‘壹’ 一元一次方程6种解法是什么
6种解一元一次方程的方法:
(1)一般方法
①去分母:去分母是指等式两边同时乘以分母的最小公倍数。
②去括号:
括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。
括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。
③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。
⑤系数化为1:设方程经过恒等变形后最终成为ax=b型(a≠1且a≠0),那么过程ax=b→x=b/a叫做系数化为1。
(2)求根公式法
对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。
(3)去括号方法
①方程两边同时乘以一个数,去掉方程的括号;
②移项;
③合并同类项;
④系数化为1。
(4)约分方法
例如:(7/2)2=21/4(x-4/3)
解法:两边同时除以21/4,得到7/3=x-4/3,
求解:x=11/3。
(5)比例性质法
根据比例的基本性质,去括号,移项,合并同类项,系数化为1。
(6)图像法
对于关于x的一元一次方程ax+b=0(a≠0),可以通过做出一次函数f(x)=ax+b来解决。一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。
‘贰’ 怎么计算一元一次方程
(1)解一元一次方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.
(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.
(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.
‘叁’ 一元一次方程公式
一元一次方程公式形如:y=ax+b,其中a为一次项系数,b为常数。
‘肆’ 一元一次方程6种解法
一元一次方程6种解法如下:
(1)一般方法:去分母、去括号、移项、合并同类项、系数化为1;
(2)求根公式法;
(3)去括号方法:方程两边同时乘以一个数,去掉方程的括号、移项、合并同类项、系数化为1;
(4)约分方法;
(5)比例性质法:根据比例的基本性质,去括号,移项,合并同类项,系数化为1;
(6)图像法。
学习一元一次方程是解决二元一次方程组的基础,也是初中代数中的一个重点知识,掌握了解题技巧,一元一次方程就会很简单。解一元一次方程常用的方法技巧:整体思想、换元法、裂项、拆添项等。当方程中的系数用字母表示时,这样的方程叫做含有字母系数的方程,也叫含参数的方程。
‘伍’ 一元一次方程的公式
只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。
‘陆’ 一元一次方程最简单解法
我首先要说明下“一元一次方程”的重要性。它是进入中学阶段最基础也是最重要的板块。
一元一次方程的重要性
“一元一次方程”是后续“二元一次方程组”以及“一元二次方程”的基础,而“一元二次方程”是整个初中代数最重要的一个内容。想要学好“一元二次方程”,首先必须先学好“一元一次方程”。
“一元一次方程”不是在小学基础上简单的知识升级,而是整个思维方式的转变。切入点和思维逻辑都有别于小学的数学。
举个简单的例子,古代有一个非常着名的题目——鸡兔同笼:一个笼子里有很多鸡和兔,如果把它们的头加起来一共是35个,如果把他们的腿加起来一共有94条腿,那么请问鸡和兔各有多少个?
这道题目如果用小学的方式去解,是个非常难的题目。在古代数学家眼里这都是难题。但我们用“一元一次方程”去解,这就是入门题。非常简单。2x+4(35-x)=94解得鸡是23只,兔是12只。(这个题目我在后面有详细的解题步骤,现在大家忽略而过)
所以进入中学,数学思维需要一个根本性地改变。
以上我们了解了“一元一次方程”的重要性以后,就正式开始学习“一元一次方程”。
一.首先,我们来学习一下“一元一次方程”的定义。也就是它到底是什么?
用手机的定义来解析一元一次方程的定义
为了让大家更清楚地理解定义,我这里用大家很熟悉手机的例子来比喻。
我们首先给手机下个定义:手机是由CPU,内存,摄像头,屏幕等部件组成的,可以用来通话,视频,游戏,支付等功能的电子产品,这里的定义包括了三个部分:
1. 首先手机是一个电子产品
2. 其次他是由CPU,内存,摄像头,屏幕等部件组成的。
3. 第三他的功能可以用来通话,视频,游戏,支付等。
同样的方式我们再来看看一元一次方程的定义:“一元一次方程”是包含了一个未知数,并且这个未知数的最高次数为1,且等号两边都为整式的等式。可以用来解决收益问题,行程问题,工程问题,数字问题等问题的等式。它也包括了三个部分。
1. 首先“一元一次方程”是一个等式。
2. 它包含一个未知数(x)并且这个未知数的最高次数是1,一个等号(=),并且等号两边都为整式(分母没有x的,比如1/x这就不是整式)。第二部分相当于手机的硬件,也就是显示出来,我们能看的到的。式子里面有x,而且x的次数为1次。
3. 它的作用可以用来解决收益问题,行程问题,工程问题,数字问题等。
那么这样解释听起来是不是很清楚了呢!
二.其次,我们来学习下“一元一次方程”解题的三个步骤:
解题三步骤(第2步可以归入第一步)
1. 读题。把题目中的文字转化成数字或者式子的条件。还是以上面的“鸡兔同笼”的例子来说。(题目中有的数字就直接写入条件,没有具体数字的设成x)
我们都知道鸡是1个头,2条腿,兔是1个头,4条腿,题目中没有告诉我们鸡和兔的具体头的数量和腿的数量 。那么题目中的文字可以转化成的条件就是:假设鸡是x只,那么鸡头就有x个,鸡腿就是2x。兔头35-x(兔头和鸡头的总和是35,那么兔头就是总数-鸡头),兔腿是4(35-x),这样就把题目中的文字转化成了数字或者式子的条件。
2. 列式。就是找出各个条件之间的关系。
这里有两个关系,一个是鸡头+兔头=35,另一个是鸡腿+兔腿=94,这样就可以列出两个式子:x+(35-x)=35 ,2x+4(35-x)=94。显然,第一个式子化简以后x消失了,没有x的方程不是“一元一次方程”。不符合题意,第二个方程才是正解。
3. 计算。2x+4(35-x)=94是一个非常简单的一元一次方程,这里的计算只包含了去括号,移项,合并同类项,去x的系数四步。
具体为第一步:把4(35-x)这一项的括号去掉。得到2x+140-4x=94(去括号)
第二步:把含有x的项和常数项分别移到一起。得到2x-4x=94-140(移项)
第三步:把同类项合并。得到-2x=-46(合并同类项)
第四步:两边同除以-2。得到x=23(去x前的系数-20)
到这里,我们整个解题过程就讲完了。当然,这是一个简单题,大多数同学都会,如果我们的题目再复杂一点,又会怎么样呢?接下去的文章,我就以收益题,行程题,工程题,数字题等各种具体例子来详细解说。
‘柒’ 一元一次方程式公式
ax+b=0或ax=b(a≠0)
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。
(7)一元一次方程计算公式简便方法扩展阅读:
方程意义
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。
而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。例如在丢番图问题中,仅使用整式可能无从下手,而通过一元一次方程寻找作为等量关系的“年龄”,则会使问题简化。
一元一次方程也可在数学定理的证明中发挥作用,如在初等数学范围内证明“0.9的循环等于1”之类的问题。通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。
‘捌’ 一元一次方程怎么计算
这样计算:
1、去分母
在方程两边各项都乘以各分母的最小公倍数,依据等式的性质使方程的系数化为整数。
2、去括号
先去小括号,再去中括号,最后去大括号。
3、移项
把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项要变号);通常把含有未知数的各项都移到等号的左边,而把不含未知数的各项都移到等号的右边,移项的依据是等式的性质。
4、合并同类项
把方程变成ax=b(a≠0)的形式。
5、系数化为1
在方程两边都除以未知数的系数a,得到方程的解。
一元一次方程概念
只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
判别方法
判断方程是否为一元一次方程,需同时满足:只含有一个未知数;末知数的次数都是1;是整式方程三个条件。
‘玖’ 一元一次方程怎么计算简便
2(10-0.5x)= -(1.5x+2)
20-x=-1.5x-2
1.5x-x=-2-20
0.5x=-22
x=-44
‘拾’ 一元一次方程怎么算
一元一次方程其实就是用天平的原理(两边同时+、-、×、÷同一个数,两边依旧相等)来解决就可以了,如2x+3=11这道题,如果要使左边只剩下一个2x,而右边也等于2x,就要把两边的3都减掉.减掉3后,左边就只剩下一个2x了,而右边减3后,还剩下8.而现在要使两边都只剩下一个x的话,就要把2x里的2除掉.因为2x是简写,它应该是2×x,所以就要除以2就等于一个x了.而根据天平的原理,左边除以2,右边也要除以2,所以右边的8除以2后就等于4.这道题的解就是x=4.列式如下:
2x+3=11
2x+3-3=11-3
2x=8
x÷2=8÷2
x=4
注意:解一元一次方程一定要写解的,并且等于号要对齐.
谢谢!望采纳!