“机器视觉”简单来说就是用机器代替人眼来做测量和判断,它最大的特点是速度快、信息量大、功能。现在应用汽车,3C电子,航空航天等都有
2. 机器视觉检测技术纸张表面缺陷检测的几种方法是什么
物件的缺陷有很多种类,如尺寸不良,边角缺料,肥边,表面划痕,表面污物,字符logo漏印,错印等。一部手机从零部件到整机,中间可能经历了几百种不同过程的外观缺陷检测。除了高昂的人力成本,人工检测的方式还存在效率低、易疲劳、人员流动率高需要反复培训等问题。为了解决这些问题,机器视觉检测应运而生,那么机器视觉是怎么发现产品缺陷的呢?
其实机器视觉的工作原理很简单,就是将待检产品的图片和良好的产品图片进行对比,如发现有偏差的地方就说明这个待检产品是不良品,是有缺陷的,机器视觉检测的难点在于如何使瑕疵更容易被识别出来,加大有瑕疵的产品图像与良品图像的差异度,这就涉及到光源和照相机精度的问题。
3. 机器视觉技术的系统类型
基于机器视觉的仪表板总成智能集成测试系统
EQ140-II汽车仪表板总成是我国某汽车公司生产的仪表产品,仪表板上安装有速度里程表、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。检测项目包括:检测速度表等五个仪表指针的指示误差;检测24个信号报警灯和若干照明9灯是否损坏或漏装。一般采用人工目测方法检查,误差大,可靠性差,不能满足自动化生产的需要。基于机器视觉的智能集成测试系统,改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速质量检测,克服了人工检测所造成的各种误差,大大提高了检测效率。整个系统分为四个部分:为仪表板提供模拟信号源的集成化多路标准信号源、具有图像信息反馈定位的双坐标CNC系统、摄像机图像获取系统和主从机平行处理系统。 金属板如大型电力变压器线圈扁平线收音机蒙胧皮等的表面质量都有很高的要求,但原始的采用人工目视或用百分表加控针的检测方法不仅易受主观因素的影响,而且可能会绘被测表面带来新的划伤。金属板表面自动探伤系统利用机器视觉技术对金属表面缺陷进行自动检查,在生产过程中高速、准确地进行检测,同时由于采用非接角式测量,避免了产生新划伤的可能。其工作原理图如图8-6所示;在此系统中,采用激光器作为光源,通过针孔滤波器滤除激光束周围的杂散光,扩束镜和准直镜使激光束变为平行光并以45度的入射角均匀照明被检查的金属板表面。金属板放在检验台上。检验台可在X、Y、Z三个方向上移动,摄像机采用TCD142D型2048线陈CCD,镜头采用普通照相机镜头。CCD接口电路采用单片机系统。主机PC机主要完成图像预处理及缺陷的分类或划痕的深度运算等,并可将检测到的缺陷或划痕图像在显示器上显示。CCD接口电路和PC机之间通过RS-232口进行双向通讯,结合异步A/D转换方式,构成人机交互式的数据采集与处理。
该系统主要利用线阵CCD的自扫描特性与被检查钢板X方向的移动相结合,取得金属板表面的三维图像信息。 英国ROVER汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于工业检测中的一个较为典型的例子,该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点。汽车车身置于测量框架下,通过软件校准车身的精确位置。
测量单元的校准将会影响检测精度,因而受到特别重视。每个激光器/摄像机单元均在离线状态下经过校准。同时还有一个在离线状态下用三坐标测量机校准过的校准装置,可对摄像顶进行在线校准。
检测系统以每40秒检测一个车身的速度,检测三种类型的车身。系统将检测结果与人、从CAD模型中撮出来的合格尺寸相比较,测量精度为±0.1mm。ROVER的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、门、玻璃窗口等。实践证明,该系统是成功的,并将用于ROVER公司其它系统列汽车的车身检测。 来自终端用户的声音——成本的计算要用发展的眼光看待 。
机器视觉技术未能得到广泛应用的原因主要是产品成本过高.还没有形成广泛应用的环境。但是从发展的角度来看.长期积累的人工检测成本也将会与机器视觉设备持平.在高速生产线上匹配机器视觉设备将会是一个比较明显的发展趋势。伴随医药企业逐渐提升档次及逐渐完善.企业对机器视觉技术的需求会越来越普遍。另外.从社会责任感的角度来看.医药行业有越来越多的企业将“患者生命安全的保证”和“企业肩负责任的履行”看作至高无上的使命.这也推动了机器视觉技术在行业内的应用。
来自供应商的声音——责任感、技术发展、政策要求,‘一个都不能少’。
国内的很多制药企业在药品生产中希望把成本压得越低越好,这样。一些相应的检测设备的运用就在一定程度上受到了限制。制药企业对降低生产成本的考虑是制约机器视觉技术在医药行业广泛应用的关键因素。
而另一方面.制药企业的行业特点也决定了对机器视觉技术的迫切需求。如果企业对自身的要求非常高。对产品的质量和社会责任有非常负责任的态度.那么他们也会毫不犹豫的应用机器视觉技术。因为他们知道在哪些地方应该做什么。花哪些钱。
从技术的角度讲.医药包装的检测技术有很多。机器视觉技术并不是唯一的。但是对于一些比较复杂或特定的检测项目。机器视觉技术的确可以给与最安全、最清晰的检测。制药企业在检测设备可以达到同样质量的前提下.可以选择他们认为更适合的设备。但是如果他们因为一些原因放弃质量。选择检测效果不是最好或者不能完全达到检测要求的设备.这就得不偿失了。
分析机器视觉技术与其他检测技术相比的优势
来自终端用户的声音——人工检测、光电检测已不能满足企业的检测需求
经记者采访多家医药生产企业获悉.人工检视在我国制药企业当中应用仍甚为广泛.如新保健药品中国湖州生产基地的生产经理林杰先生以胶囊剂型为例解释了人工检视的工作过程:通常为旋转的胶囊通过传送带带动.经过操作人员并通过人工的视觉检测。这种传统的方式毫无疑问无法规避一些客观的风险.比如人眼的疲劳、误差、高速生产过程中精力的不集中、无法对检测效果量化考评、速度的限制等.而这些不利因素无疑会成为今后医药企业发展的一个瓶颈。包装本身涉及到一个鉴别的问题.通过一些可靠的机器鉴别技术会实现比人工鉴别更加稳定的效果。在此种情况下。机器视觉技术的应运而生。并将嬴来更加广阔的市场。与此同时。在高技术集中的数粒环节中.光电检测设备对成像、数粒的过程也不如机器视觉技术更权威、精确。 ——更全面、可靠的机器视觉技术在未来将取代其他相关检测技术
除了机器视觉技术以外.人工检视、光电技术、称重技术等检测技术也被制药企业所应用。但与其他检测相比.机器视觉技术在检测精度和操作简单性方面都更胜一筹。如:光电技术在调试和设定方面都比较复杂.包装线上的一些细节上稍有变化就会带来检测结果的不准确.例如:位移的变化、震动的出现.因为医药包装线是条高速的包装线.比较复杂.所以这些情况经常会出现。制药企业发现问题后再调试检测设备的设定会比较麻烦。而且如果制药企业没有发现检测中出现的这些问题.那么就可能会有存在包装问题产品投放到市场当中销售.其造成的后果则不可想象。
另外,光电检测的检测项目是很单一的.只能检测一个项目.这就需要在包装线上安装多个光电检测设备。例如:在对瓶装药的包装检测中。瓶子的放置、液位、贴标就需要三个光电检测设备来完成。但是如果采用机器视觉设备就可以一个设备一次检测完成。而且机器视觉设备在应用时.只要在视线范围内的都可以检测.那么一些生产线上出现的移位、震动等问题就不会影响最后的检测效果。
特别值得一提的是.机器视觉设备也非常适合制药企业的包装线上经常改变包装产品的情况.例如:一个制药企业的泡罩包装线上很可能今天生产治疗胃病的相关药品.而第二天会改成生产治疗心脏病的相关药品.这两种药品在检测的内容上肯定会有不同.机器视觉设备可以在软件中保存十几种产品的检测项目.更换产品时只要调出相应的内容即可.而不需要重新调试检测的参数.浪费很多时间。
4. 机器视觉技术的介绍
机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉是用机器模拟人的视觉功能,即通过机器视觉产品(图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统进行各种运算处理来提取信息并加以理解,最终用于实际识别、检测、测量和控制的技术。其显着特点是速度快、精度高、信息量大、功能多。
机器视觉由机械自动化+仪器仪表+软件编程+光学方案设计组成,包括图像处理技术、机械工程技术、电气工程技术、传感器、模拟与数字视频技术、控制、电光源照明、光学成像、计算机软硬件技术等,涉及人工智能、计算机科学、图像处理、模式识别、物理学、神经生物学等诸多领域的技术。
5. 机器视觉系统都由哪几部分组成那位高人指点下
从字面意思就可看出机器视觉系统主要分为三部分:机器、视觉和系统。机器负责机械的运动和控制;视觉通过光源、工业镜头、工业相机、图像采集卡等来实现;系统主要是指软件,也可理解为整套的机器视觉设备。
机器视觉光源?
光源作为机器视觉系统输入的重要部件,它的好坏直接影响输入数据的质量和应用效果。由于没有通用的机器视觉光源设备,所以针对每个特定的应用实例,要选择相应的视觉光源,以达到最佳效果。常见的光源有:LED环形光源、低角度光源、背光源、条形光源、同轴光源、冷光源、点光源、线型光源、平行光源等。
工业镜头
镜头在机器视觉系统中主要负责光束调制,并完成信号传递。
镜头类型包括:标准、远心、广角、近摄和远摄等,选择依据一般是根据相机接口、拍摄物距、拍摄范围、CCD尺寸、畸变允许范围、放大率、焦距和光圈等。
工业相机
工业相机在机器视觉系统中最本质功能就是将光信号转变为电信号,与普通相机相比,它具有更高的传输力、抗干扰力以及稳定的成像能力。
按照不同标准可有多种分类:按输出信号方式,可分为模拟工业相机和数字工业相机;按芯片类型不同,可分CCD工业相机和CMOS工业相机,这种分类方式最为常见。
图像采集卡
图像采集卡虽然只是完整机器视觉系统的一个部件,但它同样非常重要,直接决定了摄像头的接口:黑白、彩色、模拟、数字等。
比较典型的有PCI采集卡、1394采集卡、VGA采集卡和GigE千兆网采集卡。这些采集卡中有的内置多路开关,可以连接多个摄像机,同时抓拍多路信息。
机器视觉软件
机器视觉软件是机器视觉系统中自动化处理的关键部件,根据具体应用需求,对软件包进行二次开发,可自动完成对图像采集、显示、存储和处理。在选购机器视觉软件时,一定要注意开发硬件环境、开发操作系统、开发语言等,确保软件运行稳定,方便二次开发。
6. 什么是机器视觉工作原理是什么
机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
工作原理:
机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。
7. 计算机视觉在日常生活中常见吗有哪些应用
计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所 指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提 取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。
人类正在进入信息时代,计算机将越来越广泛地进入几乎所有领域。一方面是更多未经计算机专业训练的人也需要应用计算机,而另一方面是计算机的功能越来越强,使用方法越来越复杂。这就使人在进行交谈和通讯时的灵活性与在使用计算机时所要求的严格和死板之间产生了尖锐的矛盾。人可通过视觉和听觉,语言与外界交换信息,并且可用不同的方式表示相同的含义,而计算机却要求严格按照各种程序语言来编写程序,只有这样计算机才能运行。为使更多的人能使用复杂的计算机,必须改变过去的那种让人来适应计算机,来死记硬背计算机的使用规则的情况。而是反过来让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉和说话等能力。这时计算机必须具有逻辑推理和决策的能力。具有上述能力的计算机就是智能计算机。
智能计算机不但使计算机更便于为人们所使用,同时如果用这样的计算机来控制各种自动化装置特别是智能机器人,就可以使这些自动化系统和智能机器人具有适应环境,和自主作出决策的能力。这就可以在各种场合取代人的繁重工作,或代替人到各种危险和恶劣环境中完成任务。
应用范围从任务,比如工业机器视觉系统,比方说,检查瓶子上的生产线加速通过,研究为人工智能和计算机或机器人,可以理解他们周围的世界。计算机视觉和机器视觉领域有显着的重叠。计算机视觉涉及的被用于许多领域自动化图像分析的核心技术。机器视觉通常指的是结合自动图像分析与其他方法和技术,以提供自动检测和机器人指导在工业应用中的一个过程。在许多计算机视觉应用中,计算机被预编程,以解决特定的任务,但基于学习的方法现在正变得越来越普遍。计算机视觉应用的实例包括用于系统:
(1)控制过程,比如,一个工业机器人 ;
(2)导航,例如,通过自主汽车或移动机器人;
(3)检测的事件,如,对视频监控和人数统计 ;
(4)组织信息,例如,对于图像和图像序列的索引数据库;
(5)造型对象或环境,如,医学图像分析系统或地形模型;
(6)相互作用,例如,当输入到一个装置,用于计算机人的交互;
(7)自动检测,例如,在制造业的应用程序。
其中最突出的应用领域是医疗计算机视觉和医学图像处理。这个区域的特征的信息从图像数据中提取用于使患者的医疗诊断的目的。通常,图像数据是在形式显微镜图像,X射线图像,血管造影图像,超声图像和断层图像。的信息,可以从这样的图像数据中提取的一个例子是检测的肿瘤,动脉粥样硬化或其他恶性变化。它也可以是器官的尺寸,血流量等。这种应用领域还支持通过提供新的信息,医学研究的测量例如,对脑的结构,或约医学治疗的质量。计算机视觉在医疗领域的应用还包括增强是由人类的解释,例如超声图像或X射线图像,以降低噪声的影响的图像。
第二个应用程序区域中的计算机视觉是在工业,有时也被称为机器视觉,在那里信息被提取为支撑的制造工序的目的。一个例子是质量控制,其中的信息或最终产品被以找到缺陷自动检测。另一个例子是,被拾取的位置和细节取向测量由机器人臂。机器视觉也被大量用于农业的过程,从散装材料,这个过程被称为去除不想要的东西,食物的光学分拣。
军事上的应用很可能是计算机视觉最大的地区之一。最明显的例子是探测敌方士兵或车辆和导弹制导。更先进的系统为导弹制导发送导弹的区域,而不是一个特定的目标,并且当导弹到达基于本地获取的图像数据的区域的目标做出选择。现代军事概念,如“战场感知”,意味着各种传感器,包括图像传感器,提供了丰富的有关作战的场景,可用于支持战略决策的信息。在这种情况下,数据的自动处理,用于减少复杂性和融合来自多个传感器的信息,以提高可靠性。
一个较新的应用领域是自主车,其中包括潜水,陆上车辆(带轮子,轿车或卡车的小机器人),高空作业车和无人机(UAV)。自主化水平,从完全独立的(无人)的车辆范围为汽车,其中基于计算机视觉的系统支持驱动程序或在不同情况下的试验。完全自主的汽车通常使用计算机视觉进行导航时,即知道它在哪里,或用于生产的环境(地图SLAM)和用于检测障碍物。它也可以被用于检测特定任务的特定事件,例如,一个UAV寻找森林火灾。支承系统的例子是障碍物警报系统中的汽车,以及用于飞行器的自主着陆系统。数家汽车制造商已经证明了系统的汽车自动驾驶,但该技术还没有达到一定的水平,就可以投放市场。有军事自主车型,从先进的导弹,无人机的侦察任务或导弹的制导充足的例子。太空探索已经正在使用计算机视觉,自主车比如,美国宇航局的火星探测漫游者和欧洲航天局的ExoMars火星漫游者。
其他应用领域包括:
(1)支持视觉特效制作的电影和广播,例如,摄像头跟踪(运动匹配)。
(2)监视。
8. 机器视觉识别技术有些什么种类
机器视觉的划分可根据功能、安装载体、检测技术进行划分:
(1)按照检测功能可划分:定位、缺陷检测、计数/遗漏检测、尺寸测量。
(2)按照其安装的载体可分为:在线检测系统和离线检测系统。
(3)按照检测技术划分,通常有立体视觉检测技术、斑点检测技术、尺寸测量技术、OCR技术、颜色识别技术等。
9. 什么是机器视觉可以用来做什么
机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉是用机器模拟人的视觉功能,即通过机器视觉产品(图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统进行各种运算处理来提取信息并加以理解,最终用于实际识别、检测、测量和控制的技术。
机器视觉可用于缺陷检测、质量检测、尺寸测量、位置测量、机械手控制、定位、追踪等等,其应用领域非常广泛,工业、医学、交通、科技、体育、军事等领域均有机器视觉技术的参与。其中机器视觉检测是目前应用于产品外观缺陷检测、质量检测中最为先进的检测技术,可为生产制造行业更大程度把关产品质量,提高工作效率,降低生产成本,实现智能制造和自动化生产。
10. 什么叫机器视觉
机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、 I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。
机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。上图便是机器视觉的一个典型应用。