Ⅰ 高中数学的基本思想方法有哪些
1、函数方程思想
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组)。
然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程。
求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题。
经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中。
善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系。
构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
2、数形结合思想
“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。
例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。
3、分类讨论思想
当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。
4、方程思想
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
5、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
6、化归思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想。
常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。
转化思想亦可在狭义上称为化归思想。化归思想就是将待解决的或者难以解决的问题A经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法。
7、隐含条件思想
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。例如一个等腰三角形,一条线段垂直于底边,那么这条线段所在的直线也平分底边和顶角。
8、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
9、建模思想
为了更具科学性,逻辑性,客观性和可重复性地描述一个实际现象,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
10、归纳推理思想
由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理。
另外,还有概率统计思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。
Ⅱ 什么是分类思想
分类思想是根据数学本质属性的相同点和不同点,将数学研究对象分为不同种类的一种数学思想。
分类以比较为基础,比较是分类的前提,分类是比较的结果。
Ⅲ 数学思想中分类讨论在生活中有什么运用
分类讨论是指在解决一个复杂问题时,应将讨论的对象分成若干相对简单的情况,然后对各种情况逐个讨论,最终使整个问题得以解决。分类的一般原则是不重不漏,特别是不能遗漏所讨论问题的各种情形
比如你在工作中的问题,假设你所在的公司本月销售业绩下降,那么,用分类讨论的方法,将公司经营的各个部门环节分解(生产、销售、售后、成本、销售价格、费用等等),在逐个讨论,找出问题的根本.
生活中,比如你跟父亲闹了点矛盾(不好意思,只是比喻),你可以分解为(观念、角度、主客观思想、事件原因等等很多),去慢慢化解.
Ⅳ 分类讨论的思想的运用
分类讨论思想是解决问题的一种逻辑方法,也是一种数学思想,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位.
所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.
1. 分类讨论的思想方法是中学数学的基本方法之一,是历年高考的重点
⑴分类讨论的思想具有明显的逻辑特点;
⑵分类讨论问题一般涵盖知识点较多,有利于对学生知识面的考察;
⑶解决分类讨论问题,需要学生具有一定的分析能力和分类技巧;
⑷分类讨论的思想与生产实践和高等数学都紧密相关.
2. 分类讨论的思想的本质
分类讨论思想的本质上是“化整为零,积零为整”,从而增加了题设条件的解题策略.
3. 运用分类讨论的思想解题的基本步骤
⑴确定讨论对象和确定研究的区域;
⑵对所讨论的问题进行合理的分类(分类时需要做到不重复、不遗漏、标准统一、分层不越级);
⑶逐类讨论:即对各类问题详细讨论,逐步解决;
⑷归纳总结,整合得出结论.
4. 明确分类讨论的思想的原因,有利于掌握分类讨论的思想方法解决问题,其主要原因有:
⑴由数学概念引起的分类讨论:如绝对值定义、等比数列的前n项和公式等等;
⑵由数学运算要求引起的分类讨论:如偶次方根非负、对数中的底数和真数的要求、不等式两边同乘以实数对不等号方向的影响等等;
⑶由函数的性质、定理、公式的限制引起的分类讨论;
⑷由几何图形中点、线、面的相对位置不确定引起的分类讨论;
⑸由参数的变化引起的分类讨论:某些含参数的问题,由于参数的取值不同会导致所得结果不同,或由于不同的参数值要运用不同的求解或证明方法;
⑹其他根据实际问题具体分析进行分类讨论,如排列、组合问题,实际应用题等.
5. 分类讨论思想的类型
⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;
⑵问题中的条件是分类给出的;
⑶解题过程不能统一叙述,必须分类讨论的;
⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.
Ⅳ 分类思想详解 分类要按什么进行,分类要做到不什么不什么
分类讨论思想在解题中的应用分类讨论思想在解题中的应用分类讨论思想在解题中的应用分类讨论思想在解题中的应用 一一一一、、、、知识整合知识整合知识整合知识整合 1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置.2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略.3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论.4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论.5.含参数问题的分类讨论是常见题型.6.注意简化或避免分类讨论.二二二二、、、、例题分析例题分析例题分析例题分析 例1.一条直线过点(5,2),且在x轴,y轴上截距相等,则这直线方程为( ) A.xy+−=70 B.250xy−= C.xyxy+−=−=70250或 D.xyyx++=−=70250或 分析:设该直线在x轴,y轴上的截距均为a,当a=0时,直线过原点,此时直线方程为yxxy=−=25250,即; 当a≠0时,设直线方程为xayaa+==17,则求得,方程为xy+−=70.例2.∆ABCABC中,已知,求sincoscos==12513 分析:由于CAB=−+π()[]∴=−+=−−⋅coscos()coscossinsinCABABAB 因此,只要根据已知条件,求出cosA,sinB即可得cosC的值.但是由sinA求cosA时,是一解还是两解?这一点需经过讨论才能确定,故解本题时要分类讨论.对角A进行分类.∵051322⇒−
Ⅵ 数学中的分类思想
分类的原因可归结为:①涉及的数学概念是分类定义的;
②运用的数学定理、公式或运算性质、法则是分类给出的;
③求解的数学问题的结论有多种情况或多种可能;
④数学问题中含有参变量,这些参变量的取值会导致不同结果的。
Ⅶ 小学数学思想方法有哪几种
小学数学常用16种思想方法:
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较,题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法、用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:事物是从量变到质变的,事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长时,化圆为方”“化在讲圆的面积和周长”时“化圆为方化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛的极限分割思盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法:它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法:把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
15、变中抓不变的思想方法:在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法:数学模型思想方法:所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法:整体思想方法:对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法
Ⅷ 什么是分类思想如何培养学生的分类思想
分类思想是根据数学本质属性的相同点和不同点,将数学研究对象分为不同种类的一种数学思想。分类以比较为基础,比较是分类的前提,分类是比较的结果。
培养学生的分类整合思想方法
1、结合具体情境,运用摘录、表格、画图等策略引导学生在理解的基础上构建数学模型。在教学中结合具体情境,放手让学生用自己喜欢的方法对情景中的信息加以梳理,将抽象难懂的文本信息转化为形象易懂的图画、图表等信息。
帮助学生直观地理清信息之间的关系,并对各种解题策略进行分析与比较,突出了画线段图整理信息的优越性。
2、借助生活事例导入新课,运用模拟表演策略帮助学生理解“数学问题”。在初步理解相遇问题基本特征的基础上,添加相应的数学信息,提炼生成完整的数学问题,帮助学生把“生活问题”转化为“数学问题”。
这是一种极具亲历性的学习方式,需要学生进入到情境中,亲自参与其中的合作活动,并在参与合作活动中获得体验。
3、在解决问题的过程中,让学生通过自主整理——组内交流——展示汇报——分析比较——提炼升华等一系列活动,获得解决问题的策略。积累解决问题的经验,增强学生的数学应用意识及运用知识方法解决简单实际问题的能力。
通过知识、技能和方法的迁移,突破了固定的思维框架,形成了自己的认知结构,并充分体现了知识与能力素质的培养过程。
教学应用
教学中可从以下这些方面,让学生在学习数学的过程中,通过类比、观察、分析、综合、讨论和概括,形成对分类思想的主动应用。
一、 逐步逐年级渗透分类思想,养成分类的意识。
每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。
可表示任意数后,让学生对数a 进行分类,得出正数、零、负数三类。讲解绝对值的意义时,引导学生得到如下分类: 通过对正数、零、负数的绝对值的认识,了解如何用分类讨论的方法学习理解数学概念。
结合“有理数”这一章的教学,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。
如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要注意分清层次,不越级讨论。
二 、渗透学习分类方法,增强思维的缜密性。
在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。
Ⅸ 生活中的分类思想
分类讨论是指在解决一个复杂问题时,应将讨论的对象分成若干相对简单的情况,然后对各种情况逐个讨论,最终使整个问题得以解决.分类的一般原则是不重不漏,特别是不能遗漏所讨论问题的各种情形
比如你在工作中的问题,假设你所在的公司本月销售业绩下降,那么,用分类讨论的方法,将公司经营的各个部门环节分解(生产、销售、售后、成本、销售价格、费用等等),在逐个讨论,找出问题的根本.
生活中,比如你跟父亲闹了点矛盾(不好意思,只是比喻),你可以分解为(观念、角度、主客观思想、事件原因等等很多),去慢慢化解.
Ⅹ 分类思想的分类
分类讨论思想,贯穿于整个中学数学的全部内容中。需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。
分类思想的初高中教学衔接
1.定位
●三大基本思想之一;
●可以用纸笔方式直接测试;
●大规模考试必测的内容.
2.分类思想解题的思维过程分析
在运用分类的思想进行解题时,其思维过程通常可以分为:第一,要明确是否需要分类讨论;第二,确定分类的对象;第三,确定分类的标准;第四,逐类逐级分类讨论;第五,综合、归纳结论.
第一 明确是否需要分类讨论
运用分类的思想解题首先需要明确分类讨论的原因.即哪些问题常常需要用到分类的思想来解决.大多数的学生在面对一个数学问题时,不易判断此问题是否需要用到分类的方法来解决该问题,即无法根据问题的条件和结论迅速辨认问题中与分类有关的数量关系或位置关系.因此,从所给的问题情境中,正确而迅速地辨认题目中与分类有关的数量关系或位置关系的,是解决问题的基础,一般地说,当我们研究的问题是下列几种的情形时,可以考虑使用分类的思想方法来解决问题.
●涉及到分类定义的概念.
有些概念是分类定义的,如有理数、实数、绝对值、等腰三角形、平方根、有理式的概念等,当我们应用这些概念时就必须考虑使用分类讨论的方法.
例1:等腰三角形的周长为16,其中一条边的长为6,求另两条边的长.
有些概念在下定义时,对所考虑的对象的范围进行了限制,如分式、一元二次方程的概念等,当解题过程中需要突破这些限制时,就必须考虑使用分类讨论的方法.
例2:解关于x的方程(a-1)x-2ax+a=0
● 直接运用了分类研究的定理、性质、公式、法则.
《数学课程标准》的要求,直接运用了分类研究的定理、性质、公式、法则的有:
有理数的大小比较法则;有理数的加法、乘法、除法、乘方法则;有理数乘法运算律之际的符号与因数的符号的关系;添括号、去括号法则;方程两边都乘以(或除以)同一个不为零的数,方程的解不变;不等式的两边都乘以(或除以)同一个正(负)数,不等号的方向不(改)变;一元二次方程的求根公式;一元二次方程根的判别式;直线与圆的位置关系(交点的个数多少、半径与圆心到直线的距离的数量大小比较);两圆的位置关系((交点的个数多少、两圆半径的和与圆心距的数量大小比较);一次函数的性质;反比例函数的性质;二次函数的性质等.
当我们应用一元二次方程根的判别式,直线与圆的位置关系(交点的个数多少、半径与圆心到直线的距离的数量大小比较),两圆的位置关系((交点的个数多少、两圆半径的和与圆心距的数量大小比较),这些性质解题时,可以考虑使用分类讨论的方法.
当我们应用其他受到适用范围条件限制的定理、性质、公式、法则来解决问题时,如果在解决问题时需要突破对定理、性质、公式、法则的条件限制时可以考虑使用分类讨论的方法.
例3:函数y=kx+3 (-1≤x≤1,且k≠0)的图象上的点都在x轴的上方,则k的取值范围是 .
●进行某些有限制的运算.
在解题时,遇到除法、开偶次方、含有绝对值符号等运算时,应该考虑使用分类讨论的方法.
●在计算、推理过程中,遇到数量大小不确定.
在计算、推理过程中,往往会遇到同一个已知条件具有不同的取值(在取值范围内),且由于取值的不同,导致了不同的结果的出现.遇到这种情况,可以考虑使用分类的方法解决问题.
在初中数学教学的过程中逐步恰当地渗透数学思想方法,培养学生的思维能力,让学生形成良好的数学思维习惯,既是符合新课程的标准,又是进行数学素质教育的一个极好的切入点。数学中的分类思想不但是一种重要的数学思想,而且是一种重要的数学逻辑方法,分类思想不仅在数学知识的探究和概念学习中十分重要,而且在解决数学问题过程中起着不可替代的作用。
数学中的分类思想,是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类,进行研究从而解决问题的一种数学思想。它既是一种重要的数学思想,更是一种重要的数学逻辑方法。
所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。分类思想可不象一般的数学知识那样,通过几节课的教学就可让学生掌握应用。而是要根据学生的年龄特征,学生在学习的各阶段的认知水平,逐步渗透,螺旋上升,不断的丰富自身的内涵,从而达到利用数学分类讨论方法来解决问题的目的。
教学中可从以下这些方面,让学生在学习数学的过程中,通过类比、观察、分析、综合、讨论和概括,形成对分类思想的主动应用。
一 逐步,逐年级渗透分类思想,养成分类的意识
每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。如七年级学习数的分类,绝对值的意义,不等式的性质等,都是渗透分类思想的很好机会。 认识数?ㄊ??
可表示任意数后,让学生对数a 进行分类,得出正数、零、负数三类。讲解绝对值的意义时,引导学生得到如下分类: 通过对正数、零、负数的绝对值的认识,了解如何用分类讨论的方法学习理解数学概念。结合“有理数”这一章的教学,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要注意分清层次,不越级讨论。
二 渗透学习分类方法,增强思维的缜密性
在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。
分类的方法一般有以下几种:
1、根据数学概念进行分类
例1 一个数的平方与它的绝对值相比较,你能够确定它们之间的大小关系吗?
分析:我们知道,对于范围在0到1之间的数,这些数的平方是小于、等于数字本身的;而对于大于1的数,它的平方是大于这个数本身的.由于题目中所给数的范围没有明确,因此我们无法确定这个数的平方与它的绝对值的大小,所以需要分情况进行讨论(可辅助数轴进行讨论).
2、根据图形特征进行分类
例2△ABC中,AB=8,角B等于30°,AC=5,求BC
分析:本题根据三角形的特征,把△ABC分为锐角三角形和钝角三角形两种情况进行分类讨论,从而求出BC的两个结果。
在初三证明圆周角定理时,由于圆心的位置有:在角的边上、角的内部,角的外部三种不同情况,因此我们可以引导学生先证明圆心在圆周角的一条边上,这种最容易证明的情况,然后通过作过圆周角顶点的直径,然后利用先证明的这种情况来依次解决圆心在圆周角的内部、圆心在圆周角的外部这两种情况。这是一个初中教材种比较典型的定理,从定理的证明过程中反映出来的分类讨论的思想和方法,为中招的压轴题考查分类讨论的思想和方法做好了铺垫。
三 引导学生分类讨论,提高合理解题的能力
初中课本有不少定理、定义,公式,法则、习题都需要分类讨论,在进行这些内容时,应不断强化分类讨论的意识,让学生去认识到这些问题:只有通过分类讨论后,得到结论才可能是完整的、正确的,如不分类讨论,就很容易出现错误,遗漏。在解题教学中,通过分类讨论还有利于帮助学生总结出规律性的东西,从而加强学生思维的条理性,缜密性。 一般来讲,利用分类讨论思想和方法解决的问题有两大类:;其一是涉及代数式或函数或方程中,根据字母不同的取值情况,分别在不同的取值范围内讨论解决问题。其二是根据几何图形的点和线出现不同位置的情况,逐一讨论解决问题(近年来我省常在压轴题中考查此知识点)。
例4、某超市推出如下优惠??昳?方案{1}一次性购物不超过100元不享受优惠。{2}一次性购物超过100元,但不超过300元一律9折{3]一次性购物超过300元一律8折。
王波两次购物分别付款80元,252元。如果他一次性购买与上两次相同的商品,则应付款( )
A.288元 B.332元 C.288元或316元 D.332元或316元
解:第一次购物显然没有超过100,因为80/0.9=88.88,所以第一次实质购物价值为80
设第一次实质购物价值为X,那么依题意有:
1.不超过300.
X*0.9=252
解得 X=280
那么该付款
(X+80)*0.8=288
2. 超过300
X*0.8=252
X=315
那么该付款
(X+80)*0.8=316
由上面的几个例子,我们可以看出分类讨论方法往往能使一些错综复杂的问题变得简单,解题思路非常的清晰,步骤非常的明了。而另一方面在课堂讨论当中,可以激发学生学习数学的兴趣。
实践证明,分类讨论思想的数学问题具有明显的逻辑性、综合性,对培养初中学生全面、周密地分析问题和解决问题的能力起到了十分关键的作用。在初中数学教学中我们要时刻渗透分类思想,引导学生多利用分类讨论方法解决问题。