㈠ 25×44用简便方法计算
25✖44的简便算法为:
25✖44=25✖(40+4)=25✖40+25✖4=1000+100=1100
即:把44分成40+4,因为25乘以4可以快速计算出来。
使用到的运算法则为:乘法的分配律
(1)4425简便方法计算扩展阅读:
整数的乘法运算法则为:
交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律:ab=ba
2.乘法结合律:(ab)c=a(bc)
3.乘法分配律:(a+b)c=ac+bc
㈡ 按简便方法计算
这个应该可以用平方差公式求解吧。
平方差公式:a^2 - b^2 = (a+b) * (a-b),其中a^2表示a的平方。
若为(1-1/2的平方)(1-1/3的平方)(1-1/4的平方)......(1-1/9的平方)(1-/10的平方)则=(1-1/2^2)*(1-1/3^2)...(1-1/10^2)
=[(1+1/2)*(1-1/2)] * [(1+1/3)*(1-1/3)] ... [(1+1/10)*(1-1/10)]
=[(1+1/2)*(1+1/3) ... (1+1/10)] * [(1-1/2)*(1-1/3) ... (1-1/10)]
=[(3/2) * (4/3) * (5/4) ... (11/10)] * [(1/2) * (2/3) * (3/4) ... (9/10)]
=(11/2) * (1/10)
=11/20
所以原式=(3/2*4/3*5/4*.....*(n+1)/n)*(1/2*2/3*3/4*..........(n-1)/n)=(n+1)/2*1/n=
(n+1)/2n
㈢ 简便方法计算
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
利用公式法
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法(与加法类似):
交换律,axb=bxa,
结合律,(axb)xc=ax(bxc),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例 题
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。“带符号搬家”)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(去括号时,括号前面是减号,括号里面的运算符号要变成逆运算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(运用除法性质)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(运用除法性质)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48x25x3)÷8
=48÷8x25x3
=6x25x3=450.
㈣ 简便计算方法
简便计算的方法一般有:
【加法简便计算】
加法交换律,加法结合律,
【乘法简便计算】
乘法交换律,乘法结合律,乘法分配律,
㈤ 44乘以25有几种简便方法.
44×25可以利用乘法分配律进行简便运算:
1、44可以看做是(40+4);
2、44×25=(40+4)×25=40×25+4×25=1000+100=1100。
(5)4425简便方法计算扩展阅读:
乘法运算定律:
1、乘法交换律:乘法交换律是两个数相乘,交换因数的位置,它们的积不变。a×b=b×a。
2、乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。主要公式为a×b×c=a×(b×c)。
3、乘法分配律:两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。字母表达是:a×(b+c) =a×b+a×c。
㈥ 简便计算方法
㈦ 数学简便方法计算
一简算的根据 a、乘法运算定律 b、加法运算定律 c、减法、除法的运算性质
二简算的类型 a、直接简算 b、部分简算 c、转化简算 d、过程简算
三简算的几种公式:
加法:a+b+c=a+(b+c)(加法结合律)
乘法:a×b×c=a×c×b(乘法交换律) a×b×c=a×(b×c)(乘法结合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
减法:a-b-c=a-c-b(减法交换律) a-b-c=a-(b+c)(减法结合律)
除法:a÷b÷c=a÷c÷b(除法交换律) a÷b÷c=a÷(b×c)(除法结合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配
㈧ 44✘25用简便方法计算
你好:(11×4)×25 =11×(25×4)=11×100=1100
㈨ 简便计算大全
一、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。适用于加法交换律和乘法交换律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、结合律
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括号法
1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
1.分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3.注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900 综上所述,要教好简便计算,使学生达到计算的时候又快又对,不仅正确无误,方法还很合理、样式灵活的要求。首先要求教师熟知有关内容并绰绰有余,其次对教材还要像导演使用剧本一样,都有一个创造的过程,做探求教法的有心人。在练习设计上除了做到内容要精选,有层次,题形多样,还要有训练智力与非智力技能的价值。