1. 质粒dna提取实验中的实验方法有哪些
质粒小,复性容易, 而染色体DNA大 ,不易复性;这导致两种DNA提取采用完全不同的策略。质粒dna提取,为了区分于DNA,都采用首先从混合物中分离出来,然后逐步纯化;而染色体DNA提取的策略则为逐步去除其他杂质,最后剩下的就是DNA了。质粒DNA提取方法有几种,最常见的碱裂解法利用碱变形(加溶液II)后用醋酸溶液快速复性(溶液III),这样使得质粒DNA可以复性而溶解,而GenomeDNA不能复性而沉淀,从而将他们分开。而后面的纯化如除蛋白(酚 、氯仿),除盐(75%酒精),沉淀(酒精、异丙醇等)两者类似。当然两者都有很粗略的简易提法,那就完全大相径庭啦。
2. 质粒的提取
本文主要以OMEGA试剂盒(产品编号#D6950)为例,讲述下提质粒(去内毒素)的注意事项。
DNA在化学性质上是懒惰的,但是在物理结构上是易碎的。因为在化学上其潜在的反应基团隐藏在中央螺旋部位,并经氢键紧密连接,同时碱基外侧受磷酸键和戊糖形成的强大环层的保护,这种保护因内在的碱基堆积力而进一步加强;在物理上,其长而弯曲,侧面不稳定,更容易受到柔和剪切力的破坏。双链DNA在溶液中随机卷曲,并由于碱基之间的堆积作用和DNA骨架上磷酸基团之间的静电排斥力而变得粘稠,所以在移液、震荡或搅拌引起的液流中,在粘滞的盘绕物上产生的拖拉力,很容易切断双链DNA。DNA越长,破坏其所需的力越小,大于150kb的DNA分子在常规分离基因组DNA过程中易于断裂。
一般DNA分离提纯可以简单分为三步:
裂解宿主细胞。如,
离子去污剂,如SDS
从细胞中释放DNA,去除与DNA结合的蛋白质并快速使胞内核酸酶失活。如,
酶水解蛋白和RNA
层析液中吸收、释放DNA
利用乙醇或者异丙醇沉淀DNA去除盐离子。
菌液在高PH条件下,加入强离子去污剂(如,SDS)能够破坏细胞壁,是蛋白质与染色体DNA变形,并将质粒DNA释放到上清液中。但是在实验中关键是动作要快,因为长时间暴露在变形条件下会对闭环DNA造成不可逆性。这种变性的折叠卷曲DNA不容易被限制性内切酶切割,它的琼脂糖电泳速率是线形、超螺旋和环状等天然结构DNA电泳速率的2倍,并且不容易被嵌入染料染色。碱裂法在制备治理过程中常会产生不同数量折叠形式的DNA。上述这种方法适用于15kby以下的质粒,大于15kb的质粒在提取过程中很容易断裂,可用等渗蔗糖溶液裂解细菌,并用溶菌酶和EDTA(乙二胺四乙酸)去除细胞壁,可解决受损。产生的原生质球可通过加入去污剂(如SDS)被裂解。
试剂盒一般采用DNA选择性吸附稳定固相(通常是二氧化硅或者硅酸盐)的特性进行DNA纯化。在高PH、高盐缓冲液中,DNA会吸附到二氧化硅介质上面,在低盐浓度下可被洗脱下来。玻璃表面的阳性粒子随后可以在DNA骨架中磷酸负电基团和硅醇负电基团(Si-OH)之间形成盐桥,结合强度与成桥离子类型有关。一旦DNA与介质结合,他就会与其他的生物多聚物(如RNA和糖)分开。得率由DNA大小决定,片段越小,与二氧化硅结合越紧密,得率越低。
实验开始前,最主要的是细菌培养。试剂说明书建议使用DH5α,DH1,C600,都可以,XL1-Blue虽然长
的很慢但是也可以使用。其次培养基的使用建议采用LB培养基,其他的均不建议。
开始细菌培养前,最好涂板调菌培养,这样可以保持菌的活性,甘油保存的菌可能会产量低或者质粒丢失。
当挑取单菌落后放入37℃,300rpm,培养12~16h。
为了获得最佳质粒产率,起始培养体积应基于培养细菌密度。 建议使用OD600的2.0和3.0之间的细菌提取质粒。 使用富含营养素的介质时,应注意确保细菌密度不超过3.0的OD600,最后菌液OD600为0.4。 在推荐的OD范围之外使用高密度培养可能会超过纯化体系。
注意:
曝气是很重要的,LB培养基的体积应该是容器的1/4
随着培养时间的加长,由于细菌的死亡和裂解,DNA的产量开始下降。
3. 质粒的分离操作
从细菌中分离质粒 DNA 的具体操作 一、材料
含PBS的E.coliDH5α或JM系列菌株,1.5ml塑料离心管(又称eppendorf管),离心管架。
二、设备
微量取液器(20μl,200μl,1000μl),台式高速离心机,恒温振荡摇床,高压蒸汽消毒器(灭菌锅),涡旋振荡器,电泳仪,琼脂糖平板电泳装置和恒温水浴锅等。
三、试剂
1、LB液体培养基(Luria-Bertani):称取蛋白胨(Tryptone)10g,酵母提取物(Yeastextract)5g,NaCl10g,溶于800ml去离子水中,用NaOH调pH至7.5,加去离子水至总体积1升,高压下蒸气灭菌20分钟。
2、LB固体培养基:液体培养基中每升加12g琼脂粉,高压灭菌。
3、氨苄青霉素(Ampicillin,Amp)母液:配成50mg/ml水溶液,-20℃保存备用。
4、溶菌酶溶液:用10mmol/LTris·Cl(pH8.0)溶液配制成10mg/ml,并分装成小份(如1.5ml)保存于-20℃,每一小份一经使用后便予丢弃。
5、3mol/lNaAc(pH5.2):50ml水中溶解40.81gNaAc·3H2O,用冰醋酸调pH至5.2,加水定容至100ml,分装后高压灭菌,储存于4℃冰箱。
6、溶液1:50mmol/L葡萄糖,25mmol/ L T r i s. Cl(pH8.0),10mmol/LEDTA(pH8.0)。溶液Ⅰ可成批配制,每瓶100ml,高压灭菌15分钟,储存于4℃冰箱。
7、溶液Ⅱ:0.2mol/LNaOH(临用前用10mol/LNaOH母液稀释),1%SDS。
8、溶液Ⅲ:5mol/LKAc60ml,冰醋酸11.5ml,H2O28.5ml,定容至100ml,并高压灭菌。溶液终浓度为:K+3mol/L,Acˉ5mol/L。
9、RNA酶A母液:将RNA酶A溶于10mmol/LTris·Cl(pH7.5),15mmol/LNaCl中,配成10mg/ml
的溶液,于100℃加热15分钟,使混有的DNA酶失活。冷却后用1.5mleppendorf管分装成小份保存于-20℃。
10、饱和酚:市售酚中含有醌等氧化物,这些产物可引起磷酸二酯键的断裂及导致RNA和DNA的交联,应在160℃用冷凝管进行重蒸。重蒸酚加入0.1%的8-羟基喹啉(作为抗氧化剂),并用等体积的0.5mol/LTris·Cl(pH8.0)和0.1mol/LTris·Cl(pH8.0)缓冲液反复抽提使之饱和并使其pH值达到7.6以上,因为酸性条件下DNA会分配于有机相。
11、氯仿:按氯仿:异戊醇=24:1体积比加入异戊醇。氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。按体积/体积=1:1混合上述饱和酚与氯仿即
得酚/氯仿(1:1)。酚和氯仿均有很强的腐蚀性,操作时应戴手套。
12、TE缓冲液:10mmo/LTris·Cl(pH8.0),1mmol/LEDTA(pH8.0)。高压灭菌后储存于4℃冰箱中。
13、STET:0.1mol/LNaCl,10mmol/LTris·Cl(pH8.0),10mmol/LEDTA(pH8.0),5%TritonX-100。
14、STE:0.1mol/LNaCl,10mmol/LTris·Cl(pH8.0),1mmol/LEDTA(pH8.0)。
15、电泳所用试剂:⑴TBE缓冲液(5×):称取Tris54g,硼酸27.5g,并加入0.5MEDTA(pH8.0)20ml,定溶至1000ml。⑵上样缓冲液(6×):0.25%溴酚蓝,40%(w/v)蔗糖水溶液。 一、细菌的培养和收集
将含有质粒pBS的DH5α菌种接种在LB固体培养基(含50μg/mlAmp)中,37℃培养12-24小时。用无菌牙签挑取单菌落接种到5mlLB液体培养基(含50μg/mlAmp)中,37℃振荡培养约12小时至对数生长后期。
二、质粒DNA少量快速提取
质粒DNA小量提取法对于从大量转化子中制备少量部分纯化的质粒DNA十分有用。这些方法共同特点是简便、快速,能同时处理大量试样,所得DNA有一定纯度,可满足限制酶切割、电泳分析的需要。
(一)、煮沸法
1、将1.5ml培养液倒入eppendorf管中,4℃下12000转离心30秒。
2、弃上清,将管倒置于卫生纸上几分钟,使液体流尽。
3、将菌体沉淀悬浮于120mlSTET溶液中,涡旋混匀。
4、加入10ml新配制的溶菌酶溶液(10mg/ml),涡旋振荡3秒钟。
5、将eppendorf管放入沸水浴中,50秒后立即取出。
6、用微量离心机4℃下12000g离心10分钟。
7、用无菌牙签从eppendorf管中去除细菌碎片。
8、取20ml进行电泳检查。
[注意]1.对大肠杆菌可从固体培养基上挑取单个菌落直接进行煮沸法提取质粒DNA。2.煮沸法中添加溶菌酶有一定限度,浓度高时,细菌裂解效果反而不好。有时不同溶菌酶也能溶菌。3.提取的质粒DNA中会含有RNA,但RNA并不干扰进一步实验,如限制性内切酶消化,亚克隆及连接反应等。
(二)、碱法
1、取1.5ml培养液倒入1.5mleppendorf管中,4℃下12000g离心30秒。
2、弃上清,将管倒置于卫生纸上数分钟,使液体流尽。
3、菌体沉淀重悬浮于100μl溶液Ⅰ中(需剧烈振荡),室温下放置5-10分钟。
4、加入新配制的溶液Ⅱ200μl,盖紧管口,快速温和颠倒eppendorf管数次,以混匀内容物(千万不要振荡),冰浴5分钟。
5、加入150μl预冷的溶液Ⅲ,盖紧管口,并倒置离心管,温和振荡10秒,使沉淀混匀,冰浴中5-10分钟,4℃下12000g离心5-10分钟。
6、上清液移入干净eppendorf管中,加入等体积的酚/氯仿(1:1),振荡混匀,4℃下12000g离心5分钟。
7、将水相移入干净eppendorf管中,加入2倍体积的无水乙醇,振荡混匀后置于-20℃冰箱中20分钟,然后4℃下12000g离心10分钟。
8、弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入1ml70%乙醇洗沉淀一次,4℃下12000g离心5-10分钟。
9、吸除上清液,将管倒置于卫生纸上使液体流尽,真空干燥10分钟或室温干燥。
10、将沉淀溶于20μlTE缓冲液(pH8.0,含20μg/mlRNaseA)中,储于-20℃冰箱中。
[注意]1.提取过程应尽量保持低温。2.提取质粒DNA过程中除去蛋白很重要,采用酚/氯仿去除蛋白效果较单独用酚或氯仿好,要将蛋白尽量除干净需多次抽提。3.沉淀DNA通常使用冰乙醇,在低温条件下放置时间稍长可使DNA沉淀完全。沉淀DNA也可用异丙醇(一般使用等体积),且沉淀完全,速度快,但常把盐沉淀下来,所以多数还是用乙醇。
(三)、Wizard少量DNA纯化系统
Promega公司的Wizard少量DNA纯化系统可快速有效的抽提质粒DNA,整个过程只需15分钟。提取的质粒可直接用于DNA测序、酶切分析和体外转录等。该系统中所含试剂和柱子可以用于50次1-3ml质粒培养液的分离和纯化,试剂包括10ml细胞悬浮液,10ml细胞裂解液;10ml中和液,50mlWizard少量DNA纯化树脂,50ml柱洗液(使用前加95%乙醇至120ml)和50支Wizard微型柱。
1、1-3ml过夜培养细胞液4℃下12000g离心1-2分钟。
2、去除上清液,菌体细胞悬浮于200μl细胞悬浮液中,充分混合,并移入eppendorf管中。
3、加200μl细胞裂解液,颠倒离心管数次,直到溶液变清亮。
4、加200μl中和液,颠倒离心管数次。
5、4℃下12000g离心5分钟,取上清液于新的eppendorf管中。
6、加1mlWizard少量DNA纯化树脂,颠倒离心管数次以充分混匀。
7、取一次性注射器,取出注塞,并使注射筒与Wizard微型柱连接,用移液枪将上述混合液加入注射筒中,并用注塞轻推,使混合物进入微型柱。
8、将注射器与微型柱分开,取出注塞,再将注射筒与微型柱相连,加入2ml柱洗液,并用注塞轻推,使柱洗液进入微型柱。
9、取出微型柱置于eppendorf管中,离心2分钟以除去微型柱中的柱洗液。
10、将微型柱放在一个新eppendorf管中,加50μlTE(或水)于微型柱中,静止1分钟后,4℃下12000g离心20秒。
11、丢弃微型柱,将eppendorf管中的质粒DNA贮于4℃或-20℃冰箱。
[注意]树脂使用前应充分混匀,如有结晶,可将树脂用25-37℃水浴处理10分钟。
三、质粒DNA的大量提取和纯化
在制作酶谱、测定序列、制备探针等实验中需要高纯度、高浓度的质粒DNA,为此需要大量提取质粒DNA。大量提取的质粒DNA一般需进一步纯化,常用柱层析法和氯化绝梯度离心法。
(一)、碱法
1、取培养至对数生长后期的含pBS质粒的细菌培养液250ml,4℃下5000g离心15分钟,弃上清,将离心管倒置使上清液全部流尽。
2、将细菌沉淀重新悬浮于50ml用冰预冷的STE中(此步可省略)。
3、同步骤1方法离心以收集细菌细胞。
4、将细菌沉淀物重新悬浮于5ml溶液I中,充分悬浮菌体细胞。
5、加入12ml新配制的溶液Ⅱ,盖紧瓶盖,缓缓地颠倒离心管数次,以充分混匀内容物,冰浴10分钟。6、加9ml用冰预冷的溶液Ⅲ,摇动离心管数次以混匀内容物,冰上放置15分钟,此时应形成白色絮状沉淀。
7、4℃下5000g离心15分钟。
8、取上清液,加入50mlRNA酶A(10mg/ml),37℃水浴20分钟。
9、加入等体积的饱和酚/氯仿,振荡混匀,4℃下12000g离心10分钟。
10、取上层水相,加入等体积氯仿,振荡混匀,4℃下12000g离心10分钟。
11、取上层水相,加入1/5体积的4mol/LNaCl和10%PEG(分子量6000),冰上放置60分钟。
12、4℃下12000g离心15分钟,沉淀用数ml70%冰冷乙醇洗涤,4℃下12000g离心5分钟。
13、真空抽干沉淀,溶于500mlTE或水中。
[注意]1.提取过程中应尽量保持低温。2.加入溶液Ⅱ和溶液Ⅲ后操作应混和,切忌剧烈振荡。3.由于RNA酶A中常存在有DNA酶,利用RNA酶耐热的特性,使用时应先对该酶液进行热处理(80℃1小时),使DNA酶失活。
(二)、Wazard大量DNA纯化系统
碱法大量提取DNA往往需要很长的时间.Promega公司的Wiazrd大量DNA纯化系统既简单又快速,只需要离心和真空抽干,这个系统可以从500ml培养液中在3小时以内获得1mg以上的高质量的质粒DNA(200-20000bp)。该系统不需要酚和氯仿抽提,纯化后的DNA溶于水或TE缓冲液中,不含任何盐份,可以直接用于DNA序列分析和酶切反应,也可以用于在核酸酶抑制剂(如RNasin)存在的条件下进行体外转录反应等。该系统中含有的试剂和柱子可以用于10次100-500ml质粒培养液的分离和纯化,试剂包括:150ml细胞悬浮液,150ml细胞裂解液,150ml中和液,100mlWizard大量DNA纯化树脂,125mlWizard柱子洗脱溶液和10支Wizard带有存储离心管的柱子。
1、100-500ml细胞培养液置离心管中,22-25℃下5000g离心10分钟,所得细胞沉淀充分悬浮于细胞悬浮液中。
2、加15ml细胞裂解溶液并轻轻混合,可以反复倒置混合,但不能用涡旋振荡,细胞裂解完全时,溶液会变清,这一步需要20分钟。
3、加15ml中和溶液,立即反复倒置离心管数次,并使之混匀。
4、14000g,22-25℃离心15分钟。
5、小心地将上清液吸出并移至一个新离心管中。
6、加0.5倍体积的异丙醇,混合均匀,14000g22-25℃下离心15分钟。
7、弃上清,悬浮DNA沉淀于2mlTE缓冲液中。这一步中也许有的沉淀不能溶解。
8、加10mlWizard大量DNA纯化树脂溶液,并涡旋混合。
9、每一个样品,使用一支Wizard大量柱子,柱子的头插在真空器上(Promega产品,与此配套)。
10、将树脂/DNA混合液转入柱子中,真空抽取树脂/DNA混合液。
11、将树脂/DNA混合液抽干后,加13ml柱子洗脱溶液至离心管中,对管底部的树脂/DNA进行洗脱(柱子一边旋转一边加入洗脱液),并加入柱子中。
12、真空抽干所加入的洗脱。
13、再加12ml柱子洗脱液进柱子并抽干。
14、加入5ml80%乙醇漂洗柱中的树脂,柱子真空抽干后将柱子放入用户提供的离心管
中,2500rpm(1300g)离心5分钟。
15、取出柱子,真空抽干5分钟,再将柱子放入系统中所提供的离心管中,2500rpm(1300g)离心5分钟。
16、在柱子中加入1.5ml65-70℃预热过的灭菌重蒸水或TE,1分钟后2500rpm(1300g)离心柱子/离心管5分钟。
17、取出柱子,离心管中溶液即为提取的质粒DNA,可以直接放在离心管中,盖上盖子,储存在4℃或-20℃备用。
[注意]1.在使用之前,系统所提供的柱子洗脱液按1:1加入125ml95%乙醇。2.纯化树脂必须混匀后再用.
(三)、Sephrose2B柱纯化质粒DNA
碱法提取的质粒DNA即使用RNA酶处理,仍会含有少量RNA。当有些试验需无RNA污染的DNA制品时,则需进行进一步纯化。一般常用Sepharose2B或Sepharose4B进行纯化,该方法具有快速,条件温和,重复性好,载体物质可以再利用等优点,因而已广泛用于质粒DNA纯化。
1、将Sepharose2B经含0.1%SDS的TE(pH8.0)平衡后上柱。
2、将至多1ml的DNA溶液铺在Sepharase2B柱上。
3、待DNA溶液完全进入柱内后立即在柱的上部连接含有0.1%SDS的TE(pH8.0)贮液瓶。
4、以1ml流出液为1份进行收集。
5、对每一管测定其OD260值,以确定哪些管中含有质粒DNA。通常质粒DNA在柱上流出的第一个峰中。
6、合并所有含质粒的洗脱液,用等体积的酚/氯仿(1:1)抽提,4℃下12000g离心2分钟,将上层水相转入新管。
7、加入2倍体积的冰冷无水乙醇,-20℃下沉淀10分钟,然后4℃下12000g离心10分钟,弃去上清液。
8、沉淀加70%乙醇洗涤,4℃下12000g离心10分钟,弃去上清液。
9、沉淀真空抽干,重新溶于TE或无菌水中。
[注意]在装柱过程中,要防止柱床中出现断裂或气泡现象,要使界面保持平整。对新装成的柱,应用含0.1%SDS的TE平衡,以使柱内的凝胶均匀。
4. 质粒的提取原理
质粒提取是指去除 RNA,将质粒与细菌基因组 DNA分开,去除蛋白质及其它杂质,以得到相对纯净的质粒。
目录
一、质粒提取原理
质粒是细胞内的一种环状的小分子DNA,是进行DNA重组的常用载体。作为一个具有自身复制起点的复制单位独立于细胞的主染色体之外,质粒DNA上携带了部分的基因信息,经过基因表达后使其宿主细胞表现相应的性状。在DNA重组中,质粒或经过改造后的质粒载体可通过连接外源基因构成重组体。
从宿主细胞中提取质粒DNA,是DNA重组技术中最基础的实验技能。分离质粒DNA有三个步骤:培养细菌使质粒扩增,收集和裂解细菌,分离和纯化质粒DNA。
在质粒提取过程中,由于机械力、酸碱度、试剂等的原因,可能使质粒DNA链发生断裂。所以,多数质粒粗提取物中含有三种构型的质粒:共价闭合环状DNA(cccDNA): 质粒的两条链没有断裂;超螺旋开环DNA(ocDNA): 质粒的一条链断裂;松弛的环状分子线形DNA(lDNA): 质粒的两条链均断裂;线性分子质粒DNA的分子构型 。
质粒DNA琼脂塘凝胶电泳模式图可分为:松弛线性的DNA; 松弛开环的OC构型; 超螺旋的SC构型。由于琼脂糖中加有嵌入型染料溴化乙锭,因此,在紫外线照射下DNA电泳带成橘黄色。 道中的SC DNA走在最前沿,OC DNA则位于凝胶的最后边;道中的L DNA 是经核酸内切限制酶切割质粒之后产生的,它在凝胶中的位置介于OC DNA 和 SC DNA 之间。
二、质粒提取方法
质粒DNA的提取方法主要有碱裂解法、煮沸法、酚氯仿裂解法。跟据不同的实验目的和仪器设备择取不同的实验方案。
(一) 碱裂解法:
此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。方法如下:
1. 接1%含质粒的大肠杆菌细胞于2ml LB培养基。
2. 37℃振荡培养过夜。
3. 取1.5ml菌体于Ep管,以4000rpm离心3min,弃上清液。
4. 加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-HCl pH8.0)充分混合。
5. 加入0.2ml溶液 II(0.2 mM/L NaOH,1% SDS),轻轻翻转混匀,置于冰浴5 min 。
6. 加入0.15m1预冷溶液III(5 mol/L KAc,pH4.8),轻轻翻转混匀,置于冰浴5 min 。
7. 以10,000rpm离心20min,取上清液于另一新Ep管
8. 加入等体积的异戊醇,混匀后于0℃静置10min。
9. 再以10,000rpm离心20min,弃上清。
10. 用70%乙醇0.5ml洗涤一次,抽干所有液体。
11. 待沉淀干燥后,溶于0.05mlTE缓冲液中
(二) 煮沸法:
1. 将1.5ml培养液倒入eppendorf管中,4℃下12000g离心30秒。
2. 弃上清,将管倒置于卫生纸上几分钟,使液体流尽。
3. 将菌体沉淀悬浮于120ml STET溶液中,涡旋混匀。
4. 加入10ml新配制的溶菌酶溶液(10mg/ml), 涡旋振荡3秒钟。
5. 将eppendorf管放入沸水浴中,50秒后立即取出。
6. 用微量离心机4℃下12000g离心10分钟。
7. 用无菌牙签从eppendorf管中去除细菌碎片。
8. 取20ml进行电泳检查。
(三) 酚氯仿裂解法:
1. 从琼脂平板上挑取转化菌阳性克隆,接种到标准LB培养液中(含有卡那霉素30 μg/mL)摇菌12 h;收集1.5 mL菌液,8000 g/min离心3 min,弃上清,沉淀加入200 μL TE,充分混匀;加入400 μL酚氯仿(1∶1体积)混合液,剧烈振动10 s,混匀;12 000 g/min离心5 min,1 mL胰岛素注射针收集上清,尽量避免吸入蛋白沉淀层;上清经国产0。22 μm针式滤器过滤1次;向过滤上清液内加入2倍体积无水乙醇,振荡10 s,12 000 g/min离心5 min;沉淀溶于20 μL的RTE溶液中,37℃水浴。
2. 按PstI内切酶说明书进行酶切反应(37℃,1 h)。 酶切产物10 μL,10 g/L琼脂糖凝胶电泳。
3. PCR引物根据参考文献〔1〕设计,预计扩增产物片断大小为714 bp。
4. 常规制备感受态菌E。coli DH5a,提取质粒DNA常规转化感受态,涂于含有卡那霉素(30 μ/mL)LB培养平板中,37℃培养,15 h后观察筛选克隆情况。
三、质粒提取常见问题
(一) 溶液I—溶菌液:
溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌的作用。当溶液中pH小于8时,溶菌酶作用受到抑制。
葡萄糖:增加溶液的粘度,维持渗透压,防止DNA受机械剪切力作用而降解。
EDTA:1. 螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNase作用时需要一定的金属离子作辅基);2. EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。
(二) 溶液II-NaOH-SDS液:
NaOH:核酸在pH大于5,小于9的溶液中,是稳定的。但当pH>12或pH<3时,就会引起双链之间氢键的解离而变性。在溶液II中的NaOH浓度为0.2mo1/L,加抽提液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒DNA的变性。
SDS:SDS是离子型表面活性剂。它主要功能有:1. 溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。2. 解聚细胞中的核蛋白。3. SDS能与蛋白质结合成为R-O-SO3-…R+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。
(三) 溶液III--3mol/L NaAc(pH4.8)溶液:
NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是NaAc-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白复合物作用后,能形成较小的钠盐形式复合物,使沉淀更完全。
(四) 为什么用无水乙醇沉淀DNA?
用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。
DNA溶液是DNA以水合状态稳定存在,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。也可以用0.6倍体积的异丙醇选择性沉淀DNA。一般在室温下放置15-30分钟即可。
(五) 在用乙醇沉淀DNA时,为什么一定要加NaAc或NaCl至最终浓度达0.1~0.25mol/L?
在pH为8左右的溶液中,DNA分子是带负电荷的,加一定浓度的NaAc或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,这样就造成DNA沉淀不完全,当加入的盐溶液浓度太高时,其效果也不好。在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。
(六) 加核糖核酸酶降解核糖核酸后,为什么再要用SDS与KAc来处理?
加进去的RNase本身是一种蛋白质,为了纯化DNA,又必须去除之,加SDS可使它们成为SDS-蛋白复合物沉淀,再加KAc使这些复合物转变为溶解度更小的钾盐形式的SDS-蛋白质复合物,使沉淀更加完全。也可用饱和酚、氯仿抽提再沉淀,去除RNase。在溶液中,有人以KAc代替NaAc,也可以收到较好效果。
(七) 为什么在保存或抽提DNA过程中,一般采用TE缓冲液?
在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分不产生干扰作用。磷酸盐缓冲系统(pKa=7.2)和硼酸系统(pKa=9.24)等虽然也都符合细胞内环境的生理范围(pH),可作DNA的保存液,但在转化实验时,磷酸根离子的种类及数量将与Ca2+产生Ca3(PO4)2沉淀;在DNA反应时,不同的酶对辅助因子的种类及数量要求不同,有的要求高离子浓度,有的则要求低盐浓度,采用Tris-HCl(pKa=8.0)的缓冲系统,由于缓冲液是TrisH+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCl系统,而TE缓冲液中的EDTA更能稳定DNA的活性。
(八) 如何选择聚乙二醇(6000)的浓度来沉淀DNA?
采用PEG(6000)沉淀DNA,大小不同的DNA分子所用的PEG的浓度也不同,PEG的浓度低,选择性沉淀DNA分子量大,大分子所需PEG的浓度只需1%左右,小分子所需PEG浓度高达20%。本实验选择性沉淀4.3kb的pBR322质粒DNA,每毫升加入0.4毫升的30% PEG,其最终PEG浓度为12%。PEG选择性沉淀DNA的分辨率大约100bp。
(九) 抽提DNA去除蛋白质时,怎样使用酚与氯仿较好?
酞与氯仿是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水的密度为大,因而与水相分离,沉淀在水相下面,从而与溶解在水相中的DNA分开。而酚与氯仿有机溶剂比重更大,保留在最下层。
作为表面变性的酚与氯仿,在去除蛋白质的作用中,各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约10%~15%的水溶解在酚相中,因而损失了这部分水相中的DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走DNA。所以在抽提过程中,混合使用酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。也可以在第二次抽提时,将酚与氯仿混合(1:1)使用。
(十) 为什么用酚与氯仿抽提DNA时,还要加少量的异戊酵?
在抽提DNA时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液内易产生气泡,气泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张力,所以能减少抽提过程中的泡沫产生。一般采用氯仿与异戊酵为24:1之比。也可采用酚、氯仿与异戊醇之比为25:24:1(不必先配制,可在临用前把一份酚加一份24:1的氯仿与异戊醇即成),同时异戊醇有助于分相,使离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。
(十一) 为什么要用pH8的Tris水溶液饱和酚?呈粉红色的酚可否使用?如何保存酚不被空气氧化?
因为酚与水有一定的互溶,苯酚用水饱和的目的是使其抽提DNA过程中,不致吸收样品中含有DNA的水分,减少DNA的损失。用Tris调节至pH为8是因为DNA在此条件下比较稳定。在中性或碱性条件下(pH5~7),RNA比DNA更容易游离到水相,所以可获得RNA含量较少的DNA样品。
保存在冰箱中的酚,容易被空气氧化而变成粉红色的,这样的酚容易降解DNA,一般不可以便用。为了防止酚的氧化,可加入疏基乙醇和8-羟基喹琳至终浓度为0.1%。8-羟基喹琳是带有淡黄色的固体粉末,不仅能抗氧化,并在一定程度上能抑制DNase的活性,它是金属离子的弱螯合剂。用Tris pH8.0水溶液饱和后的酚,最好分装在棕色小试剂瓶里,上面盖一层Tris水溶液或TE缓冲液,隔绝空气,以装满盖紧盖子为宜,如有可能,可充氮气,防止与空气接触而被氧化。平时保存在4℃或-20℃冰箱中,使用时,打开盖子吸取后迅速加盖,这样可使酚不变质,可用数月。
(十二) 未提出质粒或质粒得率较低?
1. 大肠杆菌老化
请涂布平板培养后,重新挑选新菌落进行液体培养。
2. 质粒拷贝数低
由于低使用低拷贝数载体引起的质粒DNA提取量低,可更换具有相同功能的高拷
贝数载体。
3. 菌体中无质粒
有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。
例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转接,每次接种时
应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。
4. 碱裂解不充分
使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液P1、
P2和P3的用量。对低拷贝数质粒,提取时,可加倍使用溶液P1、P2和P3,可能
有助于增加质粒提取量和质粒质量。
5. 溶液使用不当
溶液P2、P3在温度较低时可能出现浑浊,应置于37℃保温片刻直至溶解为清亮的
溶液,才能使用。
6. 吸附柱过载
不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。若
用富集培养基,例如TB 或2×YT,菌液体积必须减少;若质粒或宿主菌是非常高
的拷贝数或生长率,则需调整LB培养液体积。
7. 质粒未全部溶解(尤其质粒较大时)
洗脱溶解质粒时,可适当加温或延长溶解时间。
8. 乙醇残留
漂洗液洗涤后应离心尽量去除残留液体,树脂型试剂盒漂洗后应晾干树脂,再加
入洗脱缓冲液。
9. 洗脱液加入位置不正确
洗脱液应加在硅胶膜中心部位以确保洗脱液会完全覆盖硅胶膜的表面达到最大洗脱
效率。
10. 洗脱液不合适
DNA只在低盐溶液中才能被洗脱,如洗脱缓冲液EB (10 mM Tris?Cl, pH 8.5)
或水。洗脱效率取决于pH值。最大洗脱效率在pH7.0-8.5间。当用水洗脱时确保
其pH值在此范围内,如果pH过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱
缓冲液加热至60℃后使用有利于提高洗脱效率。
11. 洗脱体积太小
洗脱体积对回收率有一定影响。随着洗脱体积的增大回收率增高,但产品浓度降
低。为了得到较高的回收率可以增大洗脱体积。
12. 洗脱时间过短
洗脱时间对回收率也会有一定影响。洗脱时放置一分钟可达到较好的效果。
(十三) 质粒纯度不高?
1. 混有蛋白
不要使用过多菌体。溶液P1、P2、P3处理并离心后溶液应为澄清的,如果还混有
微小蛋白悬浮物,可再次离心去除后再进行下一步骤。
2. 混有RNA
RNase A处理不彻底,请减少菌体用量或加入溶液P3之后室温放置一段时间。如
果溶液P1已保存6个月以上,请在溶液P1中添加RNase A。
3. 混有基因组DNA
加入溶液P2和P3后应温和混匀,如果剧烈振荡,可能把基因组DNA剪切成碎片从
而混杂在质粒中。如果加入溶液P2后过于粘稠,无法温和混匀,请减少菌体用
量。细菌培养时间过长会导致细胞和DNA的降解,不要超过16 小时。
4. P3溶液加入时间过长
P3溶液加入后,放置时间不要太长,否则有可能会产生小片段DNA污染。
5. 含大量核酸酶的宿主菌
宿主菌含大量核酸酶,在质粒提取过程中降解质粒DNA,影响提取质粒DNA的完
整性,最好选用不含核酸酶的大肠杆菌宿主菌,如DH5α和Top10。
6. 裂解时间过长
加入溶液P2后裂解时间不应超过5分钟。
7. 质粒的二聚体和多聚体形式
质粒复制过程中形成的,与宿主菌相关,电泳可检测出。
5. 质粒DNA的提取方法总共有哪些,回答的全给高分
(一)碱裂解法提取质粒
[实验原理]
碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8的乙酸钾高盐缓冲液恢复Ph至中性时,共价闭合环状质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,在而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
[实验仪器与设备]
1.恒温培养箱 2.恒温摇床
3.台式离心机(最大转速4000rpm) 4.冷冻高速离心机
5.高压灭菌锅 6.超净工作台
7.微量移液器 8.eppendorf tupe、tip
[实验材料]
1.葡萄糖 2.三羟甲基氨基甲烷(Tris)
3.乙二胺四乙酸(EDTA) 4.氢氧化钠
5.十二烷基硫酸钠(SDS) 6.乙酸钾
7.冰乙酸 8.氯仿
9.乙醇 10.胰RNA酶
11.氨苄青霉素 12.蔗糖
13.溴酚蓝 14.酚
15.β巯基乙醇 16.盐酸
17.含pUC18质粒的大肠杆菌
附:试剂的配制
1.溶液Ⅰ
50mmol/L 葡萄糖
5mmol/L 三羟甲基氨基甲烷(Tris) Tris·HCl (pH8.0)
10mmol/L 乙二胺四乙酸(EDTA)(pH8.0)
2.溶液Ⅱ
0.4 mol/L NaOH, 2%SDS, 用前等体积混合
3.溶液Ⅲ
5mmol/L 乙酸钾 60 ml
冰乙酸 11.5 ml
水 28.5 ml
4.TE缓冲液
10mmol/L Tris·HCl
1 mmol/L EDTA(pH8.0)
5.70%乙醇(放-20℃冰箱中,用后即放回)
6.胰RNA酶
将RNA酶溶于10mmol/L Tris·HCl(pH7.5)、15mmol/L NaCl中,配成10mg/ml的浓度,于100℃加热15min,缓慢冷却至室温,保存于-20℃。
7.终止液:40%蔗糖、0.25%溴蓝酚
8.酚
[实验步骤]
(一) 提取质粒
1.将2ml含相应抗生素的LB液体培养基加入到试管中,接入含质粒的大肠杆菌,37℃振荡培养过夜。
2.取1.5ml培养物倒入微量离心管中,4000rpm,离心2min。
3.吸去培养液,使细胞沉淀尽可能干燥。
4.将细菌沉淀悬浮于100μl溶液Ⅰ中,充分混匀,室温放置10 min。
5.加200μl溶液Ⅱ(新鲜配制),混匀内容物,将离心管放冰上5 min。
6.加入150μl溶液Ⅲ(冰上预冷),盖紧管口,颠倒数次使混匀。
7.1200rpm,离心15 min,将上清转至另一离心管中。
8.向上清中加入等体积酚:氯仿(去蛋白),反复混匀,12000rpm,离心5min,将上清转移到另一离心管中.
9.向上清加入2倍体积乙醇,混匀后,室温放置5-10min。12000rpm离心5min。倒去上清液,把离心管倒扣在吸水纸上,吸干液体。
10.用1ml70%乙醇洗涤质粒DNA沉淀,振荡并离心,倒去上清液,真空抽干或空气中干燥。
11.加50μl TE缓冲液,其中含有20μg/ml的胰RNA酶,使DNA完全溶解,-20℃保存。
(二)琼脂糖凝胶电泳检测DNA
[实验原理]
琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(ethim bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。
琼脂糖凝胶有如下特点:
(1) DNA的分子大小 在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。
(2) 琼脂糖浓度 一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。
(3) 电压 低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。
(4) 电泳温度 DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。
(5) 嵌入染料 荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。
(6) 离子强度 电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。
对于天然的双链,常用的几种电泳缓冲液有TAE、TBE等,一般配制成浓缩母液,室温保存,用时稀释。
[实验仪器与设备]
1. 恒温培养箱 2. 琼脂糖凝胶电泳系统
3. 高压灭菌锅 4. 紫外线透射仪
[实验材料]
1.三羟甲基氨基甲烷(Tris) 2.硼酸
3.乙二胺四乙酸(EDTA) 4.溴酚蓝
5.蔗糖 6.琼脂糖
7.溴化乙锭 8.DNA marker
9.DNA样品
[实验步骤]
1.缓冲液的配制
① 5×TBE(5倍体积的TBE贮存液)
配1000ml 5×TBE:
Tris 54g
硼酸 27.5g
0.5mol/l EDTA 20ml
Ph8.0
② 凝胶加样缓冲液(6×)
溴酚蓝 0.25%
蔗糖 40%
③溴化乙锭溶液(EB) 0.5μg/ml
2.制备琼脂糖凝胶
按照被分离DNA的大小,决定凝胶中琼脂糖的百分含量。可参照下表:
琼脂糖凝胶浓度 线性DNA的有效分离范围
0.3% 5-60 kb
0.6% 1-20 kb
0.7% 0.8-10 kb
0.9% 0.5-7 kb
1.2% 0.4-6 kb
1.5% 0.2-4 kb
2.0% 0.1-3 kb
3.胶板的制备
(1) 用高压灭菌指示纸带将洗静、干燥的玻璃板的边缘(或电泳装置所皿备的塑料盘的开口)封住,形成一个胶膜(将胶膜放在工作台的水平位置上,用水平仪校正)。
(2) 配制足够用于灌满电泳槽和制备凝胶所需的电泳缓冲液(1×TBE)。准确称量的琼脂糖粉。缓冲液不宜超过锥瓶或玻璃瓶的50%容量。 在电泳槽和凝胶中务必使用同一批次的电泳缓冲液,离子强度或pH值的微小差异会在凝胶中形成前沿,从而大大影响DNA片段的迁移率 。
(3) 在锥瓶的瓶颈上松松地包上一层厚纸。如用玻璃瓶,瓶盖须拧松。在沸水浴或微波炉中将悬浮加热至琼脂糖溶解。注意:琼脂糖溶液若在微波炉里加热过长时间,溶液将过热并暴沸。应核对溶液的体积在煮沸过程中是否由于蒸发而减少,必要时用缓冲液补充。
(4) 使溶液冷却至60℃。加入溴化乙锭(用水配制成10mg/ml的贮存液)到终浓度为0.5ug/ml,充分混匀。
(5) 用移液器吸取少量琼脂糖溶液封固胶模边缘,凝固后,在距离底板0.5-10mm的位置上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。如果梳子距玻璃板太近,则拔出梳子时孔底将有破裂的危险,破裂后会使样品从玻璃板之间渗透。
(6)将剩余的温热琼脂糖溶液倒入胶模中。凝胶的厚度在3-5mm之间。检查一下梳子的齿下或齿间是否有气泡。
(7)在凝胶完全凝固后(于室温放置30-45分钟) ,小心移去梳子和高压灭菌纸带,将凝胶放入电泳槽中。
低熔点琼脂糖凝胶及浓度低于0.5%的琼脂糖凝胶应冷却至4℃,并在冷库中电泳。
(8)加入恰好没过胶面约1mm深的足量电泳缓冲液。
4.加样
DNA样品与所需加样缓冲液混合后,用微量移液器,慢慢将混合物加至样品槽中。此时凝胶已浸没在缓冲液中。 一个加样孔的最大加样量依据DNA的数量及大小而定,一般为20-30μl样品。
已知大小的DNA标准,应同时加在凝胶的左凝胶的左侧和右侧孔内。确定未知DNA的大小。测量未知DNA的大小时,要所有样品都用相同的样品缓冲液。
5.电泳
在低电压条件下,线形DNA片段的迁移速度与电压成比例关系,但是,在电场增加时,不同相对分子质量的DNA片段泳动度的增加是有差别的。因此,随着电压的增加,琼脂糖凝胶的有效分离范围随之减小。为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm。当溴酚蓝指示剂移到到距离胶板下沿约1-2cm处,停止电泳。
6. 质粒抽提的抽提方法
质粒抽提最常用的方法是碱裂解法,它具有得率高,适用面广,快速,纯度高等特点。关于碱裂解法的原理,复旦大学生化与分子生物学实验室的网站有一篇专论,大家可以去看一下。这是一篇美文,非常有趣。文中提到了一个与几乎所有能查到的资料不同的观点,也是非常有启发的。
当然,碱裂解法也有缺陷:容易导致不可逆的变性;不适合大质粒的抽提。碱裂解法是很剧烈的方法,质粒在碱性条件下会变性,时间一长,这种变性就成为不可逆的了 (电泳时在超螺旋前面一点点,如果有一条带,就是此变性的质粒。)。所以,要降低不可逆的变性,就要控制好碱裂解的时间。 (似乎可以做这么一个推理:在碱性条件下,质粒的两条链从一点或者几个点开始分开,随着时间的延长,直到完全分开。理论上讲,完全分开的两条链要很快地配对复性,成功率肯定不可能是 100%的,而没有完全分开的两条链却完全可能 100% 配对复性。) 碱裂解法不适合大质粒的抽提,原因也是因为该方法太剧烈,使超螺旋比例较低。文献推荐的抽提大质粒的方法是温和得多的方法,缺点是得率要低一些。现在得问题是,大质粒的拷贝数本来就低,如果抽提方法得率再不高的话,抽提起来就很费力了。如果注意到在碱裂解法中,超螺旋比例随着碱裂解时间的延长而降低,随着粘稠度的增加而减低这个现象,完全可以使用碱裂解法来抽提大质粒的:增加试剂的使用量,使加入 NaOH/SDS 液后,溶液在 1 分钟内就能变得很清澈;立即加入中和试剂。这个实验我们没有做过,但 QIAGEN 抽提大质粒用的就是碱裂解法。