⑴ 六年级下册数学简便计算有哪些
简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很杂的式子变得很易计算出得数。
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变,如:(2+4)×5=2×5+4×56。
除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
简便计算方法:
1、在同级运算中,可以任意交换数字的位置,但要连着前面的符号一起交换。(加法或乘法交换律)
2 、在同级运算中,加号或乘号后面可以直接添括号,去括号;减号、除号后面添括号,去括号,括号里面的要变号。(加法或乘法结合律)
3、凑一法,凑十法,凑百法,凑千法:“前面凑九,末尾凑十”。
必记:25找4凑100,125找8凑1000 (凑整思想)。
⑵ 六年级数学,10道简便计算题带答案谢谢哦∩_∩
一、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
⑶ 六年级上册数学简便计算方法有哪些
主要有六大方法:
1.“凑整巧算”——运用加法的交换律、结合律进行计算。
2.运用乘法的交换律、结合律进行简算。
3.运用减法的性质进行简算,同时注意逆进行。
4.运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
5.运用乘法分配律进行简算。
6.混合运算(根据混合运算的法则)。
乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。
乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
⑷ 六年级简便计算的窍门和技巧
1.乘法分配律,如果可以简便的括号里加某数减某数,括号外乘某数就把里面的算式拆开,分别与外面的那个数相乘(外面的也可以是乘多个数)
2.上述做法在除法里也可以应用,但是先要把外面的除某数改成乘以这个数的倒数(这里的知识点是六年级上册的分数除法)
3.乘法交换律,如果是乘法的话,可以试一试交换分数的分子或分母,除法的话,也可以变成它的倒数试一下(在分数乘法中交换分数的分子或者分母不改变积的大小)
4.乘法分配律的逆运算,看算式中有没有相同的因数,注意是乘法组,有的话可以把另外两个不同的因数加或减起来(这里用括号括上,并且注意两组乘法算式之间是加还是减)
5.上一条说的也有一种情况,就是会有一个单独的数存在(注意这里单独的数指的是他不与任何数相乘,但是他却是另外两组或一组乘法算式的那个公因数)这时我们把它看作是乘以了一,也可以括在括号里进行计算
6.还有就是除了乘法分配律,另外的乘法交换律和乘法结合律也可以在分数乘法计算中应用(当然,加法交换律和加法结合律也是可以的),看哪里可以约分,就把他们两个移动到一起计算,注意这里是不是平级运算,不是的话不可以
⑸ 六年级简便计算题100道,要有答案和过程
0.4×125×25×0.8
=(0.4×25)×(125×0.8)
=10×100=1000
1.25×(8+10)
=1.25×8+1.25×10
=10+12.5=22.5
9123-(123+8.8)
=9123-123-8.8
=9000-8.8
=8991.2
1.24×8.3+8.3×1.76
=8.3×(1.24+1.76)
=8.3×3=24.9
9999×1001
=9999×(1000+1)
=9999×1000+9999×1
=10008999
14.8×6.3-6.3×6.5+8.3×3.7
=(14.8-6.5)×6.3+8.3×3.7
=8.3×6.3+8.3×3.7
8.3×(6.3+3.7)
=8.3×10
=83
1.24+0.78+8.76
=(1.24+8.76)+0.78
=10+0.78
=10.78
933-157-43
=933-(157+43)
=933-200
=733
4821-998
=4821-1000+2
=3823
I32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
9048÷268
=(2600+2600+2600+1248)÷26
=2600÷26+2600÷26+2600÷26+1248÷269
=100+100+100+48
=348
2881÷ 43
=(1290+1591)÷ 434
=1290÷43+1591÷43
=30+37
3.2×42.3×3.75-12.5×0.423×16
=3.2×42.3×3.75-1.25×42.3×1.6
=42.3×(3.2×3.75-1.25×1.6)
=42.3×(4×0.8×3.75-1.25×4×0.4)
=42.3×(4×0.4×2×3.75-1.25×4×0.4)
=42.3×(4x0.4x7.5-1.25x4x0.4)
=42.3×[4×0.4×(7.5-1.25)]
=42.3×[4×0.4×6.25]
=42.3×(4×2.5)
=4237
1.8+18÷1.5-0.5×0.3
=1.8+12-0.15
=13.8-0.15
=13.65
6.5×8+3.5×8-47
=52+28-47
=80-47
(80-9.8)×5分之2-1.32
=70.2X2/5-1.32
=28.08-1.32
=26.76
8×7分之4÷[1÷(3.2-2.95)]
=8×4/7÷[1÷0.25]
=8×4/7÷4
=8/7
2700×(506-499)÷900
=2700×7÷900
=18900÷900
=21
33.02-(148.4-90.85)÷2.5
=33.02-57.55÷2.5
=33.02-23.02
=10
(1÷1-1)÷5.1
=(1-1)÷5.1
=0÷5.1
=0
18.1+(3-0.299÷0.23)×1
=18.1+1.7×1
=18.1+1.7
=19.8
3.42×5.7+4.3×3.42 8.75×11-8.75 7.42×20.1
5.9×2.7+0.59×73 0.358×14.7+35.8×0.853
2.7×3.014 0.847×35 0.079×0.23
⑹ 六年级数学简便运算有哪些
数学简便计算方法:
1、加法交换律:a+b=b+a两个加数交换位置,和不变,这叫做加法交换律。
2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加或者先把后两个数相加,和不变,这叫做加法结合律。
3、乘法交换律:a×b=b×a交换两个因数的位置,积不变,这叫做乘法交换律。
4、乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律。
5、乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
6、在加法和减法的混合运算中,可以交换减数、加数的位置。但必须在交换位置时,连同前面的运算符号一起“搬家”,运算的结果不会改变。即:a-(b-c)=a-b+c;a-(b+c)=a-b-c7。
⑺ 简便运算的技巧和方法六年级上册
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=10+20
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:3.2×12.5×25
=8×0.4×12.5×25
=(8×12.5)×(0.4×25)
=100×10
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=0.92×10
=9.2
⑻ 六年级数学简便计算是什么
六年级数学简便计算是如下:
1、24.6-3.98+5.4-6.02
解析:此题利用加法交换结合律,凑整再计算。步骤如下:
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此题先用加法分配律,把27转换成(26+1),再利用乘法结合律,使得运算简便。步骤如下:
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、528-99
解析:利用凑整法和减法结合律计算,先利用凑整法把99变换为(100-1),再运用a-b-c=a-(b+c)来简便计算,步骤如下:
528-99
=528-(100-1)
=528-100+1
=428+1
=429
4、1.2×2.5+0.8×2.5
解析:运用提取公因数的方法,公式:ac+ab=a(b+c),提取公因数2.5,1.2和0.8相加正好凑整数,使得运算简便,步骤如下:
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
5、2.96×40
解析:此题先利用乘法分配律,把2.96×40转换成29.6x4,再利用乘法结合律来简便计算,步骤如下:
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
⑼ 六年级简便运算的技巧和方法
1五年级数学简便方法计算
一般在计算中,题干的要求是:能简算的要简算。如果式子中有分母相同的分数,结合起来可以凑整或者可以口算,那么可以通过交换律和结合律将这样的分数放在一起。但是要特别注意去括号和加括号时,只有在括号前面是“-”号时变号。当同学们不肯定时,请勿简算,按照运算顺序(①只有加减,按照从左到右的顺序计算②有小括号的,先计算小括号里面的)进行计算即可。
2五年级数学简便方法
加括号法:当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)四年.级下数学简便运算: a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c),a-b-C= a-( b +c);
当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变
⑽ 六年级简便计算题60道
一定要把括号外的数分别乘括号里的两个数,再把积相加或相减。
(8+40)×25 125×(8+80) 48×(5+100) 24×(2+10) 75×(1000—2) 15×(40— 8)
例如:
(1)2.64×51.9+264×0.481
=264×0.519+264×0.481
=264×(0.519+0.481)
=264×1
=264
(2)9.16×1.53-0.053×91.6
=9.16×1.53-0.53×9.16
=9.16×(1.53-0.53)
=9.16×1
=9.16
小学数学简便方法归纳
1、提取公因式:这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
2、借来借去法:看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。
3、拆分法:拆分法就是为了方便计算把一个数拆成几个数。