导航:首页 > 知识科普 > 高中数学方法有哪些

高中数学方法有哪些

发布时间:2022-07-05 14:52:39

‘壹’ 高中的数学是需要一定的学习方法的,你知道哪些方法呢

数学是我们从小学到大、与生活息息相关的一门实用性很强的学科,也是让人学起来头疼的科目,尤其是高中数学。与初中数学相比,高中数学在注重定量计算的同时,特别强调变量和集合,内容更多、更抽象。作为高考必考的科目,数学一直以来都是属于拉开分数的重要科目,也是影响总体高考成绩的关键。但是,无论高中数学多么难,只要是一门学科就必然会有其学习规律。对于高中数学学习,有以下几种好的方法。

抓好课前预习。在老师上课前,要将即将要学习的内容认真地预习一遍,提前熟悉相关概念及解题技巧,对于预习时遇到不懂的地方要注意标记下来。上课时专心听讲,提高课堂学习效率。把老师课堂上所讲的内容牢固的记忆下来,要尽可能做笔记,把难点、重点知识点做好记录。对于老师在课堂上讲到的其他解题方法更加要记好。

注重复习总结。对于多次考试或者练习出现的错题,或者在某一个类型题目经常犯错的地方,要着重加强复习,对解题方法加以巩固。必要时,可以隔三岔五巩固一次,通过不断地反复地复习总结,确保不在同一个地方犯同样的错误。

‘贰’ 高中数学教案的教学方法有哪些

1.讲授法是一种教学方法,教师使用口语来描述情境,叙述事实,解释概念,论证原则和澄清规则。

2..谈话法又称回答法,是通过教师和学生之间的对话传播和学习知识的方法。其特点是教师指导学生利用现有的经验和知识回答教师提出的问题,获取新知识或巩固和检查所获得的知识。

3.讨论方法是一种方法,使整个班级或小组围绕某个中心问题发表自己的意见和看法,共同探索,互相激励,进行头脑风暴和学习。

4.演示方法是一种教学方法,教师通过现代教学方法向学生展示物理或物理图像进行观察,或通过示范实验,使学生获得知识更新。它是一种辅助教学方法,通常与讲座,对话,讨论等结合使用。

5.练习法是学生在教师指导下巩固知识,培养各种学习技能的基本方法。这也是学生学习过程中的一项重要实践活动。

6.实验法是一种教学方法,学生在教师的指导下使用某些设备和材料,通过操作引起实验对象的某些变化,并通过观察这些变化获得新知识或验证知识。一种常用于自然科学学科的方法。

7.实习是一种教学方法,学生可以使用某些实习场所,参加某些实习,掌握一定的技能和相关的直接知识,或者验证间接知识并全面应用所学知识。

‘叁’ 高中数学经典解题技巧有哪些

数学解题的一些技巧:

1、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

3、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。

解题时需要注意的问题:

1、精选题目,避免题海战术

只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2、认真分析题目

解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。

3、做好题目总结

解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。

‘肆’ 高中数学答题技巧有哪些

高中数学解题技巧主要有以下几种方法:

1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。


知道孩子数学学不好的原因:

1、不要让孩子被动学习,还有很多同学在上了高中之后还想初中,那样每天吊儿郎当,这是跟随着老师的思路。自己没有一些衍生,之前没有学习方法,在下课了也不会找。道练习题去练习,就等着上课,并且可前面不会用写对老师上课的内容都不知道上课光想着记笔记,没有思路的学习是没有成效的。

2、老师上课的时候就是把这个知识表达的清楚一点,分析一下重点和难点。然而还有很多学生上课不专心听课。对很多药店也都不知道,只是笔记记了一大堆,自己也看不懂问题还有很多,在课后也不会进行总结。只是快点儿写作业。写作业的时候,他们也就是乱套提醒他们对概念,法则都不了解。做题也只能是碰巧的做。

‘伍’ 学好高中数学的方法和技巧有哪些

对于高中数学学习,我推荐以下3种方法。

1.抓好课前预习

常言道,凡事预则立不预则废,讲的就是做任何事情都要事先做好准备工作,学习高中数学也是如此。在老师上课前,要将即将要学习的内容认真的预习一遍,提前熟悉相关概念及解题技巧,对于预习时遇到不懂的地方要注意标记下来。上课时专心听讲,提高课堂学习效率。把老师课堂上所讲的内容牢固的记忆下来,要尽可能做笔记,把难点、重点知识点做好记录。对于老师在课堂上讲到的其他解题方法更加要记好。

2.做好学习笔记

高中数学教学不同于初中,留给老师上课的时间不多,而且还要进行整个高中三年数学知识的总体复习和讲解。因此,一般数学老师在课堂上所讲的内容基本上就是历年高考的重点之处,也是历届学生容易犯错误的地方。除了在课堂上做好笔记以外,还要在进行考试练习、平常练习时做好笔记。要把学习笔记作为教科书以外最主要的学习资料,把重要知识点以及自己没有掌握的知识点全部记下来。

3.运用题海战术

数学的解题思路和技巧具有一定的规律性,只要弄懂其中一个,基本上后续遇到同样的问题都可以按照既定的方法来解答。而摸索解题规律的最主要的方法就是多练习,说的通俗一点就是题海战术。在这里要特别纠正一个观点,不要以为题海战术就是应试教育,题海战术实际上是掌握知识技巧必不可少的一个环节。俗话说,文章不写半句空,光说不练假把式。光是记住数学知识要点,但是不具体做题,怎么检验是否真的学懂弄通了呢?所以,进行必要的练习是非常有必要的,罗马不是一天建成,学霸也不是一天练成,数学学好也并非朝夕之功夫。

‘陆’ 高中数学学习方法有哪些

高中数学学习方法:

1.抓好课前预习

在老师上课前,要将即将要学习的内容认真的预习一遍,提前熟悉相关概念及解题技巧,对于预习时遇到不懂的地方要注意标记下来。上课时专心听讲,提高课堂学习效率。把老师课堂上所讲的内容牢固的记忆下来,要尽可能做笔记,把难点、重点知识点做好记录。对于老师在课堂上讲到的其他解题方法更加要记好。

2.做好学习笔记

高中数学教学不同于初中,留给老师上课的时间不多,而且还要进行整个高中三年数学知识的总体复习和讲解。因此,一般数学老师在课堂上所讲的内容基本上就是历年高考的重点之处,也是历届学生容易犯错误的地方。除了在课堂上做好笔记以外,还要在进行考试练习、平常练习时做好笔记。

3.运用题海战术

数学的解题思路和技巧具有一定的规律性,只要弄懂其中一个,基本上后续遇到同样的问题都可以按照既定的方法来解答。而摸索解题规律的最主要的方法就是多练习,说的通俗一点就是题海战术。在这里要特别纠正一个观点,不要以为题海战术就是应试教育,题海战术实际上是掌握知识技巧必不可少的一个环节。俗话说,文章不写半句空,光说不练假把式。

4.注重复习总结

复习总结主要对已经掌握的知识点进行再学习、再记忆,以加深印象。对于多次考试或者练习出现的错题,或者在某一个类型题目经常犯错的地方,要着重加强复习,对解题方法加以巩固。必要时,可以隔三岔五巩固一次,通过不断地反复地复习总结,确保不在同一个地方犯同样的错误。

5.学会触类旁通

如前所述,数学题目的出题方式千差万别,同一个类型的题目可以有几种甚至十几种表述方式,并且各个数学知识之间具有紧密的联系。因此学会触类旁通,举一反三是确保在任意情况下都能顺利解出题目的关键。要对所学知识点进行串联,把相同或者有规律的地方记录在一起,把类似的题型或者关联性很高的题目记载在一起,便于今后的学习巩固。

‘柒’ 高中数学解题方法有哪些

1、配方法
把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

‘捌’ 高中数学学习有什么好方法

一、高中数学的特点: (1).理论加强 (2).课程增多 (3).难度增大 (4).要求提高 二、如何学好高中数学 1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、及时了解、掌握常用的数学思想和方法 学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。 (充分利用定义) 高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用“矛盾”的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ② y=y0/2 ③ 显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅 如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。 4、针对自己的学习情况,采取一些具体的措施 (1) 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中 拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2) 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3) 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化 或半自动化的熟练程度。 (4) 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化, 使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 (5) 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课 外题,加大自学力度,拓展自己的知识面。 (6) 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩 固,消灭前学后忘。 (7) 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解 题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 (8) 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学 思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 (9) 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而 不是一味地去追求速度或技巧,这是学好数学的重要问题。 学习方法的改进 5、身处应试教育的怪圈,每个教师和学生都不由自主地陷入“题海”之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要“博览群题”才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读 我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? “学而不思则罔,思而不学则殆”,在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1)是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? 二)学会思考 爱因斯坦曾说:“发展独立思考和独立判断的一般能力应当始终放在首位”,勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题 2、善于反思与反求

‘玖’ 如何学好高中数学学习方法有哪些

怎样学好高中数学?首先要摘要答题技巧

现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?

高中数学试卷

怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.

阅读全文

与高中数学方法有哪些相关的资料

热点内容
台式洗眼器使用方法 浏览:392
一般二氧化碳检测方法 浏览:12
翡翠抛光粉真假鉴别方法 浏览:795
如何给干核桃仁脱皮最佳方法 浏览:449
关于关系的研究方法有哪些 浏览:930
氧氟沙星滴眼液使用方法 浏览:561
金矿石化学分析方法 浏览:918
白酒发酵的方法和图片 浏览:157
手机微信挣钱的方法 浏览:288
速成钢胶棒的使用方法 浏览:954
华为横屏设置在哪里设置方法 浏览:554
筋膜炎用什么方法检查 浏览:176
真菌蘑菇稻草种植方法 浏览:496
胯部分离连接方法 浏览:942
高程测量的方法中高差计算公式 浏览:249
食用百合养殖方法和技巧 浏览:199
大数据集成分析方法 浏览:938
生产质量管控方法有哪些 浏览:306
换电脑最快方法 浏览:870
水蒸气的体积计算方法 浏览:588