导航:首页 > 知识科普 > 分类预测的发现方法有哪些

分类预测的发现方法有哪些

发布时间:2022-06-21 11:00:21

① 时间序列预测方法有哪些分类,分别适合使用的情况是

时间序列预测方法根据对资料分析方法的不同,可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。

1、简单序时平均数法只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。

2、加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。

3、简单移动平均法适用于近期期预测。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动。

4、加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。

5、指数平滑法即根用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。

6、季节趋势预测法根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。

7、市场寿命周期预测法,适用于对耐用消费品的预测。这种方法简单、直观、易于掌握。

(1)分类预测的发现方法有哪些扩展阅读:

时间序列预测法的特征

1、时间序列分析法是根据过去的变化趋势预测未来的发展,前提是假定事物的过去延续到未来。运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。不会发生突然的跳跃变化,是以相对小的步伐前进;过去和当前的现象,可能表明现在和将来活动的发展变化趋向。

2.时间序列数据变动存在着规律性与不规律性

时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型:趋势性、周期性、随机性、综合性。

② 在预测的方法分类中,就其应用的方法来说有几类

根据方法本身的性质特点将预测方法分为三类。
1、定性预测方法
根据人们对系统过去和现在的经验、判断和直觉进行预测,其中以人的逻辑判断为主,仅要求提供系统发展的方向、状态、形势等定性结果。该方法适用于缺乏历史统计数据的系统对象。

2、时间序列分析
根据系统对象随时间变化的历史资料,只考虑系统变量随时间的变化规律,对系统未来的表现时间进行定量预测。主要包括移动平均法、指数平滑法、趋势外推法等。该方法适于利用简单统计数据预测研究对象随时间变化的趋势等。

3、因果关系预测
系统变量之间存在某种前因后果关系,找出影响某种结果的几个因素,建立因与果之间的数学模型,根据因素变量的变化预测结果变量的变化,既预测系统发展的方向又确定具体的数值变化规律。

③ 常用的分类和预测算法有哪些

常用的分类与预测算法 根据挖掘目标和数据形式可以建立分类与预测、聚类分析、关联规则、时序模式、偏差检测。

④ 数据挖掘中分类、预测、聚类的定义和区别。

你好,
简单地说,分类(categorization
or
classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。
简单地说,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。
区别是,分类是事先定义好类别
,类别数不变
。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。聚类则没有事先预定的类别,类别数不确定。
聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成
。分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等。
分类的目的是学会一个分类函数或分类模型(也常常称作分类器
),该模型能把数据库中的数据项映射到给定类别中的某一个类中。
要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,...,vn;
c);其中vi表示字段值,c表示类别。分类器的构造方法有统计方法、机器学习方法、神经网络方法等等。
聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示。聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题。常见的聚类算法包括:k-均值聚类算法、k-中心点聚类算法、clarans、
birch、clique、dbscan等。
希望回答对您有帮助.

⑤ 预测方法分为两大类,是指什么

市场预测方法一般可分为定性预测和定量预测两大类。

  1. 定性预测

    定性预测属于主观判断,它基于估计和评价。常见的定性预测方法包括:一般预测、市场调研法、小组讨论法、历史类比、德尔菲法等。

  2. 定量预测

    定量预测是使用一历史数据或因素变量来预测需求的数学模型。是根据已掌握的比较完备的历史统计数据,运用一定的数学方法进行科学的加工整理,借以揭示有关变量之间的规律性联系,用于预测和推测未来发展变化情况的一类预测方法。 烽火猎头专家认为定量预测方法也称统计预测法,其主要特点是利用统计资料和数学模型来进行预测。然而,这并不意味着定量方法完全排除主观因素,相反主观判断在定量方法中仍起着重要的作用,只不过与定性方法相比,各种主观因素所起的作用小一些罢了。

⑥ 常用的分类和预测算法

常用的分类方法有贝叶斯,逻辑回归,随机森林,预测算法有集成学习,神经网络

⑦ 预测的方法有很多,最基本的有哪些

定量分析方法和定性分析方法. (1)定量分析方法(数量方法) 包括趋势分析法(时间序列分析法,外推分析法)和因果分析预测法. (2)定性分析方法包括非数量分析方法的集合意见法和判断分析法――基本的定性分析方法.

预测(forecasting)是预计未来事件的一门艺术,一门科学。它包含采集历史数据并用某种数学模型来外推与将来。它也可以是对未来的主观或直觉的预期。它还可以是上述的综合,即经由经理良好判断调整的数学模型。

进行预测时,没有一种预测方法会绝对有效。对一个企业在一种环境下是最好的预测方法,对另一企业或所在企业内另一部门却可能完全不适用。无论使用何种方法进行预测,预测的作用也是有限的,并不是完美无缺。

但是,几乎没有一家企业可以不进行预测而只是等到事情发生时再采取行动,一个好的短期或长期的经营规划取决于对公司产品需求的预测。

类型

按在规划未来业务方面企业使用可分三种类型的预测:经济预测(economic forecasts)、技术预测(technological forecasts)、需求预测(demand forecasts)。

1、 经济预测(economic forecasts),通过预计通货膨胀率、货币供给、房屋开工率及其它有关指标来预测经济周期。

2、 技术预测(technological forecasts),即预测会导致产生重要的新产品,从而带动新工厂和设备需求的技术进步。

3、 需求预测(demand forecasts),为公司产品或服务需求预测。这些预测,也叫销售预测,决定公司的生产、生产能力及计划体系,并使公司财务、营销、人事作相应变动。

按它包含的时间跨度来分类,也有三种分类:短期预测、中期预测、长期预测

1、短期预测。短期预测时间跨度最多为1年,而通常少于3个月。它用于购货、工作安排、所需员工、工作指定和生产水平的计划工作。

2、中期预测。中期预测的时间跨度通常是从3个月到3年。它用于销售计划、生产计划和预算、现金预算和分析不同作业方案。

3、长期预测。长期预测的时间跨度通常为3年及3年以上。它用于规划新产品、资本支出、生产设备安装或天职,及研究与发展。

⑧ 市场预测可怎样进行分类

由于预测的对象、目标、内容和期限的不同,形成了多种多样的预测方法。据不完全统计,目前世界上共有300多种预测方法,其中较为成熟的有150多种,常用的有30多种,用得最为普遍的有10多种。
⑴预测方法的分类体系
预测方法可按不同的标准进行分类,从而形成了预测方法的分类体系。
①按预测技术的差异性分类:可分为定性预测技术、定量预测技术、定时预测技术、定比预测技术和评价预测技术,共五类。
②按预测方法的客观性分类:可分为主观性预测方法和客观性预测方法两类。前者主要依靠经验判断,后者主要借助数学模型。
③按预测分析的途径分类:可分为直观型预测方法、时间序列预测方法、计量经济模型预测方法、因果分析预测方法等。
④按采用模型的特点分类:可分为经验预测模型和正规的预测模型。后者包括时间关系模型、因果关系模型、结构关系模型等。
⑵市场预测常用方法分类
市场预测常用方法通常分为定性预测法与定量预测法两大类。
定性预测法主要是靠预测人员的知识和经验,进行综合分析,对市场的未来前景作出估计和判断。定性预测往往辅之以简单的计算(如加减乘除)完成市场预测工作。定性预测简便易行,灵活性强,但预测结果不够准确和受主观因素影响较大。
定量预测法主要是根据完备的历史统计资料,运用一定的数学方法进行加工处理,以揭示变量间的规律性,从而对市场预测项目未来变化作出定量的估计。定量预测方法较为准确,受主观因素影响较小。但定量预测方法不够灵活,有一定难度,要求有比较完备的历史数据资料。

⑨ 预测方法体系

油气资源储量、产量增长趋势预测的方法大致可以划分为四大类:一是专家评估法;二是统计法,包含时间序列数学模型法和工作量数学模型法;三是类比法;第四类是综合预测法。

一、专家评估法

(一)基本原理

专家评估法是指预测者制作油气资源趋势预测表格,分发给熟悉业务知识、具有丰富经验和综合分析能力的专家学者,让他们在已有资料的基础上,运用个人的经验和分析判断能力,对油气资源的未来发展作出性质和程度上的判断,然后经过分析处理,综合专家们的意见,得到预测结果。

(二)实施步骤

1.设计油气资源趋势预测表格

预测表格主要包含油气储量、产量高峰值及持续时间的预测,以及每五年的平均储量发现和产量情况(表4-1-1)。

2.将表格分发给专家进行预测

选择对我国油气资源状况比较了解,有较高理论水平和丰富实践经验,在油气资源评价和战略研究方面卓有成效的专家学者。将表发给专家,并附以相关资料,请专家对表中所列事项作出预测与评价,并给出预测依据。

3.预测结果的分析整理

用统计方法综合专家们的意见。把各位专家的预测结果予以综合、整理、分析,并将结果以图表的形式表现出来。

表4-1-1 发现趋势专家评估法预测表

二、统计法

统计法主要依据已知的油气储量、产量数据,采用各类数学模型,进行历史数据的拟合,并预测未来的发展趋势。统计法包括时间序列法、勘探工作量数学模型法、递减曲线分析法、储量—产量历史拟合法和储量—产量双向平衡控制模型法等(表4-1-2)。

三、类比法

(一)方法原理

所谓类比法是指开展低勘探程度盆地的油气储量、产量趋势预测时,以勘探程度较高的盆地作为类比对象,依据预测盆地与类比盆地在盆地类型和油气地质条件的相似性,假设预测盆地投入充足勘探开发工作量的情况下,未来一个时间段内能够发现的油气储量和达到的产量。类比法可分为探明速度类比法和图形类比法。

表4-1-2 油气资源发现趋势预测统计法模型分类表

(二)方法种类

1.速度类比法

以盆地类型为主要划分依据,分别选取松辽、鄂尔多斯、渤海湾、二连、准噶尔、柴达木、吐哈、酒泉、塔里木、苏北和百色盆地作为石油储量发现和产量增长的类比盆地,选取四川、鄂尔多斯、塔里木、吐哈、柴达木、松辽、渤海湾、南襄和百色盆地作为天然气储量发现和产量增长的类比盆地。依据各盆地油气资源的探明程度与采出程度,将以上盆地的勘探开发阶段划分为早期、中期和后期,不同阶段具有不同的油气地质储量的探明速度和可采储量的采出速度。对低勘探程度盆地进行油气资源趋势预测时,给定油气储量发现和开始具有产量的起点,类比高勘探程度盆地的探明速度和采出速度,预测出未来某一时间单元内(2006~2030年)该盆地油气储量探明状况和产量增长状况。

2.图形类比法

图形类比法是假设在有充足的勘探开发工作量基础上,预测盆地和类比盆地具有相似的勘探发现历程与产量增长过程,预测盆地可类比高勘探程度盆地的储量发现和产量增长曲线,使用类比盆地的模型参数以及预测盆地的资源量数据,即可得到预测盆地油气资源趋势预测曲线,进而得到2006~2030年储量和产量的数据。

按照类比标准表所选取的盆地,使用龚帕兹模型分别进行储量和产量数据曲线的拟合,得到40个储量类比图形和产量类比图形,以及相应的图形参数a、b。

(三)实施步骤

(1)建立类比标准表:选取勘探程度较高的盆地作为类比盆地,按照盆地类型进行分类,将各盆地的储量发现和产量增长划分为不同的阶段,统计计算各阶段的储量探明速度和产量增长速度,制作类比标准表。

(2)建立类比图形库:根据作为类比盆地的高勘探程度盆地的储量、产量历史数据,用龚帕兹模型进行曲线拟合,得到控制图形形状的参数a和b,分别拟合类比标准表中各盆地的储量和产量曲线,建立类比图形库。

(3)为预测盆地选择合适的类比盆地:预测盆地与类比盆地的盆地类型、地层时代、储层岩性相近,油气地质条件可以类比。

(4)按照类比标准表分别给各预测盆地储量探明速度和产量增长速度赋值,并按盆地实际情况选择对应的持续时间,得到2006~2030年预测盆地累计探明程度、储量以及累计产量。

(5)将预测盆地的资源量和类比盆地的参数a和b代入龚帕兹公式,得到预测盆地的储量发现和产量增长曲线。

(6)以探明速度和产出速度类比法为主,并考虑图形类比法得到的预测结果,对预测盆地2006~2030年油气资源发现趋势进行综合分析。

四、综合预测法

(一)方法原理

综合预测法是指以盆地或预测区的资源潜力为预测基础,分析其勘探开发历程,依据目前所处的勘探开发阶段,确定其未来储量、产量可能出现的高峰值及时间,使用多旋回哈伯特模型,采用储采比控制的办法,对油气储量、产量进行预测。

1.哈伯特模型

哈伯特模型将油田产量的历史数据与对称的钟形曲线相拟合。哈伯特模型有3个基本的假定:

(1)油田投入开发后,产量从0开始随开发时间的延长而上升,并达到一个或多个高峰值。

(2)产量高峰过后,则随开发时间的延长而下降,直至资源完全衰竭。

(3)当开发时间趋近于无穷时,产量与时间关系曲线下面的面积,等于油田的最终可采储量。

在上述条件下,油气田的产量可用累积产量的二次函数表示,其表达式为:

全国油气储量产量增长趋势预测

式中:Q为油气田产量,104t/年(油田)或108m3/年(气田);Np为累积产量,

104t或108m3;a、b为模型参数。S.M.Al-Fattah和陈元千推导出哈伯特模型的累积产量与开发时间的关系式为:

全国油气储量产量增长趋势预测

式中:NR为最终可采储量,104t或108m3;t为投产后年份,a;t0为开始投产年份,a;c为模型参数。

式(4-2)表示的是累积产量与时间的关系,实际上是逻辑斯谛模型的一种衍生形式。式(4-2)也可表示为:

全国油气储量产量增长趋势预测

式中:tm为产量高峰年份,a。

式(4-3)两边分别对t求导,得到产量与时间的关系式为:

全国油气储量产量增长趋势预测

式中:Qm为油田年产量高峰值,104t或108m3

由式(4-4)知,当t=tm时, ,即当油气田年产量达到最高年产量(峰值)时,相应的累积产量应等于最终可采储量的50%。

就式(4-4)而言,参数b控制了曲线张口的大小,b值大时,曲线陡峭,张口小,表示预测地区的储量发现或产量增长属于快上快下型,持续时间短,达到高峰后迅速下降;b值小时,曲线平缓,张口大,表明储量或产量平缓增长,高峰时间长,有一个较长的生命周期。

2.多旋回哈伯特模型

多旋回哈伯特模型可表示为:

全国油气储量产量增长趋势预测

式中:i为哈伯特旋回个数;k为哈伯特旋回总数,其他参数同上。

用多旋回哈伯特模型预测石油地质储量和油气产量首先要确定哈伯特旋回的个数,除了已出现的高峰,还要预测将来可能出现的高峰个数,这需要掌握丰富的地质资料和勘探开发历程,并对油气田的未来发展趋势有比较正确的认识;然后通过最小二乘法进行非线性拟合,确定单个哈伯特模型的参数,最后将多条哈伯特曲线叠加得到总的预测曲线。

(二)实施步骤

1.油气储量、产量高峰的基本判断

开展盆地油气储量、产量发展趋势预测是以其油气资源潜力分析为基础的,盆地的资源量和探明程度、产出程度基本上决定了油气未来储量、产量上升或下降的态势。因此,依据盆地目前所处的勘探阶段、资源潜力、历年所发现的储量规模、石油公司的“十一五”规划和中长期发展规划以及专家评估法作出的判断,确定盆地的储量发现高峰是否已过,如果高峰已过,则未来的储量发现将呈现衰减的形势;如果尚未达到高峰,则需要判断高峰出现的时间及高峰值,不同类型盆地的储量高峰所处的勘探阶段不同,但一般出现在探明程度40%~60%时。产量高峰的判断还要考虑油气开发状况,一般比储量高峰晚5~20年。通过专家小组会议确定各盆地的储量、产量高峰。

2.油气储量、产量增长曲线拟合

在确定了盆地储量、产量的高峰后,即可使用多旋回哈伯特或高斯模型进行油气储量、产量曲线的拟合。首先要确定哈伯特旋回的个数,除了已出现的高峰,还要根据未来可能出现的高峰值,选择合适的旋回个数,然后通过最小二乘法进行非线性拟合,精确确定单个哈伯特模型有关高峰值、出现时间及表示曲线形态的参数,最后将多条哈伯特曲线叠加得到总的预测曲线。

3.采用储采比控制储量、产量之间的关系

首先对预测期内的储采比变化趋势进行预测判断,一般而言,高勘探程度盆地的储采比呈现下降趋势,而低勘探程度盆地的储采比在储量发现高峰之前快速上升。然后对盆地的储量、产量进行预测,采用储采比控制法控制储量、产量之间的关系。储采比控制法是在对预测期内新增动用可采储量的预测基础上,用剩余可采储量的储采比作为控制条件进行产量预测的一种方法。预测期历年的新增可采储量,包括老油田提高采收率增加的部分和新增动用储量增加的部分。

(三)方法特点

1.预测依据充分

采用综合预测法进行盆地油气资源趋势预测,不是靠以往数据的趋势外推,而是以盆地的油气资源量为基础,通过潜力分析,定性判断其未来的勘探开发前景。该方法也综合考虑了盆地地质特点、地质理论和勘探开发技术进步、勘探圈闭类型等影响储量、产量增长的内在因素和资源供需形势、油价、政策以及突发事件等外在因素,同时参考了石油公司的“十一五”规划和中长期发展规划以及专家评估法作出的趋势判断。因此,预测依据是十分充分的。

2.发挥了专家经验判断的作用

单纯用统计法进行趋势预测,一个很大的弱点就是预测完全受数学模型的约束,很多专家经验的判断无法在预测中体现。而综合预测法既有数学模型的约束,也有专家经验的体现,实现了主客观相结合的预测思路。

3.方法可控性强

使用多旋回模型预测,能够对预测进行有效控制。由于盆地油气储量、产量增长曲线多为多峰的形态,单旋回的预测无法预测出未来高峰的出现,而多旋回模型可以把由于不同原因出现的储量、产量高峰一一表现出来,从而对储量、产量增长结构有更清楚的认识,明了什么时间由于何种事件的影响使油气储量、产量有了明显的上升或下降。利用软件可方便地实现对多旋回的控制。

五、预测方法创新之处

(一)全面使用了专家评估法

国内外调研分析表明,专家经验是油气资源发现趋势不可或缺的力量,专家评估法是除统计法和类比法之外的另一大类预测方法。因此,项目办公室专门制作了油气资源趋势预测的表格,分发给30余位石油界的专家,让专家们在规定的时间内,对我国主要含油气盆地石油天然气发现趋势进行预测,并给出综合分析。

专家们的预测代表了我国石油界对未来油气储量、产量增长的基本判断和普遍看法,这项工作是国内首次开展的一项调查研究工作,既为油气资源趋势预测研究提供了指导性的意见和参考依据,也是对我国石油工业未来发展思路上的整体把握。

(二)广泛应用了类比法

对于勘探程度相对较低的盆地使用类比法开展油气资源趋势预测研究。根据评价区与类比区油气地质条件的相似性,按照类比区不同勘探阶段和油气产出阶段具有不同的探明速度和产出速度,判断在未来某一时间段内评价区所处的勘探阶段,用探明速度和产出速度乘以其地质资源量和可采资源量,即可得到评价区的储量、产量增长趋势。

类比法的建立为低勘探程度地区的油气资源储量、产量增长趋势预测提供了可行的思路和办法,解决了以往趋势预测只能在高勘探程度地区开展的问题,是预测方法的一大创新之处。

(三)首创并应用了综合预测法

从国内外有关油气趋势预测的现状来看,基本上都属于统计法的范畴,利用各类数学模型,以以往的储量和产量数据进行趋势外推。这种预测受数学模型的约束太大,很多经验的判断也无法在模型中体现出来,对于勘探过程中因勘探新领域突破而带来的储量增长突变无法有效预测。因此,需要一种考虑主客观条件、具有普遍适用性的预测方法。因此,本次研究创立并应用了综合预测法进行油气储量、产量增长趋势预测。该方法预测依据充分,能够发挥专家的经验判断,具有很强的可操作性,在实际应用中取得了很好的效果。

阅读全文

与分类预测的发现方法有哪些相关的资料

热点内容
邦列安使用方法 浏览:790
如何给自己洗头发的正确方法 浏览:362
1723减23x7用简便方法怎么计算 浏览:522
高阶段如何制定有效的学习方法 浏览:84
如何将数据转换成数字方法 浏览:592
描写方法有哪些各有什么作用 浏览:422
间接测量方法包括 浏览:986
燧石杂质解决方法 浏览:1000
如何毛孔变小最快最简单的方法 浏览:628
弯管计算方法 浏览:101
荨麻疹快速治疗方法是什么 浏览:101
手机去内存方法 浏览:63
小米note3音乐在哪里设置方法 浏览:85
柚子茶制作方法图片 浏览:822
心理学与治疗的研究方法 浏览:689
学生在校时间的计算方法 浏览:534
大数字相加的简便运算方法 浏览:987
研究学霸学习的方法 浏览:649
写出常用的煮浆方法及特点 浏览:187
如何学初三英语最有效的方法 浏览:497