Ⅰ 口算怎么做简单
看到过市场里买菜的阿姨吗?不用计算器,无论买多少菜,都不需要用计算器。靠得是什么?就是过硬的基本功,口算是基础,怕也没有用,这是为了你的将来做准备,你不可能总是用笔算,那样你的时间就白白浪费了,在起跑线上你就输了!所以,现在开始,就要加强这方面的训练。绳锯木断,水滴石穿,你一旦掌握了,就会发现他并不恐惧,而且会和你很友好,数学,就是这样奇妙无穷!
乘法中 因式中有2和5的先相乘
15×15(5+5=10 1=1)=1×(1+1)×100+5×5=225
37×33(3+7=10 3=3)=3×(3+1)×100+3×7=1221
Ⅲ 怎样练习口算
1、口算练习要经常练口算练习一要天天练、课课练。
可以在每堂课开头先安排2~3分钟,口算20~30道题,日积月累才能形成学生的口算能力。二要视算、听算结合练。视算有一定的直观性,听算在脑中反映题目与计算过程,两者结合,手、脑、口、眼并用,提高口算能力。三要形式多样变化练。要针对儿童特点,形式要多样化,以此激发学生兴趣,调动他们的积极性,并尽量让全体学生参与。
2、加强算理教学。
从小学生的思维特点看,小学生数学要经过从具体到抽象,又从抽象到具体的过程。所以,要掌握口算方法,关键是理解算理。以新授9+3=?为例。学生通过操作小棒得出计算过程,并要求学生详细说出计算过程:因为9加1得10,把小数3分成1和2,9加1得10,10再加2得12,这是具体题目9+3的计算。然后,经过一段时间的计算练习后,师生共同找出规律,让学生形成一种简缩思维:9加1得10,把小数3分出1剩2得12,这是从具体到抽象。最后,省略思维过程,直接得9+3=12,又从抽象到具体。这样使学生理解和掌握计算方法,保证初级口算正确,通过以后的练习,就可以达到一定的熟练程度。
3、要注意练习设计的合理性。
低年级学生口算能力形成的心理过程,可以分为三个阶段。第一阶段是能正确地以表象为中介抽象地口算,能按照口算方法一步步清晰地思考。第二阶段是降低表象的清晰度,提高口算的速度。第三阶段是无意识口算,使口算自动化。 在第一阶段,我们要注意控制练习量,放慢口算速度,确保口算准确以及口算思考过程的清晰度。主要采用口算口答形式,注意多让学生讲讲口算的思考过程,使每个学生清晰地认识到算什么,怎样算以及为什么这样算,为进一步形成口算能力打下基础。 在第二阶段,我们适当增加口算练习量,逐步提出限时口算的要求,并针对错误率高的算式进行重点练习,主要采用口算笔答形式。 在第三阶段,坚持每天2~3分钟口算基本训练,并根据遗忘规律,新旧知识结合练,巩固已形成的口算能力。
4、口算训练要突出重点,突破难点,对症下药,并注重算法指导。
在口算训练中,应精先习题,有的放矢,边计算边让学生说说如何计算出结果的?有没有更简便的方法?从口算题中你学会了什么?这样,既面对了全体学生,又照顾到中差生,起到了事半功倍之效。如:一年级学生对15-4=11与14-5=9两种类型的题目容易混淆,放在一起对比练,并要求学生比较两道题的不同;口算中经常出错的题如6+3,7+2,4+3,8-2,9-7等反复练;9+4+1=?告诉学生先算9+1得10,再算10加4得14比较简便;9乘几的积就等于几十减几等等。
5、重视练习效果的反馈。
为了及时掌握口算情况和效果,我们应按照教学要求,拟定口算能力量化标准,利用这个量化标准及时反馈,及时调控。如明确告诉学生每次口算练习所要达到的标准,并及时鼓励,及时纠错,及时督促,不断激发学生练习口算的动机,从而最大限度地调动全体学生口算练习的积极性与主动性。
Ⅳ 数学口算简单的方法
一
用“凑十法”口算
根据式题的特征,应用定律和性质使运算数据“凑整”:
1、加数“凑整”。
如14+5+6=?启发学生:几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。
2、运用减法性质“凑整”。
如50-13-7,启发学生说出思考过程,说出几种口算方法并通过比较,让学生总结出:从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。这种口算比较简便。
3.连乘中因数“凑整”。
如25×14×4,25与4的积是100,可直接口算出结果是140。
二
运用“分解法”口算
就是把题目中的某数“拆开”分别与另一个数运算,如25×32,原式变成25×4×8=10×8=80。
三
运用一些速算技巧进行口算
1.首同尾合10的两个两位数相乘的乘法速算。
即用其中一个十位上的数加1再乘以另一个数的十位数,所得积作两个数相乘积的百位、千位,再用两个数个位上数的积作两个数相乘的积的个位、十位。如:14×16=224(4×6=24作个位、十位、(1+1)×1=2作百位)。
2.头差1尾合10的两个两位数相乘的乘法速算。即用较大的因数的十位数的平方,减去它的个位数的平方。如:48×52=2500-4=2496。
3.采用“基准数”速算。
如623+595+602+600+588可选择600为基数,先把每个数与基准数的差累计起来,再加上基数与项数的积。
4.掌握一些运算规律。
例如,两个分母互质数且分子都为1的分数相减,可以把分母相乘的积作分母,把分母的差作分子;两个分母互质数且分子相同,可以把分母相乘的积作为分母,分母相减的差再乘以分子作分子,等等。
Ⅳ 快速口算的方法是什么
一、一种做多位乘法不用竖式的方法。我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:即个位上的数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十位数字的积。例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。~例如:
14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1 试着做做看下面的题:
12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积。“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确。我们来看两个算式:21×61=41×91= 用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281。第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731。 试试上面题目吧!然后再看看下面几题 61×91= 81×81= 31×71= 51×41=一、10-20的两位数乘法及乘方速算方法:尾数相乘,被乘数加上乘数的尾数(满十进位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾数相乘2X3=6 (2)被乘数加上乘数的尾数12+3=15 (3)把两计算结果相连即为所求结果【例2】 1 5X 1 5------------2 2 5(1)尾数相乘5X5=25(满十进位)(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22(3)把两计算结果相连即为所求结果二、两位数、三位数乘法及乘方速算a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾数相乘4X6=24直接写在十位和个位上(2)首数5加上1为6,两首数相乘6X5=30(3)把两结果相连即为所求结果【例2】 7 5X 7 5----------5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数7加上1为8,两首数相乘8X7=56(3)把两计算结果相连即可b.尾数是5的三位数乘方速算方法:尾数相乘,十位数加一,再将两首数相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数12加上1为13,再两数相乘13X12=156(3)两计算结果相连c.任意两位数乘法方法:尾数相乘,对角相乘再相加,首数相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾数相乘7X2=14(满十进位)(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)(3)首数相乘3X6=18加上十位进上的4为18+4=22(4)把计算结果相连即为所求结果b.任意两位数及三位平方速算方法:尾数的平方,首数乘尾数扩大2倍,首数的平方[例] 2 3X 2 3---------5 2 9 (1)尾数的平方3X3=9(满十进位)(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)(3)首数的平方2X2=4加上十位进上的1为5(4)把计算结果相连即为所求结果c.三位数的平方与两位数的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾数的平方2X2=4写在个位(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)(3)首数的平方13X13=169加上十位进上的5为174(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗三、大数的平方速算方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4X 9 4-----------8 8 3 6(1)94与100相差为6(2)差数6的平方36写在个位和十位上(3)用94减去差数6为88写在百位和千位上(4)把计算结果相连即为所求结果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神气吧!速算秘诀:(就以第一题为例好啦)(1)分别取两个数的第一位,而后一个的要加上一以后,相乘。[5×(5+1)]=30;(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了。5×5=25;(3)3025!Bingo!其它依次类推就行了。仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的。这样的速算秘诀只能够适用于这种情况的算式。所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何数都能算的。一、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我们再做一些复杂一点的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9。
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?
我们先把上面这些数变一变。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我们再把上面的数变一变
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
为了找到计算上面问题的方法,我们把上面的式子再变一次。
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
现在我们来算上面的问题:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
这样就有了
18 × 12 = 2 × 108 = 216
是不是把一个两位数的乘法变成了一位数的乘法?
而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自己会算了。
上面我们的计算好象很麻烦,其实现在总结一下就简单了。
看下一个题目:
27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)
= 3 × 108 = 324
36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)
= 4 × 108 = 432发现什么规律没有?下面的题目好象不用算了,都是把前面的数加1再乘108
45 × 12 = 5 × 108 = 540
54 × 12 = 6 × 108 = 648
63 × 12 = 7 × 108 = 756
72 × 12 = 8 × 108 = 864
81 × 12 = 9 × 108 = 972
我们再看看上面的计算结果,发现什么了吗?
我们把一个两位数乘法变成了一位数的乘法。其中一个乘数的个位和十位的和等于9,这样变化以后的数中一位数的那个乘数,都是正好比前面的乘数大1。
而后面的一个两位数也有一个特点,就是一个连续数(12),1和2是连续的。
能不能找到一种更简便的计算方法呢?
为了找到一种更简便的算法。我在这里引入一个新的名词——补数。
什么是补数呢?
1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;
6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;
从上面的几个加法可见,如果两个数的和等于10,那么这两个数就互为补数。
也就是说1和9为补数,2和8为补数,3和7为补数,4和6为补数,5的补数还是5就不用记了,只要记4个就行了。
现在我们再看看上面的计算结果:
拿一个 63 × 12 = 7 × 108 = 756 举例吧
结果的最前面一个数是7(不用管它是什么位),是不是正好等于第一个乘数(63)中前面的数加1? 6 + 1 = 7
结果的后两位怎么算出来的呢?如果拿这个7去乘后面那个乘数(12)的最后一位的补数(8)会是什么?7 × 8 = 56
呵呵,我们现在不用再分解了,只要把第一个乘数(63)中前面的数加1就是结果的最前面的数,再把这个数乘以后面那个乘数(12)的最后一位的补数(8)就得到结果的后两位。
这样行吗?如果行的话,那可真是太快了,真的是速算了。
试一试其他的题:
18 × 12 =
第一个乘数(18)的前面的数加1:1 + 1 =2 ——结果最前面的数
拿2去乘第二个乘数(12)的后面的数(2)的补数(8):2×8=16
结果就是 216。看一看上面对吗?
27 × 12 =
结果最前面的数——2 + 1 =3
结果最后面的数——3 ×8 = 24
结果 324
36 × 12 =
结果最前面的数——3 + 1 =4
结果最后面的数——4 ×8 = 32
结果 432
45 × 12 =
结果最前面的数——4 + 1 =5
结果最后面的数——5 ×8 = 40
结果 540
54 × 12 =
结果最前面的数——5 + 1 =6
结果最后面的数——6 ×8 = 48
结果 648
63 × 12 =
结果最前面的数——6 + 1 =7
结果最后面的数——7 ×8 = 56
结果 756
72 × 12 =
结果最前面的数——7 + 1 =8
结果最后面的数——8 ×8 = 64
结果 864
81 × 12 =
结果最前面的数——8 + 1 =9
结果最后面的数——9 ×8 = 72
结果 972
计算结果是不是和上面的方法一样?从结果中还能看出什么?
是不是计算结果的三位数的和还是等于9或者是9的倍数?
自己算一下看是不是?
看我这篇文章,下面我给你们出几个题,看你们掌握了方法没有。
54 × 34 = ? 18 × 78 = ? 36 × 56 = ?
72 × 89 = ? 45 × 67 = ? 27 × 45 = ? 81 × 23 = ?
上面的题目如果再扩展一下,把后面的连续数扩大到多位数。
如:123、234、345、2345、34567、123456、23456789等等
看一看有没有什么运算规律,或许你们都能找出快速的计算方法。
如果能的话,象
63 × 2345678 =
这样的题目你们用口算就能快速计算出结果来。
Ⅵ 如何使数学口算题简便计算
(x5)的平方等于x(x+1)后面再加25,譬如35*35=[3*(3+1)]25=1225
一个数乘以11技巧,两位数,两个数加起来放中间就是答案,譬如24*11=264等等
两位数乘以101技巧,把这个数写两遍,譬如39*101=3939(三位数乘以1001也是这样)
十几乘以十几,12*14=1(2+4)(2*4)=168
Ⅶ 123×11有什么简便的口算方法
这道题简便的口算方法是把11看成十加一。123×十等于1230,123×一等于123然后相加是1350。
Ⅷ 数学简便计算,有哪几种方法
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
Ⅸ 口算有什么快速方法呢
1、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
2、个位是1的两位数相乘
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
3、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
4、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
5、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。