和监控。
FMEA简介
FMEA有三种类型,分别是系统FMEA、设计FMEA和工艺FMEA,本文中主要讨论工艺FMEA。
1)确定产品需要涉及的技术、能够出现的问题,包括下述各个方面:
需要设计的新系统、产品和工艺;
对现有设计和工艺的改进;
在新的应用中或新的环境下,对以前的设计和工艺的保留使用;
形成FMEA团队。
理想的FMEA团队应包括设计、生产、组装、质量控制、可靠性、服务、采购、测试以及供货方等所有有关方面的代表。
2)记录FMEA的序号、日期和更改内容,保持FMEA始终是一个根据实际情况变化的实时现场记录,
需要强调的是,FMEA文件必须包括创建和更新的日期。
3) 创建工艺流程图。
工艺流程图应按照事件的顺序和技术流程的要求而制定,实施FMEA需要工艺流程图,一般情况下工艺流程图不要
轻易变动。
4)列出所有可能的失效模式、效果和原因、以及对于每一项操作的工艺控制手段:
4.1 对于工艺流程中的每一项工艺,应确定可能发生的失效模式.
如就表面贴装工艺(SMT)而言,涉及的问题可能包括,基于工程经验的焊球控制、焊膏控制、使用的阻焊剂
(soldermask)类型、元器件的焊盘图形设计等。
4.2 对于每一种失效模式,应列出一种或多种可能的失效影响,
例如,焊球可能要影响到产品长期的可靠性,因此在可能的影响方面应该注明。
4.3 对于每一种失效模式,应列出一种或多种可能的失效原因.
例如,影响焊球的可能因素包括焊盘图形设计、焊膏湿度过大以及焊膏量控制等。
4.4 现有的工艺控制手段是基于目前使用的检测失效模式的方法,来避免一些根本的原因。
例如,现有的焊球工艺控制手段可能是自动光学检测(AOI),或者对焊膏记录良好的控制过程。
5)对事件发生的频率、严重程度和检测等级进行排序:
5.1 严重程度是评估可能的失效模式对于产品的影响,10为最严重,1为没有影响;
事件发生的频率要记录特定的失效原因和机理多长时间发生一次以及发生的几率。
如果为10,则表示几乎肯定要发生,工艺能力为0.33或者ppm大于10000。
5.2 检测等级是评估所提出的工艺控制检测失效模式的几率,列为10表 示不能检测,1表示已经通过目前工艺控
制的缺陷检测。
5.3 计算风险优先数RPN(riskprioritynumber)。
RPN是事件发生的频率、严重程度和检测等级三者乘积,用来衡量可能的工艺缺陷,以便采取可能的预防措施
减少关键的工艺变化,使工艺更加可靠。对于工艺的矫正首先应集中在那些最受关注和风险程度最高的环节。
RPN最坏的情况是1000,最好的情况是1,确定从何处着手的最好方式是利用RPN的pareto图,筛选那些累积
等级远低于80%的项目。
推荐出负责的方案以及完成日期,这些推荐方案的最终目的是降低一个或多个等级。对一些严重问题要时常
考虑拯救方案,如:
一个产品的失效模式影响具有风险等级9或10;
一个产品失效模式/原因事件发生以及严重程度很高;
一个产品具有很高的RPN值等等。
在所有的拯救措施确和实施后,允许有一个稳定时期,然后还应该对修订的事件发生的频率、严重程度和检测
等级进行重新考虑和排序。
FMEA应用
FMEA实际上意味着是事件发生之前的行为,并非事后补救。
因此要想取得最佳的效果,应该在工艺失效模式在产品中出现之前完成。产品开发的5个阶段包括:
计划和界定、设计和开发、工艺设计、预生产、大批量生产。
作为一家主要的EMS提供商,Flextronics International已经在生产工艺计划和控制中使用了FMEA管理,在产品的
早期引入FMEA管理对于生产高质量的产品,记录并不断改善工艺非常关键。对于该公司多数客户,在完全确定设计和
生产工艺后,产品即被转移到生产中心,这其中所使用的即是FMEA管理模式。
手持产品FMEA分析实例
在该新产品介绍(NPI)发布会举行之后,即可成立一个FMEA团队,包括生产总监、工艺工程师、产品工程师、测试工
程师、质量工程师、材料采购员以及项目经理,质量工程师领导该团队。FMEA首次会议的目标是加强初始生产工艺MPI
(Manufacturing Process Instruction)和测试工艺TPI(Test Process Instruction)中的质量控制点同时团队
也对产品有更深入的了解,一般首次会议期间和之后的主要任务包括:
1.工艺和生产工程师一步一步地介绍工艺流程图,每一步的工艺功能和要求都需要界定。
2.团队一起讨论并列出所有可能的失效模式、所有可能的影响、所有可能的原因以及目前每一步的工艺控制,并对这些
因素按RPN进行等级排序。例如,在屏幕印制(screen print)操作中对于错过焊膏的所有可能失效模式,现有的工艺
控制是模板设计SD(Stencil Design)、定期地清洁模板、视觉检测VI(Visual Inspection)、设备预防性维护PM
(Preventive Maintenance)和焊膏粘度检查。工艺工程师将目前所有的控制点包括在初始的MPI中,如模板设计研
究、确定模板清洁、视觉检查的频率以及焊膏控制等。
3. FMEA团队需要有针对性地按照MEA文件中的控制节点对现有的生产线进行审核,对目前的生产线的设置和其他问题进
行综合考虑。如干燥盒的位置,审核小组建议该放在微间距布局设备(Fine-pitch Placementmachine)附近,以方
便对湿度敏感的元器件进行处理。
4. FMEA的后续活动在完成NPI的大致结构之后,可以进行FMEA的后续会议。会议的内容包括把现有的工艺控制和NPI大
致结构的质量报告进行综合考虑,FMEA团队对RPN重新进行等级排序,每一个步骤首先考虑前三个主要缺陷,确定好
推荐的方案、责任和目标完成日期。
对于表面贴装工艺,首要的两个缺陷是焊球缺陷和tombstone缺陷,可将下面的解决方案推荐给工艺工程师:
对于焊球缺陷,检查模板设计(stencildesign),检查回流轮廓(reflow profile)和回流预防性维护(PM)记录;
检查屏幕印制精度以及拾取和放置(pick-and-place)机器的布局(placement)精度.
对于墓石(tombstone)缺陷,检查屏幕印制精度以及拾取和放置(pick-and-place)机器的布局(placement)精度;
检查回流方向;研究终端(termination)受污染的可能性。
工艺工程师的研究报告表明,回流温度的急速上升是焊球缺陷的主要原因,终端(termination)受污染是墓石
(tombstone)缺陷的可能原因,因此为下一个设计有效性验证测试结构建立了一个设计实验(DOE),设计实验表明
一个供应商的元器件出现墓石(tombstone)缺陷的可能性较大,因此对供应商发出进一步调查的矫正要求。
5. 对于产品的设计、应用、环境材料以及生产组装工艺作出的任何更改,在相应的FMEA文件中都必须及时更新。
FMEA更新会议在产品进行批量生产之前是一项日常的活动。
批量生产阶段的FMEA管理
作为一个工艺改进的历史性文件,FMEA被转移到生产现场以准备产品的发布。
FMEA在生产阶段的主要作用是检查FMEA文件,以在大规模生产之前对每一个控制节点进行掌握,同时审查生产线的有
效性,所有在NPI FMEA阶段未受质疑的项目都自然而然地保留到批量生产的现场。
拾取和放置(pick-and-place)机器精度是工艺审核之后的一个主要考虑因素,设备部门必须验证布局机器的Cp/Cpk,
同时进行培训以处理错误印制的电路板。FMEA团队需要密切监视第一次试生产,生产线的质量验证应该与此同时进行。
在试生产之后,FMEA需要举行一个会议核查现有的质量控制与试生产的质量报告,主要解决每一个环节的前面三个问题。
FMEA管理记录的是一个不断努力的过程和连续性的工艺改进,FMEA文件应该总是反映设计的最新状态,包括任何在生产
过程开始后进行的更改。
结语
使用FMEA管理模式在早期确定项目中的风险,可以帮助电子设备制造商提高生产能力和效率,缩短产品的面市时间。
此外通过这种模式也可使各类专家对生产工艺从各个角度进行检测,从而对生产过程进行改进。
所推荐的方案应该是正确的矫正,产生的效益相当可观。为了避免缺陷的产生,需要对工艺和设计进行更改。使用统计
学的方法对生产工艺进行研究,并不断反馈给合适的人员,确保工艺的不断改进并避免缺陷产生。
===============================================================================================
QC七大手法
TQC推动人员的圈长辅导员及相关人员
教材构成:
7卷录影带、讲师手册1本、学员手册1 本
影片重点:
在推行TQM的今天,如何使全公司上下各部门,
对品质管理的基本观念有正确的理解,是一件重要的事。
QC七大手法是一套易学、易懂又好用的管理改善工具。
学习目标:
1、吸收QC七手法的知识并应用。
2、在短期内就可以在工作场展开运用。
教材大纲:
数据与查检表
1、有关于数据的搜集与应用
2、查检表的制作与活用
3、QC七大手法的初步认识
柏拉图
1、柏拉图的相关知识
2、如何正确规划出柏拉图
3、如何利用柏拉图发现问题的重心
特性要因图
1、何谓特性要因图
2、特性要因图的制作方法
3、特性要因图使用
散布图
1、散布图基本知识的学习
2、如何制作散布图
3、散布图的使用方法
图表与管制图
1、一般常用图表的绘制和使用注意事项
2、何谓管制以及一般知识
3、如何研读管制图
直方图
1、直方图的一般知识
2、直方图的制作方法
3、如何应用直方图
层别法
1、认识层别法
2、层别法的对象和项目
3、层别法的使用
新:
适用对象:
品质管理推动人员、管理者、幕僚者、品管圈之相关人员
教材构成:
7卷录影带、讲师手册1本、学员手册5本
影片重点:
新QC七大手法,是将语言资料利用图形加以整理,用来解决问题的手法,举凡制造、事务、营业、服务、研究、开发等部门,都是可以活用的领域。
学习目标:
1、手法的KNOW-HOW。
2、成为一位具思考能力的优秀管理者及幕僚人员
3、知道在策略执行的过程中,如何评估、拟订更有效的计划。
教材大纲:
亲和图法
1、企业追求TQC重舶指向为何
2、新QC七大手法与TQC
3' 何谓亲和图法
4、亲和图法HOW TO
5' 亲和图法用途
关连图法
1、何谓关连图法
2、关连图主要类型
3、关连图法特微
4、关连图法HOW TO
5、关连图法之优点
系统图法
1、系统图法基本概念
2、系统图法HOW TO
3' 系统图法使用重点
矩阵图法
1、何谓矩阵图法
2、矩阵图片的种类
3、矩阵图法优点
4、矩阵图HOW TO
5' 矩阵图法与系统图法之关系
矩解析法
1、何谓矩解析法
2、矩阵解析法HOW TO
3、注意事项
4、矩阵解析法的运用
PDPC法
1、PDPC法基本概念
2、POPC法HOW TO
3、POPC法之使用
箭形图解法
1、箭形图解法基本概念
2、箭形图解的表现方法
3、箭形图解法HOW TO
4、日程的计算
5、箭形图解法的优点
4. 失效模式及后果分析 fmea具体包括哪些内容
失效模式与影响分析即“潜在失效模式及后果分析”,或简称为FMEA。FMEA是在产品设计阶段和过程设计阶段,对构成产品的子系统、零件,对构成过程的各个工序逐一进行分析,找出所有潜在的失效模式,并分析其可能的后果,从而预先采取必要的措施,以提高产品的质量和可靠性的一种系统化的活动。
潜在的失效模式及后果分析(Failure Mode and Effects Analysis,简记为FMEA),是“事前的预防措施”,并“由下至上。
关键词:潜在的 — 失效还没有发生,它可能会发生,但不一定会发生。
“核心”集中于:预防 — 处理预计的失效,其原因及后果/影响。
主要工作:风险评估 — 潜在失效模式的后果影响。
FMEA 开始于产品设计和制造过程开发活动之前,并指导贯穿实施于整个产品周期。
进行分析系统中每一产品所有可能产生的故障模式及其对系统造成的所有可能影响,并按每一个故障模式的严重程度,检测难易程度以及发生频度予以分类的一种归纳分析方法。
5. 电解电容常见的失效模式
电容器的常见失效模式有:击穿、开路、电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上下班升等)、漏液、引线腐蚀或断裂、绝缘子破裂或表面飞弧等.引起电容器失效的原因是多种多样的.各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样.
各种常见失效模式的主要产生机理归纳如下.
1、常见的七种失效模式
(1) 引起电容器击穿的主要失效机理
① 电介质材料有疵点或缺陷,或含有导电杂质或导电粒子;
② 电介质的电老化与热老化;
③ 电介质内部的电化学反应;
④ 银离子迁移;
⑤ 电介质在电容器制造过程中受到机械损伤;
⑥ 电介质分子结构改变;
⑦ 在高湿度或低气压环境中极间飞弧;
⑧ 在机械应力作用下电介质瞬时短路.
(2) 引起电容器开路的主要失效机理
① 引线部位发生“自愈“,使电极与引出线绝缘;
② 引出线与电极接触表面氧化,造成低电平开路;
③ 引出线与电极接触不良;
④ 电解电容器阳极引出箔腐蚀断裂;
⑤ 液体工作台电解质干涸或冻结;
⑥ 机械应力作用下电介质瞬时开路.
(3) 引起电容器电参数恶化的主要失效机理
① 受潮或表面污染;
② 银离子迁移;
③ 自愈效应;
④ 电介质电老化与热老化;
⑤ 工作电解液挥发和变稠;
⑥ 电极腐蚀;
⑦ 湿式电解电容器中电介质腐蚀;
⑧ 杂质与有害离子的作用;
⑨ 引出线和电极的接触电阻增大.
(4) 引起电容器漏液的主要原因
① 电场作用下浸渍料分解放气使壳内气压一升;
② 电容器金属外壳与密封盖焊接不佳;
③ 绝缘了与外壳或引线焊接不佳;
④ 半密封电容器机械密封不良;
⑤ 半密封电容器引线表面不够光洁;
⑥ 工作电解液腐蚀焊点.
(5) 引起电容器引线腐蚀或断裂的主要原因
① 高温度环境中电场作用下产生电化学腐蚀;
② 电解液沿引线渗漏,使引线遭受化学腐蚀;
③ 引线在电容器制造过程中受到机械损伤;
④ 引线的机械强度不够.
(6) 引起电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃粉绝缘子烧结过程中残留热力过大;
③ 焊接温度过高或受热不均匀.
(7) 引起绝缘子表面飞弧的主要原因
① 绝缘了表面受潮,使表面绝缘电阻下降;
② 绝缘了设计不合理
③ 绝缘了选用不当
④ 环境气压过低.
电容器击穿、开路、引线断裂、绝缘了破裂等使电容器完全失去工作能力的失效属致命性失效,其余一些失效会使电容不能满足使用要求,并逐渐向致命失效过渡;
电容器在工作应力与环境应力综合作用下,工作一段时间后,会分别或同时产生某些失效模式.同一失效模式有多种失效机理,同一失效机理又可产生多种失效模式.失效模式与失效机理之间的关系不是一一对应的.
2、电容器失效机理分析
(1)、潮湿对电参数恶化的影响
空气中湿度过高时,水膜凝聚在电容器外壳表面,可使电容器的表面绝缘电阻下降.此处,对于半密封结构电容器来说,水分还可渗透到电容器介质内部,使电容器介质的绝缘电阻绝缘能力下降.因此,高温、高湿环境对电容器参数恶化的影响极为显着.经烘干去湿后电容器的电性能可获改善,但是水分子电解的后果是无法根除的.例如:电容器工作于高温条件下,水分子在电场作用下电解为氢离子(H+)和氢氧根离子(OH-),引线根部产生电化学腐蚀.即使烘干去湿,也不可能引线复原.
(2)、银离子迁移的后果
无机介质电容器多半采用银电极,半密封电容器在高温条件下工作时,渗入电容器内部的水分子产生电解.在阳极产生氧化反应,银离子与氢氧根离子结合生成氢氧化银.在阴极产生还原反应、氢氧化银与氢离子反应生成银和水.由于电极反应,阳极的银离子不断向阴极还原成不连续金属银粒,靠水膜连接成树状向阳极延伸.银离子迁移不仅发生在无机介质表面,银离子还能扩散到无机介质内部,引起漏电流增大,严重时可使两个银电极之间完全短路,导致电容器击穿.
银离子迁移可严重破坏正电极表面银层,引线焊点与电极表面银层之间,间隔着具有半导体性质的氧化银,使无机介质电容器的等效串联电阻增大,金属部分损耗增加,电容器的损耗角正切值显着上升.
由于正电极有效面积减小,电容器的电容量会因此而下降.表面绝缘电阻则因无机介质电容器两电极间介质表面上存在氧化银半导体而降低.银离子迁移严重时,两电极间搭起树枝状的银桥,使电容器的绝缘电阻大幅度下降.
综上所述,银离子迁移不仅会使非密封无机介质电容器电性能恶化,而且可能引起介质击穿场强下降,最后导致电容器击穿.
值得一提的是:银电极低频陶瓷独石电容器由于银离子迁移而引起失效的现象比其他类型的陶瓷介质电容器严重得多,原因在于这种电容器的一次烧成工艺与多层叠片结构.银电极与陶瓷介质一次烧也过程中,银参与了陶瓷介质表面的固相反应,渗入了瓷-银接触处形成界面层.如果陶瓷介质不够致密,则水分渗入后,银离子迁移不仅可以在陶瓷介质表面发生,还可能穿透陶瓷介质层.多层叠片结构的缝隙较多,电极位置不易精确,介质表面的留边量小,叠片层两端涂覆外电极时银浆渗入缝隙,降低了介质表面的绝缘电阻,并使电极之间的路径缩短,银离子迁移时容易产生短路现象.
(3)、高湿度条件下陶瓷电容器击穿机理
半密封陶瓷电容器在高湿度环境条件下工作时,发生击穿失效是比较普遍的严重问题.所发生的击穿现象大约可以分为介质击穿和表面极间飞弧击穿两类.介质击穿按发生时间的早晚又可分为早期击穿与老化击穿两种.早期击穿暴露了电容介质材料与生产工艺方面存在的缺陷,这些缺陷导致陶瓷介质电强度显着降低,以致于在高湿度环境中电场作用下,电容器在耐压试验过程中或工作初期,就产生电击穿.老化击穿大多属于电化学击穿范畴.由于陶瓷电容器银的迁移,陶瓷电容器的电解老化击穿已成为相当普遍的问题.银迁移形成的导电树枝状物,使漏电流局部增大,可引起热击穿,使电容器断裂或烧毁.热击穿现象多发生在管形或圆片形的小型瓷介电容器中,因为击穿时局部发热厉害,较薄的管壁或较小的瓷体容易烧毁或断裂.
此外,以二氧化钛为主的陶瓷介质中,负荷条件下还可能产生二氧化钛的还原反应,使钛离子由四价变为三价.陶瓷介质的老化显着降低了电容器的介电强度,可能引起电容器击穿.因此,这种陶瓷电容器的电解击穿现象比不含二氧化钛的陶瓷介质电容器更加严重.
银离子迁移使电容器极间边缘电场发生严重畸变,又因高湿度环境中陶瓷介质表面凝有水膜,使电容边缘表面电晕放电电压显着下降,工作条件下产生表面极间飞弧现象.严重时导致电容器表面极间飞弧击穿.表面击穿与电容结构、极间距离、负荷电压、保护层的疏水性与透湿性等因素有关.主要就是边缘表面极间飞弧击穿,原因是介质留边量较小,在潮湿环境中工作时银离子迁移和表面水膜形成使电容器边缘表面绝缘电阻显着下降,引起电晕放电,最终导致击穿.高湿度环境中尤其严重.由于银离子迁移的产生与发展需要一段时间,所以在耐压试验初期,失效模式以介质击穿为主,直到试验500h以后,主要失效模式才过渡为边缘表面极间飞弧击穿.
(4)、高频精密电容器的低电平失效机理
云母是一种较理想的电容器介质材料,具有很高的绝缘性能,耐高温,介质损耗小,厚度可薄达25微米.云母电容器的主要优点是损耗小,频率稳定性好、分布电感小、绝缘电阻大,特别适合在高频通信电路中用做精密电容器.但是,云母资源有限,难于推广使用.近数十年内,有机薄膜电容器获得迅速发展,其中聚苯乙烯薄膜电容器具有损耗小、绝缘电阻大、稳定性好、介质强度高等优点.精密聚苯乙烯电容器可代替云母电容器用于高频电路.需要说明的是:应用于高频电路中的精密聚苯乙烯电容器,一般采用金属箔极板,以提高绝缘电阻与降低损耗.
电容器的低电平失效是20世纪60年代以来出现的新问题.低电平失效是指电容器在低电压工作条件下出现的电容器开路或容量下降超差等失效现象.60年代以来半导体器件广泛应用,半导体电路电压比电子管电路低得多,使电容器的实际工作电压在某些电路中仅为几毫伏,引起电容器低电平失效,具体表现是电容器完全丧失电容量或部分丧失电容量.对于低电平冲击,使电容器的电容量恢复正常.
产生低电平失效的原因主要在于电容器引出线与电容器极板接触不良,接触电阻增大,造成电容器完全开路或电容量幅度下降.
精密聚苯乙烯薄膜电容器一般采用铝箔作为极板,铜引出线与铝箔极板点焊在一起.铝箔在空气中极易氧化;极板表面生成一层氧化铝半导体薄膜,在低电平条件下氧化膜层上的电压不足以把它击穿,因而铝箔间形成的间隙电容量的串联等效容量,间隙电容量愈小,串联等效容量也愈小.因此,低电平容量取决于极板表面氧化铝层的厚薄,氧化铝层愈厚,低电平条件下电容器的电容量愈小.此外,电容器在交流电路中工作时,其有效电容量会因接触电阻过大而下降,接触电阻很大时有效电容量可减小到开路的程度.即使极板一引线间不存在导电不良的间隔层,也会产生这种后果.
引起精密聚苯乙烯电容器低电平失效的具体因素归纳如下:
① 引线表面氧化或沾层太薄,以致焊接不牢;
② 引线与铝箔点焊接不良,没有消除铝箔表面点焊处的氧化铝膜层;
③ 单引线结构的焊点数过少,使出现低电平失效的概率增大;
④ 粗引线根部打扁部分接触面积虽然较大,但点焊后焊点处应力也较大,热处理或温循过程中,可能损伤接触部位,恶化接触情况;
⑤ 潮气进入电容器芯子,氧化腐蚀焊点,使接触电阻增大.
引起云母电容器低电平失效的具体因素归纳如下:
① 银电极和引出铜箔之间以及铜箔和引线卡之间存在一层很薄的地腊薄膜.低电平条件下,外加电压不足以击穿这层绝缘膜,产生间隙电容,并使接触电阻增大;
② 银电极和铜箔受到有害气体侵蚀,使接触电阻增大.在潮湿的硫气环境中银和铜容易硫化,使极板与引线间的接触电阻上升.
(5)、金属化纸介电容失效机理
金属化纸介电容器的极板是真空蒸发在电容器纸表面的金属膜
A、电参数恶化失效
“自愈”是金属化电容器的一个独特优点,但自愈过程颇为复杂,自愈虽能避免电容器立即因介质短路而击穿,但自愈部位肯定会出现金属微粒迁移与介质材料受热裂解的现象.电容器纸由纤维组成,纤维素是碳水化合物类的高分子物质.在高温下电容器纤维素解成游离状态的碳原子或碳离子,使自愈部位表面导电能力增加,导致电容器电阻下降、损耗增大与电容减小.严重时可使电容器因电参数恶化程度超过技术条件许可范围而失效.
金属化纸介电容器在低于额定工作电压的条件下工作时,自愈能量不足,电容器纸中存在的导电杂质在电场作用于下形成低阻通路,也可导致电容器绝缘电阻降低和损耗增大.
电容器纸是多孔性的极性有机介质材料,极易吸收潮气.电容器芯子虽浸渍处理,但如果工艺不当或浸渍不纯,或在电场作用下工作相当时间后产生浸渍老化现象,则电容器的绝缘电阻将因此降低,损耗也将因此增大.
电容量超差失效产金属化纸介电容器的一种失效形式.在高温条件下储存时金属化纸介电容器可能因电容量增加过多而失效,在高温条件下加电压工作时又可能因电容量减少过多而失效.高温储存时半密封型金属化纸介电容器免不了吸潮,水是强极性物质,其介电常数接近浸渍电容器介电常数的20倍.因此,少量潮气侵入电容器芯子,也会引起电容量显着增大.烘烤去湿后电容呈会有所下降.如果电容器在高温环境中工作,则水分和电场的共同作用会使金属膜电极产生电解性腐蚀,使极板有效面积减小与极板电阻增大,导致电容量大幅度下降.如果引线与金属膜层接触部位产生腐蚀,则接触电阻增大,电容器的有效电容量将更进一步减小.个别电容器的电容量可降到接近于开路的程度.
B、引线断裂失效
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效.
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽.铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下.
A、漏液
铝电解电容器的工作电解液泄漏是一个严重问题.工作电解液略呈现酸性,漏出的工作电解液严重污染和腐蚀电容器周围的其他元器件和印刷电路板.同时电解电容器内部,由于漏液而使工作电解液逐渐干涸,丧失修补阳极氧化膜介质的能力,导致电容器击穿或电参数恶化而失效.
产生漏液的原因很多,主要是铝电解电容器密封不佳.采用铝负极箔夹在外壳边与封口板之间的封口结构时很容易在壳边渗漏电解液.采用橡胶塞密封的电容器,也可能因橡胶老化、龟裂而引起漏液.此外,机械密封工艺有问题的产品也容易漏液.总之,漏液与密封结构、密封材料与密封工艺有密切的关系.
B、爆炸
铝电解电容器在工作电压中交流成分过大,或氧化膜介质有较多缺陷,或存在氯根、硫酸根之类有害的阴离子,以致漏电流较大时电解作用产生气体的速率较快,大部分气体用于修补阳极氧化膜,少部分氧气储存在电容器壳内.工作时间愈长,漏电流愈大,壳内气体愈多,温度愈高.电容器金属壳内外的气压差值将随工作电压和工作时间的增加而增大.如果产品密封不佳,则将造成漏液;如果密封良好,又没有任何防爆措施,则气压增大到一定程度就会引起电容器爆炸.高压大容量电容器的漏电流较大,爆炸可能性更大.目前,已普遍采用防爆外壳结构,在金属外壳上部增加一道褶缝,气压高时将褶缝顶开,增大壳内容积,从而降低气压,减少爆炸危险.
C、开路
铝电解电容器在高温或潮热环境中长期工作时可能出现开路失效,其原因在于阳极引出箔片遭受电化学腐蚀而断裂.对于高压大容量电容器,这种失效模式较多.此外,阳极引出箔片和阳极箔铆接后,未经充分平,则接触不良会使电容器出现间歇开路.
铝电解电容器内采用以DMF(二甲基酰胺)为溶剂的工作电解液时,DMF溶液是氧化剂,在高温下氧化能力更强.工作一段时间后可能因阳极引出箔片与焊片的铆接部位生成氧化膜而引起电容器开路.如果采用超声波焊接机把引出箔片与焊点在一起,可则减少这类失效现象.
D、击穿
铝电解电容器击穿是由于阳极氧化铝介质膜破裂,导致电解液直接与阳极接触而造成的.氧化铝膜可能因各种材料,工艺或环境条件方面的原因而受到局部损伤.在外加电场的作用下工作电解液提供的氧离子可在损伤部位重新形成氧化膜,使阳极氧化膜得以填平修复.但是如果在损伤部位存在杂质离子或其他缺陷,使填平修复工作无法完善,则在阳极氧化膜上会留下微孔,甚至可能成为穿透孔,使铝电解电容器击穿.
此外,随着使用和储存时间的增长,电解液中溶剂逐渐消耗和挥发,使溶液酸值上升,在储存过程中对氧化膜层发生腐蚀作用.同时,由于电解液老化与干涸,在电场作用下已无法提供氧离子修补氧化膜,从而丧失了自愈作用,氧化膜一经损坏就会导致电容器击穿.工艺缺陷也是铝电解电容器击穿的一个主要原因.如果赋能过程中形成的阳极氧化膜不够致密与牢固,在后续的裁片、铆接工艺中又使氧化膜受到严重损伤.这种阳极氧化膜难以在最后的老炼工序中修补完善,以致电容器使用过程中,漏电流很大,局部自愈已挽救不了最终击穿的命运.又如铆接工艺不佳时,引出箔条上的毛剌严重剌伤氧化膜,刺伤部位漏电流很大,局部过热使电容器产生热击穿.
E、电参数恶化
A、电容量下降与损耗增大
铝电解电容器的电容量在工作早期缓慢下降,这是由于负荷过程中工作电解液不断修补并增厚阳极氧化膜所致.铝电解电容器在使用后期,由于电解液耗损较多、溶液变稠,电阻率因黏度增大而上升,使工作电解质的等效串联电阻增大,导致电容器损耗明显增大.同时,黏度增大的电解液难于充分接触经腐蚀处理的凹凸不平铝箔表面上的氧化膜层,这样就使铝电解电容器的极板有效面积减小,引起电容量急剧下降.这也是电容器使用寿命临近结束的表现.
此外,如果工作电解液在低温下黏度增大过多,也会造成损耗增大与电容量急剧下降的后果.硼酸一乙二醇系统工作电解液的低温性能不佳,黏度过大导致等效串联电阻激增,使损耗变大和有效电容量骤减,从而引起铝电解电容器在严寒环境中使用时失效.
B、漏电流增加
漏电流增加往往导致铝电解电容器失效.赋能工艺水平低,所形成的氧化膜不够致密与牢固,开片工艺落后,氧化膜损伤与沾污严重,工作电解液配方不佳,原材料纯度不高,电解液的化学性质与电化学性质难以长期稳定,铝箔纯度不高,杂质含量多……这些因素均可能造成漏电流超差失效.
铝电解电容器中氯离子沾污严重,漏电流导致沾污部位氧化膜分解,造成穿孔,促使电流进一步增大.此外,铝箔的杂质含量较高,一般铁杂质颗粒的尺寸大于阳极氧化膜的厚度,使电流易于传导.铜与硅杂质的存在影响铝氧化物向晶态结构转变.铜和铝还可在电解质内组成微电池,使铝箔遭到腐蚀破坏.总之,铝箔中金属杂质的存在,会使铝电解电容器漏电流增大,从而缩短电容器的寿命.
3、提高电容器可靠性的措施
对材料、结构和制造工艺进行改进说明.
1、电极材料的改进
陶瓷电容器一直使用银电极.银离子迁移和由此而引起含钛陶瓷介质的加速老化是导致陶瓷电容器失效的主要原因.有的厂家生产陶瓷电容器已不用银电极,而改用镍电极,在陶瓷基片上采用化学镀镍工艺.由于镍的化学稳定性比银好,电迁移率低,提高了陶瓷电容器的性能和可靠性.
国产云母电容器的电极材料也是银,同样存在银离子迁移现象.日本海缆通信系统中用的云母器,它的电极材料及电极引线间的连接均采用金,这就保证了云母电容器优良的性能和高可靠性.
镀金云母电容器与镀银云母电容器相比较:电容温度系数,前者约为后者的1/2,且偏差也小;湿度对容量的影响,前者比后者小一个数量级,且是可逆的;损耗角正切值,前者比后者小个数量级;在电压负荷下电容量相对变化率,前者约为后者的1/5~1/10.据推算,镀金云母电容器工作20年的电容量变化率≤±0.1%.
改进电极材料的另一个例子是金属化纸介电容器.金属化纸介电容器都采用锌蒸发在电容器纸上形成的金属层作为电极.锌膜在空气中易氧化,生成半导体性质的氧化锌,而且会继续向底层氧化,造成板极电阻的增加和电容器损耗的增大.此外,锌金属化膜在潮湿环境下易腐蚀.锌金属化膜的另一个缺点是自愈所需要的能量较大,而且电容器经击穿自愈后其绝缘电阻值较低.为了提高金属化纸介电容器的性能和可靠性,已用铝金属化层来代替锌金属化层.大气中在铝膜的表面会生成一层薄而坚固的氧化氯膜.使铝膜不再继续氧化.同时氧化氯膜对潮气抗腐蚀性能好.另外铝金属化层自愈性能好,铝电极可以在介质上残存的微量潮气和低电压作用下产生电化学反应,生成氧化铝介质膜,经过一段时间,电容器的绝缘电阻得到恢复.此外,铝的比电导较锌大,这就减小了板极电阻和电容器的损耗.因此,铝在金属化电容器的生产中取代锌做电极改善了电容器的性能,提高了电容器的可靠性.
2、工作电解质的改进
铝电解电容器工作电解质为硼酸一乙醇系统,其工作温度范围为+85~—40℃.在低温下,由于乙二醇中的羟基彼此以氢键联合,出现聚合物,以致工作电解液变稠冻结,电阻率急剧增大,电容量下降和损耗角正切值增大,使电容器的性能恶化.近来普遍采用的以DMF为溶剂的工作电解液,在较宽的温度范围内(-55~+85℃)电性能优良.
为了解决液体钽电解电容器漏液问题,除了在密封结构上采取措施外,采用凝胶状电解质,因为凝胶状电解质黏度大,不容易从微小的缝隙中漏出.
3、电介质材料的改进
电介质材料是决定电容器性能和可靠性的关键材料.以往生产的聚苯乙烯电容器,其电介质是采用厚度为20μm的聚苯乙烯单层薄膜,由于薄膜的厚度不均、有针孔、有导电杂质和微粒先进原因,制成的电容器就存在着某些陷患,在外部各种环境和电应力作用下,这些缺陷就会逐渐暴露出来,导致电容器的击穿、开路或电参数超差失效.为了提高和产品的性能和可靠性.电容器的电介质由原来单层20μm厚薄膜改进为双层10μm薄膜这样电介质的厚度仍为20μm,电容器的体积不变,但产品的质量却提高了.因为双层薄膜可以互相掩盖薄膜中的缺陷和疵点,这就使得电容器的耐压和可靠性得到了提高.
又如,以银做电极的独石低频瓷介电容器,由于银电极和瓷料在900℃下一次烧成时瓷料欠烧不能获得致密的陶瓷介质,存在较大的气孔率;此外银电极常用的助熔剂氧化钡会渗透到瓷体内部,在高温下依靠氧化钡和银之间良好的浸润“互熔”能力,使电极及介质内部出现热扩散现象,即宏观上看到的“瓷吸银”现象.银伴随着氧化钡进入瓷体中去后,大大减薄了介质的有效厚度,引起产品绝缘电阻的减少和可靠性的降低.为了提高独石电容器的可靠性,改用了银—钯电极代替通常含有的氧化钡电极,并且在资料配方中添加了1%的5#玻璃粉.消除了在高温下一次烧结时金属电极向瓷介质层的热扩散现象,能促使瓷料烧结致密化.使得产品的性能和可靠性有较大提高,与原工艺和介质材料相比较,电容器的可靠性提高了1~2个数量级.
4、结构的改进
上面已论述了聚苯乙烯电容器的低电平失效.导致低电平不时通时不通的原因是其引线和板有焊接不好而引起的.原来的引线结构是用较粗的单引线,与铝箔厚度比较尺寸相差悬殊,因此点焊质量不高.后改用细引线,并将冲压加工改进为辗轧加工.这样即可减少加式过程中产生毛刺,点焊质量也高.此外,经过分析研究,从单引线结构较细的Φ0.2mm打扁引线,在卷芯的芯轴孔中间位置插入Φ0.8mm的绝缘线,两端插入预先打有凹槽的Φ0.8mm浸锡引线作为加固引线,经热处理聚合固定.用双引线结构后,聚苯乙烯电容器低电平失效的概率由万分之五减少到四百万分之一.
细双引线加固引线结构的电容器,由于附加了较粗的Φ0.8mm外部连接加固引线,并且在插入芯子内的一端上有一个凹槽,保证了引线的稳固性,所以提高了电容器外部连接的强度,能耐振,不易折断.同时,在两根加固引线间有一段相同直径的绝缘线,这不仅可以防止两极间可能发生的偶然击穿,而且还能使电容器聚合后变形小,使芯子内介质薄膜的应力均匀,这就改善了电容量的稳定性.
长期以来,铝电解电容器的爆炸是令人生畏的,CV乘积大的电容器爆炸的可能性更大,而且破坏性也大.为了提高铝电解电容器的可靠性,提高整机的可靠性和安全性,国内已经度制了有防爆结构的铝电解电容器.当电容器内部气压加到一定程度时,防爆阀释放气体而防止爆炸.
5、工艺方面的改进
为了提高铝电解电容器的性能和寿命,就必须获得性能优良、结构致密、缺陷少和耐酸碱腐蚀的电介质氧化氯薄膜.传统的铝电解电容器赋能工艺是采用硼酸一乙二醇系统赋能液,虽然赋能后获得的氧化膜介电性能良好,但其氧化膜抗水合能力和耐酸碱腐蚀性能较差,因而铝电解电容器的性能和可靠性都差.采用已二酸形成工艺,由于已二酸在电解液中是水的表面活性物质,其羰基具有较强的电负性,极易吸附到阳极箔上,阻止阳极氧化时的晶胞生长,迫使放电离子产生新的晶核,生成致密的氧化膜.氧化膜的疵点、空洞、裂纹和缝隙都较少,无论是在常温还是在高温条件下,产品的漏电流都比较小,延长了产品的平均寿命,提高了可靠性.
为了解决云母电容器低电平失效,即解决引出线和电极接触不良问题,将原来用铜箔接触的引出线改为焊接工艺引出,能基本消除低电平不通的失效模式.电极和引线之间的焊接方法有两种:全焊接法和点焊法.全焊接法是指云母片上银电极和引出线之间,引出线和引线卡子之间全部、焊接起来.方法是把引出线铜箔改为热浸铜箔,芯组装配方法和原来一样.芯组打好卡子之后,通过施加温度和压力,一道工序把电极银层和引出线之间、引出线和引出卡子之间,全部焊接起来.
美国生产高可靠云母电容器采用点焊法.即云母片上电极和引出线连接采用点焊,点焊后用10~20倍的放大镜一片一片地对焊接质量进行检查.
改进工艺提高产品可靠性的另一个例子是独石陶瓷电容器的包封工艺.以酒精为溶剂的环氧树脂浸渍包封产品来说,由于包装的多孔性,受潮聚积水分为银离子的迁移提供了条件,造成产品短时间内大量失效.为了提高独石陶瓷电容器的防潮性能,改用先涂覆GN521硅凝胶做底漆,再包封环氧树脂的工艺.长期潮热负荷试验结果表明,这种包装工艺有很好的防潮性能,产品的可靠性有明显的提高.
6. FMEA怎么读
读音:英 [efemiːeɪ] 美 [efemiːeɪ]
中文翻译:
abbr. 失效模式分析;失效模式与影响分析;失效模式与效应分析;失效模式影响分析;失效模式和效应分析
短语:
1、structured FMEA结构FMEA
2、FMEA iterationFMEA迭代
3、Process FMEA程失效模式及后果分析 ; 过程 ; 失效模式和后果分析 ; 过程潜在失效模式及后果分析
4、FMEA ACI美国混凝土学会标准
5、FMEA OverviewFMEA概述
(6)结构失效模式的常用方法有哪些扩展阅读
近义词:
1、Failure Mode Analysis
英 [ˈfeɪljə(r) məʊd əˈnæləsɪs] 美 [ˈfeɪljər moʊd əˈnæləsɪs]
故障状态分析,故障型分析
例句:
基于失效模式分析的供电可靠性风险分析
2、failure mode and effect analysis
英 [ˈfeɪljə(r) məʊd ənd ɪˈfekt əˈnæləsɪs] 美 [ˈfeɪljər moʊd ənd ɪˈfekt əˈnæləsɪs]
故障模式与影响分析;失效模式及其影响分析;失效模式与后果分析;
例句:
'sLoaderSystem
火炮供输弹系统故障模式和影响分析研究
7. FMEA是什么意思
FMEA是失效模式与影响分析即“潜在失效模式及后果分析”的简称。由于产品故障可能与设计、制造过程、使用、承包商/供应商以及服务有关,因此FMEA又细分为:
1.DFMEA:设计FMEA
2.PFMEA:过程FMEA
3.EFMEA:设备FMEA
4.SFMEA:体系FMEA
其中设计FMEA和过程FMEA最为常用。
FMEA是在产品设计阶段和过程设计阶段,对构成产品的子系统、零件,对构成过程的各个工序逐一进行分析,找出所有潜在的失效模式,并分析其可能的后果,从而预先采取必要的措施,以提高产品的质量和可靠性的一种系统化的活动。
(7)结构失效模式的常用方法有哪些扩展阅读:
FMEA开始于产品设计和制造过程开发活动之前,并指导贯穿实施于整个产品周期。进行分析系统中每一产品所有可能产生的故障模式及其对系统造成的所有可能影响,并按每一个故障模式的严重程度,检测难易程度以及发生频度予以分类的一种归纳分析方法。
FMEA指出设计上可靠性的弱点,提出对策。针对要求规格、环境条件等,利用实验设计或模拟分析,对不适当的设计,实时加以改善,节省无谓的损失。有效的实施FMEA,可缩短开发时间及开发费用。FMEA发展之初期,以设计技术为考虑,但后来的发展,除设计时间使用外,制造工程及检查工程亦可适用。改进产品的质量、可靠性与安全性。
参考资料:FMEA-网络
8. 试述基于结构失效模式控制的结构设计方法的基本思路
首先就是要分析失效模式的可能类型,比如说是变形导致的模式或者是失稳导致的模式等等。再根据有关力学的知识进行相应的计算和大量的科研实验验证。最后设计出具有一定创新的结构
9. 失效模式分析是怎么进行的
失效模式分析(Failure Modes Analysis,FMA)
用来分析当前和以往过程的失效模式数据,以防止这些失效模式将来再发生的正式的结构化的程序.
失效一词乃指出物品的功能失去原先设定的运用效果,所以失效的原因可能来自:
* 错误
* 遗漏
* 没有或仅部分动作
* 产生危险
* 有障碍
等与原先产品设定机能的目标不符的情形。这些状况的产生会造成顾客对制造者与销售者的不满,可能产生的情形有大有小、也因使用时间有长有短而发生,对于设计、生产乃至检验者而言,都需要对自己负责的部分将隐藏的失效因素排除。
所以失效是客户抱怨的主要来源,必须依照一定的步骤予以分析解构,将这样具模组化的作业方式整合成一种模式,称之为失效模式分析(FMEA)。
10. fmea分析五步法
FMEA五步法:
1、建立结构,相比于抽象的功能、失效,一个产品的结构是比较实在的。不遗漏、不重复地列出结构是比较容易的。
2、从结构导出功能。结构中的每一个元素都有功能,比如笔帽就算一个结构元素。没有功能的元素,用户不期望有,而且会增加笔的成本,降低笔的利润,没有人愿意在产品里面留一个无用的结构元素。
功能肯定是依赖结构实现的,没有凭空产生的功能,比如产生墨迹这个功能是由笔芯实现的。
3、从功能导出失效。失效可以很容易地用功能来定义。失效指功能部分失效,功能全部失效,产生了不期望的功能。
4、风险分析。
为了找到高风险项目,首先我们需要给每个潜在失效的风险打分。FMEA用严重度(Severity)、发生度(Occurrence)和探测度(Detection)三个指标来评估风险。这三个指标的分值都是1分到10分,分值越大,风险越高。在评估风险时,我们需要给每个失效模式确定严重度、发生度和探测度的分值。
失效模式的严重度表示失效模式导致的后果有多么严重。分值越大,后果越严重。失效模式的严重度是从其后果继承来的。
失效模式的发生度表示失效模式发生的概率。分值越大,发生概率越大。预防措施是降低失效模式发生概率的措施。
失效模式的探测度表示失效模式发生后可以被探测到的概率。分值越大,失效不被探测到的概率越大。检测措施是检测到失效发生的措施,提高失效模式被检测到的概率。
5、优化。找到高风险、需要重点关注的潜在失效,步骤就是想办法降低风险。一般失效的严重度是由上层失效模式继承得到,不能被降低,能够被降低的是发生度和检测度。