导航:首页 > 知识科普 > 判断函数的奇偶性简便方法

判断函数的奇偶性简便方法

发布时间:2022-07-05 10:02:16

1. 判断函数奇偶性的几种方法

函数的奇偶性的判断应从两方面来进行,一是看函数的定义域是否关于原点对称(这是判断奇偶性的必要性)二是看f(x)与f(-x)的关系。判断方法有以下三种:

1、利用奇偶函数的定义来判断(这是最基本,最常用的方法)

定义:如果对于函数y=f(x)的定义域A内的任意一个值x,

都有f(-x)=-f(x)则这个涵数叫做奇函数

f(-x)=f(x) 则这个函数叫做偶函数

2、用求和(差)法判断

2. 如何判断函数的奇偶性步骤及方法

奇偶性是函数的基本性质之一。

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。

奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒推其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。

3. 判断函数奇偶性有什么快速的方法

1、奇函数、偶函数的定义中,首先函数定义域D关于原点对称。它们的图像特点是:奇函数的图像关于原点对称,偶函数的图像关于X轴对称。即f(-x)=-f(x)为奇函数,f(-x)=f(x)为偶函数
2、判断函数的奇偶性大致有下列二种方法:
(1)用奇、偶函数的定义,主要考察f(-x)是否与-f(x)
,f(x)
,相等。
(2)利用一些已知函数的奇偶性及下列准则:两个奇函数的代数和是奇函数;两个偶函数的代数和是偶函数;奇函数与偶函数的和既非奇函数,也非偶函数;两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;奇函数与偶函数的乘积是奇函数。

4. 怎么快速判断函数奇偶性常用方法

1.f(x)=f(-x)为偶函数
f(x)=-f(-x)为奇函数
2.偶函数的图象关于y轴对称
奇函数的图象关于原点对称
注意:1.两者成立的前提:他们的定义域关于原点对称,如[-2,2],(-10,10)
对于奇函数而言,有f(0)=0
2.如需证明,则需用第一种方法证明f(x)=f(-x)或
f(x)=-f(-x)
(并且定义域关于原点对称)

5. 函数的奇偶性怎么判断

判定奇偶性四法:

(1)定义法

用定义来判断函数奇偶性,是主要方法 . 首先求出函数的定义域,观察验证是否关于原点对称. 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性.

(2)用必要条件.

具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件.

例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性.

(3)用对称性.

若f(x)的图象关于原点对称,则 f(x)是奇函数.

若f(x)的图象关于y轴对称,则 f(x)是偶函数.

(4)用函数运算.

如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数. 简单地,“奇+奇=奇,奇×奇=偶”.

类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”.

是既奇又偶函数

偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

性质:

1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。

2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。

3、奇±奇=奇(可能为既奇又偶函数) 偶±偶=偶(可能为既奇又偶函数) 奇X奇=偶 偶X偶=偶 奇X偶=奇(两函数定义域要关于原点对称).

4、对于F(x)=f[g(x)]:

若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。

若g(x) 是偶函数且f(x)是奇函数,则F[x]是偶函数。

若g(x)是奇函数且f(x)是奇函数,则F[x]是奇函数。

若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。

5、奇函数与偶函数的定义域必须关于原点对称。

6. 如何判断函数奇偶性

判断函数奇偶性的方法有两种,一种是用函数图像,如果能迅速画出函数图像来,只要图像关于Y轴对称那么它就是一偶函数,如果图像关于原点成中心对称,那么它就是奇函数。另一种方法就是用定义来做了,分成两步。第一步就是看定义域,如果定义域关于零对称了,那么做下一步,如果定义域不对称,就是非奇非偶函数了。第二步,就是 看f(-x)=f(x),则为偶函数;若f(-x)=-f(x),则为奇函数。
你题目中第一个根号里面是x²-2吧。
本题,用定义来做。先看定义域,x²-2≥0且2-x²≥0,解得:定义域为{-√2,√2},只有两个元素。当然关于零对称了。做第二步,显然f(-x)=f(x).。所以是偶函数。
与老师答案不一致,除非你写错题目了。用正确方法自己再做一下,要相信自己。

7. 函数奇偶性怎么判断

这个是很久很久以前学的了,回忆了一下,虽然不全面但可以保证正确,但愿能救一下急咯。
可以看函数图像,关于y轴对称的是偶函数;关于原点对称的是奇函数。
可以用-x去替换函数表达式中的x,然后化简,如果=y,是偶函数,如果=-y,是奇函数。
如果不满足偶函数或奇函数的条件,这个函数既不是偶函数也不是奇函数。
判断函数奇偶性的方法:
f(-x)=f(x)
==>偶函数。
f(-x)=-f(x)
==>奇函数。
例如:f(x)=x^2,有
f(-x)=(-x)^2=x^2=f(x)
是偶函数。
又如:f(x)=x^3,有
f(-x)=(-x)^3
=
-x^3=-f(x)
是奇函数。
对于幂函数,若指数为正整数,那么的确,指数如果是偶数,就是偶函数,否则为奇函数。但判断函数奇偶性最好还是用前面说的方法。

8. 判断函数奇偶性的方法有哪些

判断函数奇偶性的一般步骤:1)、看函数的定义域是否关于原点对称,若不对称,则得出结论:该函数无奇偶性。若定义域对称,则2)、计算f(-a),若等于f(a),则函数是偶函数;若等于-f(a),则函数是奇函数。若两者都不满足,则函数既不是奇函数也不是偶函数。注意:若可以作出函数图象的,直接观察图象是否关于y轴对称或者关于原点对称。感想:高一打基础很关键,你的问题很好,加油努力哦~

9. 函数奇偶性的判定方法

主要是利用定义,先求定义域,看是否关于原点对称。f(-x)=f(x)偶函数,f(-x)=-f(x)奇函数。

阅读全文

与判断函数的奇偶性简便方法相关的资料

热点内容
餐厅排长队的技巧和方法 浏览:534
节税十种方法和技巧 浏览:492
土方计算方法的适用范围和条件 浏览:33
名人有哪些读书方法 浏览:569
茶室泡茶的方法步骤 浏览:938
清洗消毒后病毒的检测方法 浏览:24
缓解女性衰老有哪些方法 浏览:632
种植罂粟的方法 浏览:541
华为手机抖音全部分类操作方法 浏览:950
蓝宝石简单辨别方法 浏览:769
锻炼身体的正确方法是用力吐气吗 浏览:169
如何提升考研成绩的方法 浏览:256
牛疝气图片大全治疗方法 浏览:138
圆形吸顶灯安装方法有哪些 浏览:538
测试用例分析方法 浏览:678
各种花的用量计算方法 浏览:254
布面的制作方法视频 浏览:176
离婚过错方法律如何定 浏览:346
木工加工方法和技巧 浏览:14
用水管和电线连接方法 浏览:207