导航:首页 > 知识科普 > 主要的特征提取方法有哪些

主要的特征提取方法有哪些

发布时间:2022-07-05 19:45:38

‘壹’ 数据特征提取方法有哪些

动机
特征工程通常被称为创建性能更好的机器学习模型的秘密武器。只要有一个出色的特征就可能是你赢得Kaggle挑战的门票!特征工程的重要性对于非结构化的文本数据更为重要,因为我们需要将自由流动的文本转换成一些数字表示形式,然后机器学习算法就可以理解这些数字表示形式。即使出现了自动化的特征工程,在将不同的特征工程策略应用为黑盒模型之前,你仍然需要理解它们背后的核心概念。永远记住,“如果给你一盒工具来修理房子,你应该知道什么时候使用电钻,什么时候使用锤子!”

理解文本数据
我相信你们所有人都对这个场景中包含的文本数据有一个合理的概念。请记住,文本数据总是可以以结构化数据属性的形式存在,但通常这属于结构化分类数据的范畴。

在这个场景中,我们讨论的是单词、短语、句子和整个文档形式的自由流动文本。本质上,我们有一些句法结构,比如单词组成短语,短语组成句子,句子又组成段落。然而,文本文档没有固有的结构,因为可以有各种各样的单词,这些单词在不同的文档中会有所不同,而且与结构化数据集中固定数量的数据维度相比,每个句子的长度也是可变的。

‘贰’ 遥感图像特征抽取主要有几种方法 扫什么条件下可以使用特征抽取方法

主要有:地物边界跟踪法;形状特征描述与提取;地物空间关系特征描述与提取。
遥感图像解译,除了利用地物的光谱特征外,还需利用地物的形状特征和空间关系特征,因此需要提取图像的其他特征。
对于高分辨率遥感图像,可以清楚地观察到丰富的结构信息,如城市是由许多街区组成的,每个街区又由多个巨星楼房构成,其中人造地物具有明显的形状和结构特征,如建筑物、厂房、农田田埂,因此可以设法去提取这类地物的形状特征及其空间关系特征,以作为结构模式识别的依据

‘叁’ 人脸图像特征提取原理是什么

人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。说到人脸识别,大部分的人第一反应是“刷脸”,我们来看下人脸识别的定义:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。通过变换增强图像阴影或降低光区域的灰度值范围,从而把人脸图像的整体亮度变换到一个预先定义的标准人脸图像。

‘肆’ 图像视觉特征的提取和表达有哪些方法


1


图像视觉特征的提取和表示

1.1

引言

图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和
处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,
图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。

图像底层视觉特征一定程度上能够反映图像的内容,
可以描述图像所表达的
意义,
因此,
研究图像底层视觉特征是实现图像分类与检索的第一步。
一般来说,
随着具体应用的不同,
选用的底层特征也应有所不同,
在特定的具体应用中,

同底层视觉特征的选取及不同的描述方式,
对图像分类与检索的性能有很大的影
响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求:

(1)
提取简单,时间和空间复杂度低。

(2)
区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反
之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。

(3)
与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相
近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。

(4)
抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,
旋转不变性。

本章重点讨论当前比较成熟的特征提取方法,
在此基础上选取合适的特征提
取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,
纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。

1.2

颜色特征的提取和表示

颜色是图像视觉信息的一个重要特征,
是图像分类与检索中最为广泛应用的
特征之一。
一般来说同一类别的图像之间颜色信息具有一定的相似性,
不同类别
的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,
有对大小、
方向不敏感等特点。
因此,
颜色特征的提取受到极大重视并得到深入
研究。
本章首先介绍几种常用的颜色空间模型,
然后介绍各种颜色特征提取和表
示方法。

1.2.1

颜色空间模型

为了正确地使用颜色这一特征,
需要建立颜色空间模型,
通常的颜色空间模
型可用三个基本量来描述,
所以建立颜色空间模型就是建立一个
3-D
坐标系,

中每个空间点都代表某一种颜色。
通常来说,
对于不同的应用,
应该选取不同的
颜色空间模型。常用的颜色空间模型主要有:
RGB

HIS

HSV

YUV

YIQ

Munsell

Lu
*
v
*

La
*
b
*
等。
颜色空间模型的选取需要符合一定的标准,
下面就这
一标准和最常用的颜色空间模型作一些介绍。

文献
[
错误!未找到引用源。
]
中介绍了选择颜色空间模型的标准主要有以下
几个:

(1)

观察角度的鲁棒性

(2)

对物体几何性质的鲁棒性

(3)

对光照方向改变的鲁棒性

(4)

对照强度改变的鲁棒性

(5)

对照明的光谱能量分布
(SPD)
的鲁棒性

(6)

高分辨能力

(7)

对物体遮掩和杂乱的鲁棒性

(8)

对图像噪声的鲁棒性

‘伍’ 光谱维特征提取方法

特征是对象所表现出来的各种属性与特点。在遥感图像分析中特征提取可以从两个意义上来实施:一种是按照一定的准则直接从原始空间中选出一个子集(即子空间),实践中的波段选择即属于此类;另一类是在原始特征空间和新特征空间之间找到某种映射关系P,P:x→y,将原始特征空间x={x1,x2…,xn} 映射到维数降低了的特征空间y中去,y={y1,y2…,ym},m<n。对于用于分类目的的特征提取,好的特征提取方法能使同类物质样本的分布具有密集性,而不同类物质的样本在特征空间中能够隔离分布,为进一步分类打下良好基础。因为高光谱数据具有波段多、波段间相关性高及数据冗余度高等特点,所以对高光谱遥感数据的特征提取具有特殊意义。遥感图像特征提取包含的内容非常广泛,提取方法也很多,光谱维特征提取和空间维特征提取是表现图像特征提取的两种主要方法。这里主要介绍适用高光谱数据的一些光谱维特征提取方法,主要涉及主成分分析法,典范变量分析法及改进的CA方法。

主成分分析是一种把原来多个指标化为少数几个相互独立的综合指标的一种分析技术。对波段间高度相关的数据非常有效(Cloutis,1996)。PCA技术已被用在不同的地质遥感项目,包括宽波段和高光谱数据(Lee等,1990;Resmini等,1997,Fujimura & Kiyasu,1994)。由于高光谱数据波段间的相关性、高冗余度,直接利用所有的原始波段作分类或特征提取显得很不经济。因此先对原始数据作PCA变换,然后对少数几个综合指标(成分)分析将会收到事半功倍的效果。在高光谱数据分析中,PCA技术可将总体大部分方差集中在前面少数几个主成分中。于是,人们利用这少数几个主成分做一些地质分析,如利用前3个主成分的假彩色合成图判读地质矿物信息,进而成图。但在主成分合成图上的彩色在不同的图像上是变化的,并不代表一定的地质矿物成分,除非有相似的地质露头和覆盖,更困难的是,我们不能根据岩石、土壤和矿物等反射光谱作指示来判读主成分合成图上的彩色。另外,确定每个主成分的物理意义也相当困难。再者,矿物的显着变异可能仅引起光谱的细微差异,这种细微差异常被淹没在高方差的主成分中而被忽略。因此PCA可能较适宜用来粗略地识别光谱差异显着的矿物和岩性类别,而不是定量的矿物识别和制图(Coutis,1996)。

Jia&Richards(1999)发展的分块主成分分析法用于特征提取,取得了一定的分类和显示效果。类似3.3,4中建立的SMLDF判别函数的思想,他们将全部波段的相关阵按照相邻波段的相关性分成若干块。一般高度相关的块沿对角线分布,而相关性低的块远离对角线。块矩阵本身集合了相邻波段间相关性高的波段。因此沿相关矩阵对角线可分成若干块(波段组),并对每组进行主成分变换,最后将每组的重要特征(主成分)再重新组合在一起作为进一步主成分分析与特征选择之用。

典范分析也是将较多的变量化为少数几个典范变量,通过这较少的典范变量之间的相关性来综合地描述两个多元随机变量之间关系的一种数学方法(唐守正,1986)。假如我们有两个多元随机变量(设x为p维随机变量,y是q维随机变量),如何描述这两个多元随机变量之间关系的紧密程度呢?直接的方法就是逐一计算两个多元随机变量各分量之间的相关系数或其他相似系数,可计算出p×q个相关系数。但这样做既繁琐,也不能本质地说明这两个随机变量总体相关水平。类似主成分分析,从每个多元随机变量中造就数个“综合变量”——典范变量。在求算两随机变量各自典范变量过程中得到的特征根即为对应典范变量对的典范相关系数。如果将非零特征根按从大到小排列,则最大的特征根即为第一对典范变量(分别对应x和y)的相关系数,如果典范相关系数越大,则说明这一对典范变量关系越紧密。一般在实践中只取前面k(k<p,q)个典范相关系数和典范变量进行分析,舍去后面的典范变量已无关紧要,这达到了特征提取的目的。在利用高光谱数据进行岩性识别分类时,首先可以将高光谱图像数据分成若干未知岩性的类别,然后在每个类别中抽取一定的样本(象元)数,同时抽取已知岩性一定的样本数,组成两个类似前述的多元随机变量(一个为已知岩性,另一个为未知岩性)的样本并计算它们前面数对典范变量。如前面数对典范变量(通常为3对)关系紧密(反映在它们相应的特征根上),这个未知岩性的类别就很有可能与已知岩性为同类岩性,反之就可能不是。实践中前面数对典范变量关系紧密程度靠经验裁定。以此类推,可以将研究区内所有未知岩性的类别与已知岩性的类别求算两两典范变量对,并根据它们各自的相关紧密程度和判据决定未知岩性类别的归属。

PCA主要想最大限度地将不同类别分开,而典范分析则是在低维变量间寻找能代表高维变量的相关性,以达到分类、识别目标物的目的。典范分析在高光谱地质应用中潜在的功用与PCA技术大部分是一致的。

刘建贵(1999)在分析K-L变换性质的基础上,根据高光谱数据用于城市目标物识别提取的特点,提出了面向分类的特征提取的CA改进方法。选择适当的变换矩阵,同时考虑类内与类间距离的CA方法,设法使原特征空间的各类的样本点在光谱维上的投影能使类间距离与类内距离的比值达到最大。这种比值称为广义瑞利商。根据这一原则来决定变换矩阵的选择。刘建贵(1999)用这种改进的方法实施对北京市沙河镇城市地物特征的提取。具体处理过程:①对原始高光谱图像进行预处理,得到相对反射率图像;②选择最终成分光谱,即需要分类的类别数,最终成分光谱根据图像及地面调查的情况进行,共找出11个类别;③对每一类统计出均值向量和协方差阵;④求出每两个类别对之间的类间和类内距离,利用CA变换方法求出变换特征;⑤求出该两个类别对应于每个原始波段的巴氏距、加载系数(刘建贵,1999)以及变换域每个特征的巴氏距、每个特征度量维上的类间类内距离比,加载系数可通过CA变换成分与波段间的相关性求算;⑥找出最优特征。实验结果表明这种特征提取方法非常有效。采用这种方法,提取的特征能够增加样本的类内凝聚度和扩大类间距离,同时消除波段问的相关性,因而能改善分类性能。

‘陆’ 摄影中特征提取技术是怎么提取的

特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。

‘柒’ 图像的特征提取都有哪些算法

图像的特征可分为两个层次,包括低层视觉特征,和高级语义特征。低层视觉特征包括纹理、颜色、形状三方面。语义特征是事物与事物之间的关系。纹理特征提取算法有:灰度共生矩阵法,傅里叶功率谱法颜色特征提取算法有:直方图法,累计直方图法,颜色聚类法等等。形状特征提取算法有:空间矩特征等等高级语义提取:语义网络、数理逻辑、框架等方法

‘捌’ 图像之间的特征差别不是很大,应该怎么提取其特征

图像特征特点及常用的特征提取与匹法
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹法
(1)
颜色直方图
其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2) 颜色集
颜色直方图法是一种全局颜色特征提取与匹法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系。

‘玖’ 集和几种常用的特征提取方法,常用的分类算法

竞争性自适应重加权算法(CARS)是通过自适应重加权采样(ARS)技术选择出PLS模型中回归系数绝对值大的波长点,去掉权重小的波长点,利用交互验证选出RMSECV指最低的子集,可有效寻出最优变量组合。

‘拾’ 简要说明深度学习特征提取具体是怎么实现的

常用的方法有两大类:
1.inverted index:将特征向量聚类成codewords,相当于把浮点向量离散化到一维或者多维的格子里,每个格子对应一个codewords,查找时离散化到格子里再更精细地查找。
2.哈希:哈希成二进制比特串之后用multi-index的数据结构来做汉明空间内的最近邻搜索,或者直接穷举地查找。

阅读全文

与主要的特征提取方法有哪些相关的资料

热点内容
翡翠抛光粉真假鉴别方法 浏览:795
如何给干核桃仁脱皮最佳方法 浏览:449
关于关系的研究方法有哪些 浏览:930
氧氟沙星滴眼液使用方法 浏览:561
金矿石化学分析方法 浏览:918
白酒发酵的方法和图片 浏览:157
手机微信挣钱的方法 浏览:288
速成钢胶棒的使用方法 浏览:954
华为横屏设置在哪里设置方法 浏览:554
筋膜炎用什么方法检查 浏览:176
真菌蘑菇稻草种植方法 浏览:496
胯部分离连接方法 浏览:942
高程测量的方法中高差计算公式 浏览:249
食用百合养殖方法和技巧 浏览:199
大数据集成分析方法 浏览:938
生产质量管控方法有哪些 浏览:306
换电脑最快方法 浏览:870
水蒸气的体积计算方法 浏览:588
拌面如何和面的方法 浏览:891
如何提高武功的方法 浏览:660