导航:首页 > 知识科普 > 车削薄壁套减振刀的方法有哪些

车削薄壁套减振刀的方法有哪些

发布时间:2022-09-01 14:57:14

Ⅰ 薄壁工件的加工方法

薄壁工件因为具有重量轻、节约材料、结构紧凑等特点,薄壁零件已日益广泛地应用在各工业部门。但薄壁零件的加工是比较棘手的,原因是薄壁零件刚性差、强度弱,在加工中极容易变形,不易保证零件的加工质量。如何提高薄壁零件的加工精度将是业界越来越关心的话题。

薄壁零件的加工问题,一直是较难解决的。薄壁件目前一般采用数控车削的方式进行加工,为此要对工件的装夹、刀具几何参数、程序的编制等方面进行试验,从而有效地克服了薄壁零件加工过程中出现的变形,保证加工精度。影响薄壁零件加工精度的因素有很多,但归纳直来主要有以下三个方面:

(1)受力变形

因工件壁薄,在夹紧力的作用下容易产生变形,从而影响工件的尺寸精度和形状精度,如图1所示。

(2)受热变形

因工件较薄,切削热会引起工件热变形,使工件尺寸难于控制。

(3)振动变形

在切削力(特别是径向切削力)的作用下,很容易产生振动和变形,影响工件的尺寸精度、形状、位置精度和表面粗糙度。

图1 夹紧力的影响

既然影响薄壁件加工精的因素找到了,那么我们将如何提高薄壁零件的加工精度呢?接下来笔者将通过具体实例来介绍提高薄壁件加工精度和效率的措施。

图2所示的薄壁零件,是我校用数控车床对外加工产品中难度较大的零件。采用的设备是配备了广州数控系统GSK980T的数控车床。为了提高产品的合格率,我们从工件的装夹、刀具几何参数、程序的编制等方面进行综合考虑,实践证明,有效提高了零件的精度,保证了产品的质量。

图2 示例零件

1. 工件特点分析

从零件图样要求及材料来看,加工此零件的难度主要有两点:

(1)因为是薄壁零件,螺纹部分厚度仅有4mm,材料为45号钢,而且批量较大,既要考虑如何保证工件在加工时的定位精度,又要考虑装夹方便、可靠。通常的车削都是用三爪卡盘夹持外圆或撑内孔的装夹方法来加工,但此零件较薄,车削受力点与加紧力作用点相对较远,而且还需车削M24螺纹,受力很大,刚性不足,容易引起晃动,因此要充分考虑如何装夹定位的问题。

(2)螺纹加工部分厚度只有4mm,而且精度要求较高。

目前广州数控系统GSK980T螺纹编程指令有G32、G92、G76。G32是简单螺纹切削,显然不适合。G92螺纹切削循环采用直进式进刀方式,如图3所示,刀具两侧刃同时切削工件,切削力较大,而且排削困难,在切削时两切削刃容易磨损,在切削螺距较大的螺纹时,由于切削深度较大,刀刃磨损较快,从而造成螺纹中径产生误差,但由其加工的牙形精度较高。G76螺纹切削循环采用斜进式进刀方式,如图4所示,单侧刀刃切削工件,刀刃容易损伤和磨损,但加工的螺纹面不直,刀尖角发生变化,而造成牙形精度较差。

从以上对比可以看出,只简单利用一个指令进行车削螺纹是不够完善的,采用G92、G76混用进行编程,即先用G76进行螺纹粗加工,再用G92进精加工的方式在薄壁螺纹加工中将有两大优点:一方面可以避免因切削量大而产生的薄壁变形;另一方面能够保证螺纹加工的精度。

图3 G92直进式加工

图4 G76斜进式加工

2. 优化夹具设计

由于工件壁薄,刚性较差,如果采用常规方法装夹,工件将会受到轴向切削力和热变形的影响出现弯曲变形,很难达到技术要求。为解决此问题,我们设计出了一套适合上面零件的加工的专用夹具,如图5所示。

图5 专用夹具

其中,件1为夹具主体,材料为45号钢,左端被夹持直径为80mm,可用来夹持工件的内孔直径范围为20~30mm;件2为拉杆,材料为45号钢,直径为21mm,它刚好与薄片工件上的φ21孔对应配合,使工件在夹具中定位及传递切削力;件3为已加工完左端面和内孔的工件,装夹时要注意工件与夹具体1的轴向夹紧配合。小沟槽是在工件调头装夹后,为方便控制总长度而设计的,尺寸为5mm×2mm。

3. 刀具的合理选择

(1)内镗孔刀采用机夹刀,缩短换刀时间,无需刃磨刀具,具有较好的刚性,能减少振动变形和防止产生振纹;

(2)外圆粗、精车均选用硬质合金90°车刀;

(3)螺纹刀选用机夹刀,标准刀尖角度,以便磨损时易于更换。

4. 加工步骤选定

(1)装夹毛坯15mm长,平端面至加工要求;

(2)用φ18钻头钻通孔,粗、精加工φ21通孔;

(3)粗、精加工φ48外圆,加工长度大于3mm至尺寸要求;

(4)调头,利用夹具如图2所示装夹,控制总长尺寸35mm平端面;

(5)加工螺纹外圆尺寸至φ23.805;

(6)利用G76、G92混合编程进行螺纹加工;

(7)拆卸工件,完成加工。

5. 切削用量选择

(1)内孔粗车时,主轴转速为500~600r/min,进给速度F100~F150,留精车余量0.2~0.3mm;

(2)内孔精车时,主轴转速为1100~1200 r/min,为取得较好的表面粗糙度选用较低的进给速度F30~F45,采用一次走刀加工完成;

(3)外圆粗车时,主轴转速为1100~1200 r/min,进给速度F100~F150,留精车余量0.3~0.5mm;

(4)外圆精车时,主轴转速为1100~1200 r/min,进给速度F30~F45,采用一次走刀加工完成。

6. 所编制的加工程序

我们根据以上分析,针对数控系统采用GSK980T所编制的加工程序如图6所示。

图6针对GSK980T的加工程序

7. 加工时的几点注意事项

(1)工件要夹紧,以防在车削时打滑飞出伤人和扎刀;

(2)在车削时使用适当的冷却液(如煤油),能减少受热变形,使加工表面更好地达到要求;

(3)要注意安全文明生产。

通过实际加工生产,以上措施很好地解决了加工精度不高等问题,减少了装夹校正的时间,减轻了操作者的劳动强度,提高效率并保证加工后零件的质量,经济效益十分明显。本文所介绍的,只是针对某一具体的工件所采取的加工策略,虽然不具备普遍性,但还是希望能起到抛砖引玉的作用

Ⅱ 车床车内孔,震刀,原因都是有哪些

原因如下:

1.刀具没有固定好,这会导致刀具钢度不足,容易扭曲变形

2.刀具的进给、主轴转速等参数设置不合理,这种情况会导致在圆周运动时发生共振

3.刀具伸出的距离太长了,这会导致刀具的钢度下降

4.刀具的高度没有进行对中,刀尖的高度低于中心轴高度,使刀具受力过大,因此在进行圆周加工时容易产生共振。

车床震刀的根本原因是:刀具的挠曲变形使得刚度下降,从而导致刀具的振动频率下降,当这个振动频率下降到主轴转速所对应频率的周围,即进入发生共振频率的领域内,刀具就会发生共振。

(2)车削薄壁套减振刀的方法有哪些扩展阅读:

车床车内槽震刀不光的解决办法:

1:调整切削参数降低转速和走刀

2:选择锋利点的槽型(如果是自己磨刀可以把前角磨锋利点。然后在刃口位置用细油石轻轻油下去掉毛刺)

3:如果槽比较宽,可以选择窄点的槽刀,多切几刀。

4:选择抗震刀杆,比如硬质合金刀杆。

5:在粗加工完后,留小余量精加工一刀

Ⅲ 内孔车刀减震方法

主要原因在于1.刀具的刃磨2.切削量3.主轴转速4.刀杆的钢性5、零件的材质6、零件的形状

在这里告诉你一个解决薄壁零件车孔避免震刀的方法,找点自行车内胎之类的东西紧紧地套在工件外面,效果很好的哦,可以借鉴一下

Ⅳ 怎样车薄壁套

薄壁套工件刚性差,车削时受切削力和夹紧力的作用极易变形。注意装夹方法、合理地选择刀具材料、几何角度、切削用量及适当地进行冷却润滑都是加工薄壁类型零件时减少变形的关键所在。个人认为,应该控制好以下三个要点:1、刀具的选择:刀具刃口一定要锋利,一般采用较大的前角和主偏角;2、切削用量的选择:为减少工件的振动与变形,应使工件上所受的切削力和切削热相应小一些,一般应采用较高的切削速度,但切削深度和进给量不宜过大。如机床精度低、刚性差时则应该适当地降低切削速度;3、工件的装夹:一般应增加工件的支承面和夹压点,使受力均匀,并减小夹压应力和接触应力;必要时增设辅助支承,以增加工件的刚性。具体措施办法很多,需灵活应用。例如加长坯料,必要时做出装夹台,以便一次车完内、外圆及一个端面,然后将工件切下; 对一般薄壁套应尽量避免径向夹紧,而采用轴向夹压;使用中心堵,按端面余量加工好一端面和一段内孔,然后车一个中心堵,将工件紧配在中心堵上,夹持中心堵加工工件;使用软爪装夹;使用阻尼防震措施等。总之,具体问题具体对待,没有固定的模式。供参考。

Ⅳ 在车床上车长薄壁套震刀怎么

没有说多大的直径.用75度刀,根据转速,震刀就慢点.记住走刀可以快点,慢了会震刀的.

Ⅵ 数控;车床加工薄壁件的方法

薄壁套类零件的加工关键是工艺方法,而切削用量仅仅是工艺中的一小部分。工艺方面有以下几点:
1、减少切削力造成的变形,可采用大偏角、内、外表面同时切削(使径向力相互抵消)等方法。
2、分粗、精两次加工,减少热变形引起的误差,可在粗加工后留有足够的冷却时间,再进行精加工。
3、切削用量还必须根据零件的材料、尺寸和精度的要求;但根据薄壁的特点,可以高传速、低进给、小吃刀量。

Ⅶ 数控车床震刀怎么解决

震刀的原因很多种,工件的长度是多少,如果很长的话,大部分原因可能出在装夹上面,空心的管料,采用一夹顶的方式并不可取,很容易松动,建议做一根实心棒塞到管里面,顶针要自己改装,中间挖一个洞,刚好紧配合实心棒,主要是防止车削时X方向的摆动。

另外,车刀要根据你的工件材料来选择。有些特殊的材料要特殊刀具才能加工的。

Ⅷ 车削薄壁工件时,可以采用那些装夹方法

一般地装夹及加工必须在保证内外原轴线的同轴度、端面与内孔轴线的垂直度,以及两平面的平行度前提下完成,可采取以下几种方法:
(1)采用开口套装夹:用开口套改变三爪卡盘的三点夹紧为整圆抱紧,即用三爪卡盘夹持开口套使其变形并均匀抱紧薄壁套后再车削内孔。
(2)采用大弧形软爪装夹:改装三爪卡盘的三个卡爪,在三个通用卡爪上焊接大弧形软爪,增大夹持面积,减小薄壁套的夹紧和车削变形。注意在把大弧形软爪与原三爪卡盘的三个卡爪焊接后适当放置一段时间,让其自然变形,然后对大弧形软爪应有足够的径向厚度,使其有足够的刚度。在使用一定时间后,再次进行“白干自”的精密车削,确保精度不变。
(3)直径大、尺寸精度和形位精度要求较高的圆盘薄壁工件,可装夹在花盘上车削。在花盘上用螺钉固定一个定位盘,注意在固定前要用千分表调整定位盘的外圆与车床主轴同轴,用两个或四个压板轴向压紧薄壁套后就可以车削内孔。在夹紧时注意不要完全压紧一个压板后,再压紧另一个压板,而是对称地逐渐使各个压板压紧薄壁套,这样不会因夹紧力而使薄壁套变形,车削完整后,也是对称地逐渐松开各个压板。车削时,先将工件装夹在三爪自定心卡盘上粗车内孔及外圆,各留1一1.5毫米精车余量,并精磨两端面至长度尺寸。然后将工件装夹在花盘上精车内孔及内端面。精车内孔装夹方法:先在花盘面上车出一凸台,凸台直径与工件内孔之间留0.5一1毫米间隙,用螺栓、压板压紧工件的端面,压紧力要均匀,找正后即可车削内孔及端面。精车外圆时装夹方法:将三点接触式压板通过螺栓适当压紧,即可车削外园。以上两种夹紧方法,由于用力均为轴向,工件不易变形。

Ⅸ 简述刀具振动的原因及对策

导致刀具切削过程产生振动的因素有很多,主要有以下三方面:①包括刀具在内的工艺系统刚性不足,导致其固有频率低。②切削产生了一个足够大的外激力。③这个外激力的频率与工艺系统的固有频率相同,随即产生共振。
2. 危害
随着近年来难加工材料的应用和高速切削的技术推广,振动成为了提高加工效率的障碍之一,振动的产生直接影响了加工精度和表面粗糙度;使刀具磨损加快,甚至产生崩刃,严重降低刀具寿命,振动使得机床各部件之间的配合受损,精度下降,严重时会使切削加工无法进行。
刀具减振技术
1. 被动减振技术
被动控制是通过增加切削系统刚度、阻尼或者附加被动动力吸振器(Dynamic vibration absorber,DVA)吸收振动来抑制颤振的方法。
(1)材料减振。利用材料减振方法主要是使用高强度的新型材料来增加刀具质量和静刚度来防止颤振,刚度和强度都比较大的硬质合金材料备受青睐。
日本东芝公司将减振刀杆的两边平行的切除一部分,镶嵌上硬质合金材料,这种三明治结构受到硬质合金材料自身刚度和厚度以及镶嵌粘结紧密程度的影响,最大长径比也只有6。山特维克可乐满公司在镗杆内如注入比重较高的类似水银的重金属增加静刚度,但是这种镗杆在镗削加工过程中一旦断裂会产生很严重的环境污染。美国的肯纳公司生产的减振刀具(刀杆最大长径比L/D=8)主要是采用特殊的材料制成,也属于提高刀杆静刚度的一种。日本三菱公司采用新型材料和结构的减振镗杆,其商标为Dimple,为了提高镗杆的减振性能且保证镗杆静刚度,三菱公司在设计种镗杆时,大幅度的减轻了镗杆镗削头的质量。国内的一些减振刀具很多都处于研究阶段,采用的都是增加刀体静刚度的方法,例如镍基重合金防振刀具等。但是大部分的减振措施都是在工艺上进行改良或是在加工过程中采用一些技巧。
此外,Nagano S、Takayuki K采用基于树脂的碳纤维增强塑料增强镗杆抑振性能。Lee D G等设计的镗杆,利用高刚度碳纤维环氧复合阻尼,长径比为10.7时颤振还没发生。吴能章、周利平对镗杆的芯部嵌入硬质合金的新型刀具进行了分析,在允许的精度范围内制作长径比较大的刀杆。Hwang HY、Kim JK等人,通过采用特殊的材料——高刚度碳纤维复合型材料来制造镗杆,来提高镗杆的静刚度,从而达到降低镗杆振动的目的。研究表明这种镗杆在长径比为10时,其在切削过程中的振动还不是很明显。西华大学则从复合材料角度来研究刀具的静刚度。专家学者早年就在新型材料上进行深入探究,并取得较好成果应用在生产上,并且新型高强度材料的应用能很好的和其他减振方法有机结合,但是应用新型材料一般成本较高。
(2)阻尼减振。阻尼减振原理,主要通过增大系统阻尼系数使得振动的能量加速损耗,达到振幅迅速衰减的目的。Hahn、R.R曾把液体阻尼的兰契斯特阻尼应用在镗杆,质量块放在靠近刀具的一端的空腔里,注入油介质并保证质量和孔壁之间的径向间、轴向间隙根据体积和介质调整。
黄宏彪将挤压液膜阻尼技术应用于精镗孔加工中,对精镗孔加工液膜阻尼系统进行仿真,分析了液膜阻尼器各相关参数对减振效果的影响规律。
何将三从弹性力学基本理论出发,讨论了层复合阻尼镗杆的结构和动力学模型,镗杆发生机械振动时,粘附的阻尼层随镗杆作弯曲振动,阻尼材料产生交变的拉压应力和应变,使结构的振动能量得到损耗而达到减振效果。
山东大学夏峰等人设计的约束型减振镗杆,包括四个部分:镗刀头、基体层、阻尼层和约束层,并通过实验验证相同长径比(L/D=6)下,采用该镗杆所得到的表面粗糙度较普通镗杆降低50%,证明了约束型阻尼减振镗杆的良好抗振性,目前该镗杆还只是处于试验阶段。
(3)摩擦减振。叶伟昌等在镗杆内部放置一重块,被支承在两个弹簧中间,重块选用密度大的材料,在镗削加工过程中,腔内组合件组成一个动态系统,该系统在支承面上连续不断地运动,产生一种吸收镗杆振动的阻尼摩擦,可减小镗杆的振动。类似的还有扭转摩擦减震器(Lanchester damper),它用弹簧连结系统的主质量和附加质量。
日本的Ecita Edhi等在镗杆内设计摩擦减振器,通过调整永磁块、振子质量、空间三者关系,改变摩擦消振能力,从理论和实验都证明摩擦阻尼器有效抑制赫兹附近的高频颤振。摩擦减振原理主要通过主结构与附加质量的摩擦中消耗能量,来抵消镗杆振动时的能量,具有非线性的特点。
赵东等探讨了一种新型耗能摩擦阻尼器的耗能原理及其在重型机械振动控制中的简单变力双向摩擦阻尼器。工作时,外壳体或活塞中的一个与振源机械连接,另外一个固定在基础上。振源机械振动时,带动阻尼器的活塞和外壳体产生相对运动,在摩擦力的作用下,滚柱转动,由间隙最大的位置向间隙较小的位置滚动,从而对弹性体进行挤压,弹性体产生的抵抗力使滚柱与外壳体产生摩擦力,消耗振动能量。
瑞士Rego-Fix公司则现阶段新推出一种Xtended Length(XL)加长型刀柄。XL刀柄的特点是该公司对微摩擦阻尼(MFD)系统的开发和应用,该技术可有效减小刀柄以及刀具的振动。这种加长刀柄采用CAT、BT、HSK和Rego-Fix CAPTO锥度的接口型式。已有的产品系列为该公司刀柄的ER16、ER32、PG10、PG15和PG25系列。
刀具夹头材料的密度越大,其减振性能就越好。为了在不使用昂贵的重金属夹头的情况下,在长悬伸加工中获得良好的减振效果,夹头上组合使用了两种不同类型的钢制部件,从而产生了一种能消除共振的“微摩擦阻尼效应”。
总的来说,基于摩擦阻尼器的减振技术仍属于被动控制的范畴,不需外部能源,一般只对某种设定的振动特性进行控制,缺乏跟踪和调节能力。材料和工艺方面的问题主要是控制摩擦力,摩擦力对环境和荷载能十分敏感,当温度、正压力发生变化,以及发生多方向滑动时,摩擦力都会发生变化,反复滑动还会使结合面磨损。摩擦阻尼器存在长期的可靠性与维修问题。
(4)动力减振。动力减振原理与冲击式或摩擦式减振器不同,它不是靠消耗能量来减振。而是利用附加质量的动力作用,使弹性元件加在主系统的力与干扰力尽量平衡来减弱振动的。在设计吸振器时,可根据主系统的质量和固有频率选定吸振器的质量,并进一步求出刚度和阻尼比。根据作用方式的不同,可分为主动式和被动式两种,被动式一旦被设计好固有频率,动刚度都不能改变,而主动式可以通过调节子系统改变镗杆的动刚度,适应范围较广。
肯纳公司产品中有主动式可调的动力减振镗杆。山特维克可乐满减振镗杆(最大长径比L/D=16)是目前世界先进的镗杆,它所采取的方法是给镗杆加内置动力减振器。山高专利Steadyline系列减振刀具,推陈出新,在刀柄体内采用了一种“动态被动式系统”,该系统中的质量减振器会进行反向振动以抵消第一次弯曲振动,从而可在极端切削工况下有效降低不必要的振动,现已包含镗头。
此外,Truhar等人利用Lyapunov方程对减振镗杆中动力吸振器的位置进行优化。在此之后又有一批学者提出了关于减振镗杆一系列的优化准则,长春理工大学在刀杆内部加阻尼减振系统来提高刀具的动刚度,和瑞典山特维克可乐满刀具的设计理念相同,哈尔滨理工大学“高效切削及刀具”国家地方联合工程实验室在镗杆内部加入特殊的动力减振装置提高刀具的动刚度。
(5)冲击减振。冲击减振器是常用的减振装置,工作原理是由一个自由质量反复冲击振动体而消耗其振动的能量,进而达到减振目的。这种冲击式减振镗杆虽因冲击碰撞产生噪声,但结构不复杂,体积小重量轻减振效果好,适用频率范围大,包括内冲击式和外冲击式两种。
20世纪80年代,Popplewel发明了豆包减振器(Bean Bag Impact Damper)。其结构是将冲击减振器内有数个装有大量铅粒的柔性包袋。在收到器壁冲击时,包袋的柔性表面可起到缓冲作用,然后作用力传递到包袋内部,则铅粒之间再互相摩擦碰撞,以此来耗散能量。
李伟利用离散单元法模拟了BBD在不同振动参数的减振效果。主系统的固有频率越高,激振力越大时,BBD的减振效果越好。但当激振力增加到某一定值时,豆包的效果便趋于平缓,说明它存在一个减振的极限值。同时改变BBD的结构参数后模拟发现,其对减振效果影响很小。但是目前对于冲击减振器的研究目前还处于实验阶段,市场上尚无产品出现。
2. 主动减振技术
主动控制方法基于反馈控制的原理,检出系统目标状态量的变动,然后把与该状态量反相的同频率、同幅度控制量加到这个状态量本身或作相应变动后加在别的状态量上。对于频率低的大型镗杆主动控制优势更加突出。
刘春颖采用压电陶瓷作为控制元件,采用遗传算法对压电片的贴放位置进行了优化,对镗杆再生型颤振进行了主动控制仿真研究,通过在镗杆中内置压电叠堆并在镗杆外粘贴压电片2种途径,有效控制了镗削过程的颤振幅度。刘鹏利用压电陶瓷(PZT)的正负压电效应,将负责感知的压电片得到的电信号反向放大后加到负责执行的压电片上,产生反向振动来抑制切削振动。梅德庆等人,他们依据磁流变液能够在液态和固态之间快速的进行连续可逆的转换特性,发明了磁流变液减振镗杆。这种镗杆在切削过程中能够适时地改变磁流变液中磁场的强度,使镗杆在切削过程中避开切削振动频率,从而有校的降低了镗杆在切削过程中的振动。kesson等设计了自适应控制器对基于压电驱动的抑振镗杆进行了主动控制。
由于闭环控制对抑制颤振效果好并且可靠性高,采用此控制方法是比较理想的,然而现实实现还是有一定难度的,首先必须对切削过程和切削系统进行精确建模,精确建立满足实际要求的切削加工过程闭环控制模型是有一定难度的,而且要求设计和制造一套自动控制系统及一套支持控制系统的能源装置,成本较高,所以现今多数停留在实验室阶段。目前应用于主动控制的主动控制元件有压电陶瓷、记忆合金,控制方法多采用基于BP融入人工神经网络控制、粒子群控制和自适应控制器等。
3. 半主动减振技术
半主动控制机构是在不向被控系统输入能量的条件下仍然具有实时调控的能力的机构。其主要优点是减振器的参数可根据实际振动情况实现自适应调节。智能材料元件质量轻,嵌入性好,多被用于传感元件和致动元件,并且不影响结构的固有性能,还可以提高整个控制系统的可靠性。基于智能材料的半主动控制方法与主动控制方法相比,没有能量直接输入到切削系统中,而是通过智能材料调整切削系统的动态特性参数以避免切削颤振的发生。王民利用电流变材料设计了一种具有在线可调动态特性的智能化镗杆,通过连续小范围地改变镗削系统固有频率,成功地实现了切削颤振的在线抑制。梅德庆等把磁流变材料应用于镗削系统,改变镗杆刚度从而有效抑制颤振。甘新基通过调整附加在镗杆上的压电片的驱动电压,可在一定程度上抑制镗削加工过程中的颤振。然而学者们的研究也仅仅是局限于实验研究,目前刀具市场上未见此类产品出现。
刀具减振技术展望
到目前为止,国内的工具厂商还没有在车刀和镗刀方面有大的进展,特别是在制造长径比比较大的方面基本没有,而且内置减振系统防振刀杆方面的开发工作也还很少。在国内也有很多高校在研制减振刀具,如浙江大学、四川大学、燕山大学、哈尔滨理工大学、长春理工大学、北京航空航天大学、东北大学、吉林大学和西华大学等。随着研究工作的进行,刀具的减振技术可在以下三个方面得到发展:
(1)随着智能材料研究的深入,现代控制理论应用,现代通讯技术的发展,主动控制是未来倍受青睐的研究主题之一。
(2)半主动控制可靠性高,控制范围宽、适应性强也将成为今后研究的方向之一。
(3)精简结构,提高可控性,增强稳定性:目前镗杆上的主动或半主动控制结构相当复杂,导致了较低的可靠性,巧妙的结构设计仍然是未来研究的主题之一。

阅读全文

与车削薄壁套减振刀的方法有哪些相关的资料

热点内容
工业盐使用方法 浏览:140
锻炼基础腹肌方法视频教程 浏览:201
介入方法是什么意思 浏览:645
汽车阻尼器的安装方法 浏览:153
论文设计并运用相关研究方法 浏览:558
js封装的方法如何在页面内调用 浏览:539
定量和定性研究方法的种类 浏览:950
腰间盘如何锻炼方法 浏览:608
过河的简单方法 浏览:587
传播研究方法教材 浏览:281
骨科治疗腱鞘炎的方法 浏览:596
电脑突破网络限速的方法 浏览:158
溶液中锂离子浓度检测方法 浏览:162
红杉树树皮的食用方法 浏览:732
剔除离散值计算方法 浏览:622
seo有哪些重要的方法 浏览:739
阻止电瓶车上楼线路安装方法 浏览:31
古代陶瓷快速降温的方法 浏览:415
什么方法能快速开车 浏览:71
婴儿吐奶用什么方法解决 浏览:739