㈠ 所有简便计算的公式和方法
1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
㈡ 简便运算的规律和方法
一、什么是简便运算
“简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。
二、简便运算大全
(一)、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
说明:适用于加法交换律和乘法交换律。
(二)、结合律
(1)加括号法
①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括号法
①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
①分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
③注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8 ×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
综上所述,在四则混合运算中,简便运算试题的类型不外乎这几种形式,只要掌握四则混合运算顺序,同时掌握好上述简便算法,就可以保证计算的时效。
㈢ 两位数加两位数的简便算法
两位数加两位数简便计算例子83+48
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
83+48
=80+40+(3+8)
=120+11
=131
(3)怎样算二式相加简便方法扩展阅读-竖式计算:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:3+8=1 向高位进1
步骤二:8+4+1=3 向高位进1
根据以上计算步骤组合计算结果为131
存疑请追问,满意请采纳
㈣ 数学简便计算,有哪几种方法
简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。
它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。
就像68+77=?
大多数人不一定立刻能算出结果,
如果换成70+75=?
相信每一个人都可以一口算出和是145。
这里其实就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇见复杂的计算式时,
先观察有没有可能凑整,
凑成整十整百之后再进行计算,
不仅简便,而且避免计算出错。
①加减凑整
【例题1】999+99+29+9+4=?
题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例题2】5999+499+299+19=?
看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。
没有枪没有炮,自己去创造!
先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分组凑整
在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。
【例题3】100-95+92-89+86-83+80-77=?
题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。
根据加法减法运算性质,我们给相邻的项加上括号。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。
③提取公因数法
这就需要用到乘法分配律提取公因数,
又称为提取公因数法。
如果没有公因数,我们可以采取乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例题4】47.9x6.6+529x0.34=?
很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。
㈤ 加减法的简便运算怎么做
加法运算分为:加法交换律和加法结合律
加法交换律
两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a
题例(简算过程):6+18
= 18+6
= 24
加法结合律
先把前两个数相加,或先把后两个数相加,和不变叫做加法结合律。
字母公式:a+b+c=a+(b+c)
题例(简算过程):6+18+2
= 6+(18+2)
= 6+20
= 26
减法性质
编辑
一个数连续减去两个数,等于这个数减去两个数的和。
字母公式:a-b-c=a-(b+c)
例题:12-6-4
=12-(6+4)
=12-10
=2
㈥ 简便运算的技巧
简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。
主要用三种方法:加减凑整、分组凑整、提公因数法。
他们使用的都是数学计算中的拆分凑整思想。
主要步骤:
①遇见复杂的计算式时,先观察有没有可能凑整;
②运用四则运算凑成整十整百之后再进行简便计算。
2/4
加减凑整法
1、将计算式中的某一个数拆分,使其能与其他的数凑成整十,整百【例1】;
2、补上一个数,能够与其他数凑整,最后再减去这个数
分组凑整法
在只有加减法的计算题中,将算式中的各项重新分下组凑整,主要采用两个公式:G老师讲奥数(微)。【例3】
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
减法的性质:a-b-c=a-(b+c)。
提公因数法
使用乘法分配律提取公因数,a x (b±c)=a x b±a x c;
如果没有公因数,可以根据乘法结合律变化出公因数,详见【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做简算,是享受。细观察,找特点。
连续加,结对子。连续乘,找朋友。
连续减,减去和。连续除,除以积。
减去和,可连减。除以积,可连除。
乘和差,分别乘。积加减,莫慌张,
同因数,提出来,异因数,括号放。
同级算,可交换。特殊数,巧拆分。
合理算,我能行。
1方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
3方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
7方法六:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,需注意:
1.连续性
2.等差性
计算方法:头减尾,除公差。
8方法六:找朋友法
例题:
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。“带符号搬家”)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(去括号时,括号前面是减号,括号里面的运算符号要变成逆运算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(运用除法性质)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(运用除法性质)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
㈦ 所有简便计算的公式和方法
1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
㈧ 简便运算的方法有哪些
简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×56、
除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
㈨ 两个数相加的简便脱式计算怎么做
1、加法交换律。交换加数的位置,和不变。
2、加法结合律。三个数相加,先用前两个数相加,在和第三个数相加,或者先将后两个数相加,再与第一个数相加,和不变。以上就是两个数相加的简便脱式计算的方法。
㈩ 一到二十相加用简便方法怎么算
原式
=1+2+3+……+18+19+20
=(1+19)+(2+18)+……(9+11)+(10+20)
=20+20+……+20+30
=20x9+30
=180+30
=210
或者
=(1+20)x20÷2
=21x20÷2
=21x10
=210
供参考。