① 考研数学导数有哪些复习重点及应用
【导数定义和求导要注意的】
第一,理解并牢记导数定义。导数定义是考研数学的出题点,大部分以选择题的形式出题,01年数一考一道选题,考查在一点处可导的充要条件,这个并不会直接教材上的导数充要条件,他是变换形式后的,这就需要同学们真正理解导数的定义,要记住几个关键点:
1)在某点的领域范围内。
2)趋近于这一点时极限存在,极限存在就要保证左右极限都存在,这一点至关重要,也是01年数一考查的点,我们要从四个选项中找出表示左导数和右导数都存在且相等的选项。
3)导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导,请同学们记清楚了。
4)掌握导数定义的不同书写形式。
第二,导数定义相关计算。这里有几种题型:1)已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的。
第三,导数、可微与连续的关系。函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的,相信这一点大家都很清楚,而我要提醒大家的是可导推连续的逆否命题:函数在一点处不连续,则在一点处不可导。这也常常应用在做题中。
第四,导数的计算。
第五,高阶导数计算。
【导数的应用】
导数的应用主要有以下几种:(1)切线和法线;(2)单调性;(3)极值;(4)凹凸性;(5)拐点;(6)渐近线;(7)(曲率)(只有数一和数二的考);(8)经济应用(只有数三的考)。我们一一说明每个应用在考研中有哪些注意的。
▶切线和法线
主要是依据导数的几何意义,得出曲线在一点处的切线方程和法线方程。
▶单调性
在考研中单调性主要以四种题型考查,第一:求已知函数的单调区间;第二:证明某函数在给定区间单调;第三:不等式证明;第四:方程根的讨论。这些题型都离不开导数的计算,只要按照步骤计算即可。做题过程中要仔细分析每种的处理方法,多加练习。
▶极值
需要掌握极值的定义、必要条件和充分条件即可。
▶凹凸性和拐点
考查的内容也是其定义、必要条件、充分条件和判别法。对于这块内容所涉及到的定义定理比较多,使很多同学弄糊涂了,所以希望同学们可以列表对比学习记忆。
▶渐近线
当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:垂直渐近线、水平渐近线、斜渐近线。
考研中会考察给一曲线计算渐近线条数,计算顺序为垂直渐近线、水平渐近线、斜渐近线。
▶条数计算
垂直渐近线就直接算就可以了,有几条算几条,而水平渐近线和斜渐近线要分别x趋于正无穷计算一次,和x趋于负无穷计算一次,当趋于正无穷和负无穷的水平渐近线或者斜渐近线相同则计为一条渐近线,若是不同,则计为两条渐近线。另外,在趋于正无穷或者负无穷时,有水平渐近线就不会有斜渐近线。
▶曲率
这块属于导数的物理应用,这块是数一数二的同学考的,需要掌握曲率、曲率半径、曲率圆。理解并记清楚公式。
▶导数的经济应用
导数的经济学应用是数三特考的,这个主要是考察弹性,边际利润,边际收益等。记住公式会计算即可。
如果不是求n阶导数,通常步骤如下:
1,判断函数类型:初等函数,分段函数,变限积分函数,隐函数,参数方程,反函数等等。
2,应用相应求导方法,比如隐函数我们通常用微分法,参数方程求导又是不同的表达形式,反函数求导又是一个方法。
求导在高数里面是非常简单和基本的知识。只要函数类型掌握了,每种函数求导方法会运用。则求导没有题目做不出来。
③ 导数大题该怎样选择方法
1单调极最值 这个总会吧,求导 ,小于0,单调减,大于0,单调增.等于0,是极值点,端点处与
极值点处求得值 比较下,大小值必在这几个点处
2切线求斜率 也是对原函数求导,求K 代入 y=kx+b
3解证不等式 两个不等式相减,构造新函数,将左端点值代入新函数,然后求导,导函数大于0,单调增,若新函数恒大于0,前不等式大于后不等式,以此类推
④ 导数大题该怎样选择方法
1单调极最值
这个总会吧,求导百
,小于0,单调减,大于度0,单调增.等于0,是极值点,端点处与
极值点处求得值
比较下,大小值必在这几个点处
2切线求知斜率
也是对原函数求导,求K
代入
y=kx+b
3解证不等式道
两个不等式相减,构造新函数,将左端点值代入新函数,然后求导,导函数大于回0,单调增答,若新函数恒大于0,前不等式大于后不等式,以此类推
⑤ 导数怎么做
1、基本求导公式
首先,最为基本的13个求导公式要求牢固记忆,比如,tanx求导要能直接写出结果,而不需要再利用sinx,cosx进行推导。其次,在13个求导公式的基础上,要求掌握常见的求导公式,,,从而更快、更准确的计算出导数。
2、求导法则
求导法则主要分为三部分:导数的四则运算法则、复合函数求导法则、反函数求导法则。其中复合函数求导法则是考试中考查的重点,主要掌握链式法则。
3、变限积分求导
变限积分求导是考研中考查的一个重点,即可以结合极限部分进行考查,又可以结合微分方程进行考查。主要要求掌握变限积分求导公式和其基本处理技巧。
(1)变限积分求导公式
积分号下不含x:
(2)基本处理技巧
积分号下含有x:
由于在积分过程中t为变量,x则可以看作常数。
若x可以从积分号下提取出来,则直接提取;若无法直接提取,可进行拆分,则先拆分再提取;若无法提取出来,则可进行变量代换,把含有x的部分整体作变量代换后,再进行求导。
⑥ 函数求导数的方法
利用导数定义求函数的导数是学习导数的第一步,其中涉及极限的相关运算。小编就带大家看看如何利用导数定义求一些基本函数的导数。
开启分步阅读模式
操作方法
01
使用导数定义求解导数的步骤主要分为三个步骤。这里以幂函数y=x^n为例说明。
02
第一步,求出因变量的增量Δy=f(x+Δ)-f(x)。
03
第二步,计算Δy与Δx的比值。
04
第三步,求极限,令Δx趋近于0,可以求得极限。
05
幂函数的求解比较简单。对于一些其他较复杂的函数,还需要借=借助一些数学公式以及极限运算。例如对于y=sin(x)的求解,就需要利用和差化积公式与
lim(x->0){sin(x)/x}=1这两个公式。
06
同样,首先计算增量Δy=f(x+Δ)-f(x)。
07
接下来的两步可以一同进行。
08
以下是常用的一些导数公式,大家可以试着去推导一下。导数公式的计算,需要使用大量极限计算的技巧,希望大家多多训练。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。小编整理了求导数的方法,供参考!
一、总论
一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。
二、主流题型及其方法
(1)求函数中某参数的值或给定参数的值求导数或切线
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:
先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:
①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。
(2)求函数的单调性或单调区间以及极值点和最值
一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是:
首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。
极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。
最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。
注意:
①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。
②分类要准,不要慌张。
③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。
(3)恒成立或在一定条件下成立时求参数范围
这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。这就需要我们一定的综合能力。不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。方法如下:
做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。一定要将所求的参数分离出来,否则后患无穷。有些人总是认为不分离变量也可以做。一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。所以面对这样的问题,分离变量是首选之法。当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。
⑦ 怎么求导数,思路和方法是什么
1、为了计算函数 f(x) 上任意点的斜率,在任意点x处,画一条割线(Secand line)
2、写出此割线的斜率表达式:[f(x+Δx) - f(x)]/Δx;
3、通过极限计算,当Δx→0后的结果,这个结果是x的函数,这就是导函数。
也就是说,只要将任意的x代入到导函数中,就可以算出对应的原来函数上的那一点的斜率。
【求导数的思想实质】:
从计算割线的斜率开始,运用计算极限的方法,过渡到切线(Tangent line),算出任意点的斜率。
这就是求导数的方法或思路。但是在具体问题中,并不需要这样从定义出发计算,而是直接
套用推导出来的的现成的公式。除非题目要求从定义出发计算。
【说明】:
1、平时,我们讲导数时,并没有严格,有时指导函数,有时指某点的导数值。
这样的情况,如同“电阻”,时而指电阻器(resistor),时而指电阻特性(resistance ),
时而指电阻率(resistivity),时而指电阻值(resistance)。
2、求导的一般方法是根据5种最基本的公式,三个求导法则进行。
五个最基本的公式是:
(ax^n) ' = anx^(x-1);
(sinx) ' = cosx;
(cosx) ' = -sinx;
(e^x) ' = e^x
(lnx) ' = 1/x
三个法则是:
积的求导法则:
y = uvwpq
y ' = (u')vwpq + u(v')wpq + uv(w')pq + uvw(p') + uvwp(q')
商的求导法则:
y = u/v
y' = [(u')v - u(v')]/v²
复合函数的链式求导:
y = f(u),u = g(v),v = h(w)
dy/dw = (dy/)(/dv)(dv/dw)。
.
⑧ 考研常用的n阶导数公式是什么
(1)一是对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。
(2)二是逐阶求导对求导次数不高时是可行的,当求导次数较高或求任意阶导数时,逐阶求导实际是行。
(8)考研导数题怎么选择求导方法扩展阅读:
n阶导数公式:
可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。
⑨ 考研,数学,求高阶导数的各种方法!!
1、在考研数学中,导数是一个很重要的基本概念,考研大纲除了要求理解导数的概念外,还要求能熟练地计算函数的导数。
2、常见的导数计算问题包括:复合函数的求导,反函数的求导,以参数方程形式表示的函数的求导,函数的高阶导数的计算,一阶和二阶偏导数的计算。其中关于高阶导数的计算,有些同学由于没有掌握正确的计算方法,导致解题时无从下手。
上面就是考研数学中关于函数的高阶导数的几种基本计算方法的分析,供考生们参考借鉴。