A. 高考数学:求函数值域问题方法的总结
1.配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
2.逆求法(反解法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
3.换元法:通过变量代换转化为能求值域的函数,化归思想;
4.三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
5.基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
6.单调性法:函数为单调函数,可根据函数的单调性求值域.
B. 高中数学的值域的十种详细求法
函数解析式的求法:1,配方法
2,换元法
3,解方程组法
值域的求法:1,配方法
2,换元法
3,基本不等式
4,反函数法(分式函数)5,单调性法
6,导数法
7,数形结合
8,向量法
9,判别式法
10,构造法
值域:数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
计算方法:
1、化归法
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
例如在分解(x²+x+1)(x²+x+2)-12时,可以令y=x²+x,则原式=(y+1)(y+2)-12=y²+3y+2-12=y²+3y-10=(y+5)(y-2)=(x²+x+5)(x²+x-2)=(x²+x+5)(x+2)(x-1).例2,(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6 注意:换元后勿忘还原;利用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
2、图像法
根据函数图象,观察最高点和最低点的纵坐标。
3、配方法
利用二次函数的配方法求值域,需注意自变量的取值范围。
4、单调性法
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
5、反函数法
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
6、换元法
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围 。
7、判别式法
判别式法即利用二次函数的判别式求值域。
8、复合函数法
设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
9、三角代换法
利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦 用三角代换法比较简单:
做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。;
10、不等式法
基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
11、分离常数法
把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。
D. 高一函数的值域的求法
求函数值域的方法有配方法,常数分离法,换元法,逆求法,基本不等式法,求导法,数形结合法和判别式法等,高一函数值域暂时没有导数法和基本不等式法。
1、配方法:二次函数求值域,将函数配方成顶点式的格式,再根据函数的定义域求函数的值域,画一个简单图更能便捷直观的求值域。
2、常数分离:一般是对于分数形式的函数来说的。将分子上的函数尽量配成与分母相同的形式,进行常数分离求得值域。
3、逆求法:对于y=f(x)看成方程,去求为x=f⁻¹(y),此时可得出y的限制范围,就是原式的值域了,这实际是一种方程的方法,利用方程有解的条件得出y的不等式,从而求出函数的定义域。
4、换元法:对于函数的某一部分较复杂或生疏可用换元法,将其转变成我们熟悉的二次函数或其它函数的基本形式求解。
5、单调性:先求出函数的单调性,注意先求定义域,根据单调性再求函数的值域。
6、基本不等式:根据我们学过的基本不等式可将函数转换成可运用基本不等式的形式,以此来求值域。
7、数形结合:可根据函数给出的式子画出函数的图形,在图形上找出对应点求出值域。(对于选择填空题非常实用)
8、求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值就可得到值域了。
9、判别式法:将函数转变成某某等于零的形式,再用解方程的方法求出要满足的条件,求解即可。
E. 高一数学函数求值域的方法
函数值域求法介绍
在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
1、直接观察法
对于一些比较简单的函数,其值域可通过观察得到。
例1 求函数y = 的值域
解: x ≠0 , ≠0
显然函数的值域是:( -∞,0 )∪(0 ,+∞)。
例2 求函数y = 3 - 的值域。
解: ≥0 - ≤0 3- ≤3
故函数的值域是:[ -∞,3 ]
2 、配方法
配方法是求二次函数值域最基本的方法之一。
例3 、求函数y= -2x+5,x [-1,2]的值域。
解:将函数配方得:y=(x-1) +4, x [-1,2], 由二次函数的性质可知:
当x = 1时,y = 4
当x = - 1,时 = 8
故函数的值域是:[ 4 ,8 ]
3 、判别式法
例4 求函数y = 的值域。
解:原函数化为关x的一元二次方程(y-1 ) +(y - 1 )x= 0
(1)当y≠1时, x R ,△ = (-1) -4(y-1)(y-1) ≥0
解得: ≤y≤
(2)当y=1,时,x = 0,而1 [ , ]
故函数的值域为[ , ]
例5 求函数y=x+ 的值域。
解:两边平方整理得:2 -2(y+1)x+y =0 (1)
x R, △=4(y+1) -8y≥0
解得:1- ≤y≤1+
但此时的函数的定义域由x(2-x)≥0,得:0≤x≤2。
由△≥0,仅保证关于x的方程:2 -2(y+1)x+y =0在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△≥0求出的范围可能比y的实际范围大,故不能确定此函数的值域为[ , ]。可以采取如下方法进一步确定原函数的值域。
0≤x≤2, y=x+ ≥0,
=0,y=1+ 代入方程(1),解得: = [0,2],即当 = 时,原函数的值域为:[0,1+ ]。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4、反函数法
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6 求函数y= 值域。
解:由原函数式可得:x =
则其反函数为:y =
其定义域为:x ≠
故所求函数的值域为:(- ∞, )
5 、函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7 求函数y = 的值域。
解:由原函数式可得: =
>0, >0
解得:- 1<y<1。
故所求函数的值域为( - 1 , 1 ) .
例8 求函数y = 的值域。
解:由原函数式可得:ysinx-cosx=3y
可化为: sinx(x+β)=3y
即 sinx(x+β)=
∵x∈R,∴sinx(x+β)∈[-1,1]。即-1≤ ≤1
解得:- ≤y≤ 故函数的值域为[- , ]。
6 、函数单调性法
例9 求函数y = (2≤x≤10)的值域
解:令y = , = ,则 y , 在[ 2, 10 ]上都是增函数。
所以y= y + 在[ 2 ,10 ]上是增函数。
当x = 2 时,y = + = ,
当x = 10 时, = + =33。
故所求函数的值域为:[ ,33]。
例10 求函数y= - 的值域。
解:原函数可化为: y=
令y = , = ,显然y , 在[1,+∞)上为无上界的增函数,所以y= y + 在[1,+∞)上也为无上界的增函数。 所以当x = 1时,y=y + 有最小值 ,原函数有最大值 = 。
显然y>0,故原函数的值域为( 0 , ]。
7、换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例11 求函数y = x + 的值域。
解:令x-1=t,(t≥0)则x= +1
∵y= +t+1= + ,又t≥0,由二次函数的性质可知
当t=0时,y = 1, 当t →0时,y →+∞。
故函数的值域为[ 1 ,+∞)。
例12 求函数y =x+2+ 的值域
解:因1- ≥0 ,即 ≤1
故可令x+1=cosβ,β∈[ 0 ,∏] 。
∴y=cosβ+1+ =sinβ+cosβ+1 = sin(β+∏/ 4 )+1
∵0≤β≤∏,0 ≤β+∏/4≤5∏/4
∴ - ≤sin(β+∏/4)≤1
∴ 0 ≤ sin(β+∏/4)+1≤1+ 。
故所求函数的值域为[0,1+ ]。
例13 求函数 y= 的值域
解:原函数可变形为:y=-
可令x=tgβ,则有 =sin2β, =cos2β
∴y=- sin2β cos2β= - sin4β
当β= k∏/2-∏/8时, = 。
当β= k∏/2+∏/8时,y = -
而此时tgβ有意义。
故所求函数的值域为[- , ] 。
例14 求函数y=(sinx+1)(cosx+1),x∈[-∏/12∏/2]的值域。
解:y=(sinx+1)(cosx+1)=sinxcosx+sinx+cosx+1
令sinx+cosx=t,则sinxcosx= ( -1)
y = ( -1)+t+1=
由t=sinx+cosx= sin(x+∏/4)且x∈[- ∏/12,∏/2]
可得: ≤t≤
∴当t= 时, = + ,当t= 时,y= +
故所求函数的值域为[ + , + ] 。
例15 求函数y=x+4+ 的值域
解:由5-x≥0 ,可得∣x∣≤
故可令x = cosβ,β∈[0,∏]
y= cosβ+4+ sinβ= sin(β+∏/4)+ 4
∵ 0 ≤β≤∏, ∴ ∏/4≤β+∏/4≤5∏/4
当β=∏/4时, =4+ ,当β=∏时,y =4- 。
故所求函数的值域为:[4- ,4+ ]。
8 数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例16 求函数y= + 的值域。
解:原函数可化简得:y=∣x-2∣+∣x+8∣
上式可以看成数轴上点P(x )到定点A(2 ),B(- 8 )间的距离之和。
由上图可知:当点P在线段AB上时,
y=∣x-2∣+∣x+8∣=∣AB∣=10
当点P在线段AB的延长线或反向延长线上时,
y=∣x-2∣+∣x+8∣>∣AB∣=10
故所求函数的值域为:[10,+∞)
例17 求函数y= + 的值域
解:原函数可变形为:y= +
上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2 ,-1 )的距离之和,
由图可知当点P为线段与x轴的交点时, y =∣AB∣= = ,
故所求函数的值域为[ ,+∞)。
例18 求函数y= - 的值域
解:将函数变形为:y= -
上式可看成定点A(3,2)到点P(x,0 )的距离与定点B(-2,1)到点P(x,0)的距离之差。即:y=∣AP∣-∣BP∣
由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边,
有 ∣∣AP1∣-∣BP1∣∣<∣AB∣= =
即:- <y<
(2)当点P恰好为直线AB与x轴的交点时, 有 ∣∣AP∣-∣BP∣∣= ∣AB∣= 。
综上所述,可知函数的值域为:(- ,- ]。 注:由例17,18可知,求两距离之和时,要将函数式变形,使A,B两点在x 轴的两侧,而求两距离之差时,则要使两点A ,B在x轴的同侧。
如:例17的A,B两点坐标分别为:(3 ,2 ),(- 2 ,- 1 ),在x轴的同侧;
例18的A,B两点坐标分别为:(3 ,2 ),(2 ,- 1 ),在x轴的同侧。
9 、不等式法
利用基本不等式a+b≥2 ,a+b+c≥3 (a,b,c∈ ),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
例19 求函y=(sinx +1/sinx)+(cosx+1/cosx)的值域
解:原函数变形为:
y=( + )+1/ +1/
= 1+ +
= 3+ +
≥3 + 2
=5
当且仅当tgx=ctgx,即当x=k∏±∏/4时(k∈z),等号成立。
故原函数的值域为:[ 5,+∞)。
例20 求函数y=2sinxsin2x的值域
解:y=2sinxsinxcosx
=4 cosx
=16
=8 (2-2 )
≤8( + +2- )
=8[( + +2- )/3]
=
当且当 =2-2 ,即当 =时,等号成立。
由 ≤ ,可得:- ≤y≤
故原函数的值域为:[- , )。
10、多种方法综合运用
例21 求函数y= 的值域
解:令t= (t≥0),则x+3= +1
(1) 当t>0时,y= = ≤ , 当且仅当t=1,即x=-1时取等号
所以0<y≤ 。
(2) 当t=0时,y=0。综上所述,函数的值域为:[0, ]。
注:先换元,后用不等式法。
例 22 求函数y= 的值域。
解:y= + = +
令x=tg ,则 = , = sin ,
∴y= + sin =- + sin +1
=- +
∴当sin = 时, = 。当sin =-1时,y =-2。
此时tg 都存在,故函数的值域为:〔-2, 〕。
注:此题先用换元法。后用配方法,然后再运用sin 的有界性。
总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
F. 高一求值域的五种方法
1.直接法:从自变量的范围出发,推出值域。
2.观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域。
3.配方法:(或者说是最值法)求出最大值还有最小值,那么值域就出来了。
例题:y=x^2+2x+3x∈【-1,2】
先配方,得y=(x+1)^2+1
∴ymin=(-1+1)^2+2=2
ymax=(2+1)^2+2=11
4.拆分法:对于形如y=cx+d,ax+b的分式函数,可以将其拆分成一个常数与一个分式,再易观察出函数的值域。
5.单调性法:y≠ca.一些函数的单调性,很容易看出来。或者先证明出函数的单调性,再利用函数的单调性求函数的值域。
6.数形结合法,其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
7.判别式法:运用方程思想,根据二次方程有实根求值域。
8.换元法:适用于有根号的函数
例题:y=x-√(1-2x)
设√(1-2x)=t(t≥0)
∴x=(1-t^2)/2
∴y=(1-t^2)/2-t
=-t^2/2-t+1/2
=-1/2(t+1)^2+1
∵t≥0,∴y∈(-∝,1/2)
9:图像法,直接画图看值域
这是一个分段函数,你画出图后就可以一眼看出值域。
10:反函数法。求反函数的定义域,就是原函数的值域。
例题:y=(3x-1)/(3x-2)
先求反函数y=(2x-1)/(3x-3)
明显定义域为x≠1
所以原函数的值域为y≠1