A. gb /t9969-2008
最新版的我替你找来了,以下是详细的资料及下载地址,你看看吧!
标准编号:GB/T 9969-2008
标准名称:工业产品使用说明书 总则
标准状态:现行
英文标题:General principles for preparation of instructions for use of instrial procts
替代情况:替代GB 9969.1-1998
实施日期:2009-5-1
颁布部门:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会
内容简介:本标准规定了工业产品使用说明书(以下简称使用说明书)的基本要求和编制方法。
本标准适用于编制非消费品的工业产品使用说明书。
本标准也可适用于其他形式的使用说明。
注:编制消费品使用说明书按GB5296.1—1997《消费品使用说明 总则》执行。
B. 环刚度的测定
根据承受负载的管土共同作用,从以上公式中我们可以看到管材的结构性能是决定能否承受负载的重要参数。这个管材参数(抗外压负载)由三个由管材材料、结构和尺寸决定的因素(Ep Ip ro):
Ep---管材短期的弹性模量(kN/m)
Ip----管道纵截面每延米管壁的惯性矩(m4/m)
ro----管道计算半径(管壁中性轴半径)(m)
所以,从理论上讲,每当我们进行塑料埋地排水管设计时必须首先知道这三个数值,然后才能放在公式中去设计计算。从道理上讲,如果设计时根据了这三个数值,生产企业提供的管材就要保证这三个数值。
但是,在实践中这三个数值不容易获得。首先,管材的弹性模量不容易测量,采用不同牌号和不同配方的原材料弹性模量都会有很大变化。此外,管道纵截面每延米管壁的惯性矩很难计算(埋地塑料排水管一般采用结构壁管,结构截面常常是比较复杂的几何形状),结构尺寸(如壁厚)的变动会造成惯性矩明显变化。
而且,在设计确定以后,如果要求制造厂保证这三个数值都不变也是很不现实的。
能不能找到一个在实际生产和应用中容易获得、容易检查和容易保证的管材参数(抗外压负载)的方法呢?有一个国际公认的方法,就是引入名称为‘环刚度’的数值指标。
国际标准ISO对于环刚度S的定义是(见ISO9967 Annex A):
E材料的弹性模量I惯性矩D管环的平均直径单位是KN/m2
所以,计算竖向管道变形量的公式可以直接用环刚度数值表示为
其中Sp就是国际标准规定的环刚度。
(D=2 ro, = =8Sp)
这样,只要知道环刚度Sp的数值,不需要知道弹性模量Ep、惯性矩Ip和管道计算半径ro的确切数值就可以进行设计计算。而环刚度Sp的数值可以通过对管材的实际测量来获得。通过对管材的实际测量来获得环刚度Sp的方法已经标准化,就是国际标准ISO 9969:1994。我国国家标准GB/T 9647-2003 (不是已经被代替的GB/T 9647-1988)‘热塑性塑料管材环刚度的测定’等同采用了ISO 9969:1994。
国家标准GB/T 9647-2003测定环刚度的方法比较简单:按要求的方法在两个平行的平板间压缩一段管材,测量在管直径方向变形达到3%时的作用力F,就可以按照以下公式计算出管材的环刚度:
其中,F –相对于管材3%变形时的力值(kN)
L –试样长度(m)
Y –变形量(m) d—内径(m)
为什么用此标准方法实际测量出来的环刚度可以确认为就是我们需要的EI/D数值呢?
因为在两个平行平板间压缩管段产生变形是一个典型的材料力学问题。利用材料力学的分析方法可以证明变形量,作用力和管材的参数EI/D—环刚度有以上公式所表示的明确关系。
国际上都广泛应用环刚度这个数值指标来表示塑料埋地排水管的抗外压负载能力。因为:1)不需要知道弹性模量Ep、惯性矩Ip和管道计算半径ro的确切数值,只要知道环刚度Sp的数值就可以进行设计计算;
2)环刚度Sp的数值可以通过对管材的实际测量来获得;
3)生产厂只要保证环刚度达到要求,不必保证弹性模量Ep、惯性矩Ip和管道计算半径ro都达到要求。而且环刚度在生产厂可以通过经常检测进行控制。
需要注意的是环刚度是有明确定义的,是塑料埋地排水管设计计算的基础,其测定的方法是由国家标准(国际标准)严格规定的。我们塑料埋地排水管发展很快,因为不了解环刚度的定义和标准,有时出现混淆和误用的情况。
有的企业不按国家标准GB/T 9647-2003(等同ISO 9969:1994)测定(例如,不用平行平板而用两V型板压缩,或者在管侧加限制。),但是把测出的数值称为环刚度。用户据此设计计算必然失误。
有的地方把国家标准GB/T 9647-2003(等同ISO 9969:1994)定义和测定的环刚度和德国标准DIN16961定义和测定的‘环刚度(英文同样用ring stiffness) ’、或者和美国标准ASTMD2412的定义和测定的‘管刚度Pipe Stiffness’混淆。结果出现了双壁波纹管环刚度达到几十千帕的检测报告。本文对于国家标准GB/T 9647-2003(ISO标准ISO 9969:1994)的环刚度(英文ring stiffness)和DIN标准的‘环刚度(英文同样用ring stiffness)’,ASTM标准的‘管刚度Pipe Stiffness’之间的差别不再详细说明,这里只是提醒务必注意不同国家的不同标准中对于管材抗外压负载定义的刚度数值指标有不同的定义和相应不同的测定方法,在国内必须统一按国家标准采用GB/T 9647-2003规定的环刚度,在对外交流中则必须问清楚是按那个标准的刚度数值。国际市场趋向统一,越来越多国家接受按ISO标准,ISO 9969:1994已经被欧洲标准组织接受为欧洲标准EN ISO 9969:1995。
C. 当行星从G到F型的过度中,为什么会在光谱中形成分子线。
小行星是太阳系内部的行星围绕着太阳,移动,体积和质量比行星小得多的天体。
到目前为止已经发现,在太阳系总约70万颗小行星,但是这可能只是一小部分的所有小行星,只有少数这些小行星的直径大于100公里。直到20世纪90年代,最大的小行星谷神星,但近年来发现的柯伊伯带小行星的直径比谷神星,如伐楼拿(伐楼拿),于2000年被发现,在直径为900公里,2002年发现的夸欧尔(夸欧尔),是1280公里的直径,发现于2004年,2004年DW甚至可以达到1800公里的直径。在2003年发现的塞德娜位于外的柯伊伯带(小行星90377),其直径为1500公里左右。
据估计,小行星的数量可能是50万左右。的最大的小行星直径只有约1000公里,微型小行星只有鹅卵石一般大小。
超过240公里的小行星直径约为16岁。它们分别位于地球的外层空间轨道在土星的轨道内。绝大多数的小行星都集中在火星和木星的轨道之间的小行星带。有些小行星的轨道与地球轨道相交,也出现了一些小行星与地球发生碰撞。
遗留小行星材料的太阳能系统的形成。有一种猜测,他们可能是一个神秘的行星的残骸,在古代被摧毁的星球遭受了巨大的宇宙碰撞。但是,这些小行星的特点看,他们不喜欢一次组装在一起。如果所有的小行星加在一起,形成一个单一的天体,它的直径小于1500公里 - 是小于半径的月亮。
小行星是围绕太阳的天体,但太小,不能被称为行星。小行星可以作为大直径谷神星小行星约1000公里,小鹅卵石一般。 16小行星的直径超过240公里。它们位于地球轨道内,土星的轨道以外的空间。大多数小行星集中在火星和木星的轨道之间的小行星带。有些小行星的轨道与地球轨道相交,和一些小行星与地球相撞。
的小行星材料后剩余的太阳系形成的。一个猜测,他们的行星的残余摧毁了很长一段时间以前,有一个巨大的碰撞。然而,这些小行星像一些从来没有组成一个单一的行星的物质。事实上,如果所有的小行星加在一起,形成一个单一的天体低于1500公里的直径 - 小半径比的月亮。
小行星是太阳系早期物质,科学家成分很感兴趣。太空探测器发现,通过小行星带,小行星带是非常开放的,非常遥远的小行星和小行星之间的分离。小行星在1991年收到的数据,只能通过地面观测。 1991年10月,“伽利略”木星探测器访问了951 Gaspra小行星,这颗小行星的第一个高分辨率的照片。 1993年8月,伽利略的243艾达小行星飞行使第二颗航天器访问的小行星。 Gaspra和Ida小行星富含金属的S-型小行星。
我们知道有很多的小行星坠落到地球表面,通过分析空间碎石。与地球相撞的小行星被称为流星体。当流星体高速闯进我们的大气层,其表面因与空气的摩擦产生高温汽化,明亮的光,这是一颗流星。流星体没有完全烧毁,倒在地上,它被称为陨石。
在所有陨石的分析,其中92.8%的组分是二氧化硅(岩),5.7%的铁和镍,和其余的是这三种物质的混合物。大量的石陨石,称为陨石,铁陨石大量的叫陨铁。陨石和地球岩石非常相似,它是更难以辨别。
NEAR探测器,253玛蒂尔德的小行星通在1997年2010年6月27日。这样的机会,让科学家们第一次近距离观察这颗富含碳的C型小行星。不进行调查访问,NEAR探测器成为唯一的访问。爱神小行星附近,1999年1月的访问。
天文学家们已经做了很多小行星表面观测。一些已知的小行星Toutais Castalia,灶神星和Geographos的。对于小行星陶塔提斯,Castalia Geographos,天文学家靠近太阳,在地面上通过无线电观测研究它们。灶神星的小行星是由哈勃太空望远镜发现的。
小行星的发现与提丢斯 - 波确定密切接触中提出,然后根据设定的这个星球,应该是离太阳的距离是2.8个天文单位在1801年元旦,胚芽齐真的在那里发现的小行星谷神星。在随后的几年中,已发现了类似的同一轨道谷神星智神星,婚神星,灶神星。介绍天文摄影和闪光灯使用的比较,使小行星的发现率在1940年大幅上升,与一个永久编号的小行星1564。其中,德国天文学家恩克和汉森长于轨道计算狼和Laiyinmute观察的许多发现和贡献,特别是大的。
小行星的命名权属于发现者。喜欢这个名字的女神,然后切换到的地方的名字,昵称,甚至机构命名的名称的第一个字母的缩写。有些组的小行星,小行星是特别知名的,如去洛阳组阿波罗集团(Apollo Group),伊卡洛斯,爱神,伊达尔戈州。轨道倾角约5度和偏心率约为0.17小行星数量最多的轨道要素进行统计分析。柯克伍德缝是最有名的小行星平均日心距的统计分布特征。小行星数量N和平均红色之间的日期数值m的统计关系LOGN =直径为0.39-3.3小行星的危险品之间的相同的绝对星等,,以满足,统计公式LOGD(公里)= 3.70.2克的。小行星附近约30公里的直径的直径分布的中断。
编辑本段【】
1760年,有传言称太阳系内行星和太阳的距离,形成了一个简单的数字系列。这一系列在火星和木星,木星的两颗行星之间存在一定的差距。在18世纪的结束,很多人开始寻找这颗未被发现的星球。着名的提丢斯 - 波德规则就是一个例子。欧洲天文学家举办了世界上第一个国际研究项目在整个一天分为24个区,在哥达天文台的领导下,在欧洲天文学家在24区域搜索,这种粒子被称为“鬼”的星球。但是,这个项目不会有任何结果。
晚上,1801年1月1日,在西西里岛的巴勒莫天文台固有的金牛座朱塞普·皮亚齐发现找不到星图上的明星。皮亚齐本人没有参与搜索“鬼”的项目,但他听说过的项目,他怀疑,他发现了一个“鬼”,所以他是在几天之后继续观察这颗恒星。他将报告他的研究结果,的哥达天文台,但在第一,他说,他发现一颗彗星。 Houpi雅气病了,无法继续他的意见。报告了他的发现,太阳的方向,不能再被发现在大格达,明星之前很长一段时间。
高斯发明了一种方法来计算行星和彗星的轨道,并且只需要几个位置点,这样可以计算出轨道的天体。高斯读皮亚齐发现后计算出这颗天体的位置发送哥达。奥伯斯1801年12月31日,这颗恒星日晚重新发现。后来,它获得了谷神星的名字。 1802奥伯斯发现了另外一个天体,他命名为智慧的。 1803婚神星,灶神星是在1807年发现的。第五次小行星义神星被发现,直到1845年,但自那时以来,许多小行星很快被发现。直到1890年,约300个已知的小行星。
到天文摄影于1890年,极大的推动了天文学的发展。之前发现的小行星,天文学家必须记录每一个明星可疑位置很长一段时间,他们之间围绕恒星位置的变化进行比较。但相对于摄影胶片运动的小行星拉出一条线在电影上的明星,它很容易被确定。提高灵敏度的底片速度比人的眼睛是敏感的,即使比较暗的小行星也可以找到。摄影的推出被发现小行星的数量在增长巨大。 1990年,电荷耦合器件摄影技术已经介绍过,加上计算机分析的电子照相技术的完善,使更多的小行星被发现在一个很短的时间。早知今日,的小行星数量约22万。
确定小行星的轨道,天文学家估计它的大小,它的亮度和反照率分析的基础上。为了分析该小行星的反照率一般天文学家用可见光和红外测量。然而,这种方法仍是相对不可靠的,因为每个小行星的表面结构和组合物可以是不同的,因此分析的反照率的错误往往是比较大的。
更精确的数据,可以使用雷达观测得到的。天文学家用射电望远镜的小行星预计强烈的无线电波作为一个高功率的发电机。可以计算出通过测量的反射波的速度达到小行星的距离。小行星的形状和尺寸,可以推断,从分析的其他数据(衍射数据)。此外,小行星掩星可以精确地预测大小的小行星。
现在也有一系列的非载人的航天器研究他们在附近的一些小行星:
1991年,伽利略飞到旅程951,1993木星的小行星飞越小行星243。
号附近小行星253号和第433号小行星在2001年登陆飞行是在1997年。
1999年深交所空间在26公里外的飞掠小行星9969。
2002星尘在3300千米远的小行星飞越5535。
小行星是太阳系早期遗留下来的材料,科学家们构成非常关心他们。通过太空探测器发现的小行星带,小行星带其实是很开放,很远的地方,小行星和小行星之间的距离。 1991年以前,人们是通过地面观测获得数据的小行星。 1991年10月,“伽利略”木星探测器访问了951 Gaspra小行星拍摄的小行星的第一个高分辨率的照片。 1993年8月,伽利略飞行了243艾达小行星,使其成为第二颗航天器访问的小行星。 Gaspra和Ida小行星富含金属的S-型小行星。 1997年6月27日,253玛蒂尔德的NEAR探测器与小行星擦肩而过。这个难得的机会,可以让科学家首次观测到这颗富含碳的C型小行星接近。 NEAR探测器没有奉献出自己的参观,访问,因为它只有一次访问。爱神小行星附近,1999年1月的访问。
天文学家们已经做了很多小行星表面观测。一些已知的小行星Toutais Castalia,灶神星和Geographos的。对于小行星陶塔提斯,Castalia Geographos,天文学家靠近太阳,在地面上通过无线电观测研究它们。灶神星的小行星是由哈勃太空望远镜发现的。
编辑本段命名
C类小行星253玛蒂尔德小行星的名字由两部分组成:前部的一个永久编号,后面的部分的名称。每片证实小行星将首先得到一个永久编号,你可以建议一个名字为小行星的发现者。的名称被正式批准为国际天文学联合会通过了,因为小行星命名某些常规。有些小行星的名字,特别是在永久编号的小行星在几十万。小行星的轨道可以足够精确确定,然后发现,即使证实。在此之前,这将是一个临时号码,它是发现的年和两个字母,如2004年DW。
小行星于1801年在西西里岛,皮亚齐发现的,他给了这颗恒星命名为谷神星费迪南德星。第一部分是根据西西里岛谷神星的守护神命名后的部分后,被命名为那不勒斯国王斐迪南四世。国际学者们并不满足于此,第二部分删除。因此,第一个
小行星的正式名称是小行星1号谷神星。小行星
之后发现传统的罗马或希腊神命名,如智神星,灶神星,义神星之星。
但是,随着越来越多的小行星被发现,经典的最后一个神的名字都用完了。的小行星的发现者,在城市的历史人物或其他重要人物的妻子的名字,这个名字被命名的童话人物或其他神话中的神。如小行星216被命名为埃及女王克里奥佩特拉,小行星719阿尔伯特爱因斯坦命名的小行星17744命名的女演员朱迪·福斯特,格林童话中的侏儒的名字命名的小行星1773,等。一共有679373 2007年3月6日,已计算出的轨道(即授予临时数字)小行星微粒(查询)获永久编号的小行星,共150106件(查询)的小行星被命名为12,712件。
1000多号小行星习惯,特别重要的对象命名。 (但偶有例外),例如:
(1)1000的倍数已被命名的小行星
1000皮亚齐
2000赫歇尔
3000达芬奇 4000喜帕恰斯 BR /> 5000国际天文联合会
6000联合国8000牛顿
7000居里
9000 HAL(例外)
10000梅德韦杰夫Myriostos(异常)
15000 CCD
17000(异常)
20000伐楼拿
21000网络全书
25000天体测量50000夸欧尔 56000美索美索不达米亚
71000 Hughdowns (异常)
永久数量超过10万,一些原来的计划,以满足第5号可以不支持,所以有一些10000的数字表明,该方法的英文字母,即A = 10, B = 11 ...... Z = 35,A = 36 ... Z = 61,在此安排下,小行星619999以下仍然可以代表五。
(2)中国着名小行星
一个中国的土地上发现的第一个小行星的九华星(Juewa)(JC发现者沃森):139
一个由中国人发现的小行星:三千七百八十九分之一千一百二十五(中国)(发现者张禹哲,在1125变化3789)
第一个命名为中国名小行星:1802张衡(张衡)(紫金山天文台发现的)
第一个小行星的地方名称:2045北京(北京)(发现者紫金山天文台)
第一个小行星的名字命名的县名在中国:3611大宝(大埔)(紫金山天文台的发现者)一个台湾人名称:2240仔(蔡)(蔡章希安)(发现者哈佛天文台)
第一次到中国航天器命名的小行星:8256,神舟(神州)(紫金山的发现者的名字命名的小行星天文台中学的学生在香港,陈易希发明命名的小行星所取得的成就:20780陈奕之星(Chanyikhei)的(发现者线性团队)的认可)
命名,以纪念北京奥运会: 2008年北京奥运之星
编辑本段[表格]
阿依达小行星开始,天文学家认为,小行星是一颗火星和木星的行星之间的断裂,但在小行星带的小行星的总质量更小比质量的月亮。如今,天文学家认为,小行星的残留物质在太阳系行星形成的过程中,没有形成。木星在太阳系形成的质量是增长最快的,它可以防止其他行星的形成在今天的小行星带区域。干扰木星的小行星带区域的小行星的轨道,他们继续碰撞和破坏。其他物质被赶出了它们的轨道的其他行星相撞。大型小行星后形成铝放射性同位素26Al的(也可能是铁放射性同位素60Fe)衰变热起来。重元素,如镍和铁,在这种情况下,内部的小行星片,轻元素如硅,浮。
这样的动作可能会导致小行星内部物质的分离。因此也有不同的碰撞和破裂后组成的新的小行星。这些碎片坠落到地球的陨石。
编辑本段【结构】,
频谱分析所得到的数据可以证明,这颗小行星的表面成分有很大的不同。根据其光谱特性的小行星可以分为几类:
C-小行星这颗小行星的所有小行星占75%,因此是世界上最大的小行星。 C-小行星表面碳,反照率是非常低的,只有0.05。一般认为,C-组成的小行星和碳质球粒陨石组成的(一石陨石)。一般C-小行星位于外层的小行星带。
S-的小行星:这小行星占所有小行星的17%,第二颗小行星。 S-小行星一般都设在小行星带内。 S-小行星反照率是比较高的,从0.15到0.25。它们的组成与普通球粒陨石。这样的陨石一般由硅化物。
M-小行星:余下的小行星大多属于这一类。这些小行星可能是一颗大的小行星的金属芯。类似的反照率S-小行星。他们的组合物可以是类似的镍 - 铁陨石。
E-小行星,小行星的表面类型主要是由顽火辉石反照率是比较高的,一般在0.4以上。它们的组成球粒陨石和顽火辉石球(另一种类型的石陨石)相似。
V-小行星:这些小行星组成的小行星大约相同的S-非常罕见的,唯一的区别是,它们含有较多的辉石。天文学家怀疑是分开的,这样的小行星灶神星的硅化物。灶神星表面有一个非常大的陨石坑,可能会在其形成的过程中,V-小行星出生。
地球偶尔找到一个非常罕见的石陨石的的HED非球粒陨石,其组成可能是类似的V型小行星,它们也可能来自灶神星。
G-的小行星:他们可以被看作是一个C-小行星。它们的光谱非常相似,但有不同的吸收线中的紫外线部分的G-小行星。
B-小行星:小行星和G-小行星相似,但不同的紫外吸收光谱。
F-小行星:C-小行星。他们,并且水的吸收线的频谱中的紫外线部分的缺乏。
P-小行星类型的小行星反照率是非常低的,其光谱中的红色部分主要是。它们也可以由碳硅化物。它们一般分布在极外的小行星带。
D-小行星类似类型的小行星P-小行星反照率非常低,微红的频谱。
R-小行星:V-小行星相似,它们的光谱中含有较多的辉石和橄榄石的小行星类型。
A-小行星内的小行星带,主要分布在中含有大量的橄榄石,这种类型的小行星。
T-小行星内小行星带的小行星分布的类型。其光谱的红色和暗,但P-小行星和R-小行星。
过去,人们认为小行星是一个完整的块,一块石头,但这颗小行星的密度低,比石头,大的小行星巨大的陨石坑表面上对它们的描述是一个松散的组织。他们更像是一个巨大的砾石堆在一起的重力组合。这种松散的物体大的影响不会碎裂,并能吸收冲击能量。完成一个单一的对象,在一个大的冲击冲击波震碎。此外,一颗大的小行星的旋转速度是很慢的。如果旋转速度是高的,它们可以是离心力解体。今天,天文学家一般超过200米的小行星主要由瓦砾堆。而一些规模较小的片段成为一些小行星卫星,例如:小行星将有两颗卫星87。
编辑本段[跟踪]
(1)小行星带的小行星
已知的小行星轨道的小行星带中的90%左右。火星和木星之间的小行星带是在一个相当广泛的区域。谷神星,智神星是第一次发现小行星是在小行星带的小行星内。
(2)在火星轨道的小行星
火星轨道内小行星的总体分三组:
阿莫尔小行星基地:这种类型的小行星穿越火星轨道和近地球轨道。其典型的小行星是在1898年,433发现的一颗小行星,这颗小行星距离地球0.15天文单位的距离可以达到。 1900年和1931年的近地小行星433天文学家的太阳能系统的大小来决定的机会。小行星发现于1911年,后在719中消失,直到2000年,它被重新发现。这颗小行星的轨道组名为star的小行星1221阿莫尔的太阳,这是相当典型的这组轨道位于1.08至2.76个天文单位。
阿波罗小行星:火星和地球的小行星轨道之间的小行星群。该小组中的一些小行星的轨道的偏心率是非常高的,他们的近日点,直到它到达金星轨道。这个小组是典型的小行星1862的阿波罗小行星发现于1932年,它的轨道是在0.65至2.29个天文单位之间。飞稍微只有1.5月球距离地球的小行星69230。
阿滕小行星在地球轨道上:这组一般在小行星的轨道。名为star的小行星发现于1976年,2062雅顿。本组的小行星的偏心率是比较高的,他们可能会从地球轨道和地球的轨道交叉。
小行星统称为近地小行星。近年来,研究这些小行星加深,至少在理论上,因为它们可能与地球相撞。项目计划的林肯近地小行星研究小组(LINEAR),近地小行星追踪(NEAT)和洛厄尔天文台近地天体搜索的计划(LONEOS)。
(3)
上运行的其他行星轨道的小行星在其他行星的轨道拉格朗日点运行的小行星被称为特洛伊小行星。第一特洛伊小行星在木星轨道的小行星,木星之前,他们中的一些,一些运行后木星。代表木星特洛伊小行星588,此后其他四个火星特洛伊小行星发现的小行星和小行星1172.1990首个火星特洛伊族小行星小行星。
土星和天王星,土星和天王星之间的
小行星小行星之间有一组被称为半人马小行星的一组,他们是相当大的偏心率。第一个半人马组小行星小行星2060。估计,这些从柯伊伯带小行星的引力干扰其他行星,落入一个不稳定的轨道。
柯伊伯带小行星带:全名Agee的价值 - 柯伊伯带(英语:埃奇沃思的柯伊伯带; EKB,通常被称为“柯伊伯带,或翻译为柯伊伯带,库珀带)黄色圆点环类产品在柯伊伯带(Kuiper带)
外的外海王星天体和类似天体:半人马
外海王星天体
柯伊伯带
类QB1天体天上 2:共振黄道,天体
离散天体
奥尔特云奥尔特
小行星,属于柯伊伯带海王星之外,天文学家已经发现的最大的小行星,小行星50000。
在小行星小行星(水)
虽然已经有一些猜测,水星轨道内小行星群,但到目前为止,这个假设不能被证实水星轨道内的。
D. 为什么会有小行星
小行星是太阳系内类似行星环绕太阳运动,但体积和质量比行星小得多的天体。
至今为止在太阳系内一共已经发现了约70万颗小行星,但这可能仅是所有小行星中的一小部分,只有少数这些小行星的直径大于100千米。到1990年代为止最大的小行星是谷神星,但近年在古柏带内发现的一些小行星的直径比谷神星要大,比如2000年发现的伐楼拿(Varuna)的直径为900千米,2002年发现的夸欧尔(Quaoar)直径为1280千米,2004年发现的2004 DW的直径甚至达1800千米。2003年发现的塞德娜(小行星90377)位于古柏带以外,其直径约为1500千米。
根据估计,小行星的数目大概可能会有50万。最大的小行星直径也只有1000 公里左右,微型小行星则只有鹅卵石一般大小。
直径超过 240 公里的小行星约有 16 个。它们都位于地球轨道内侧到土星的轨道外侧的太空中。而绝大多数的小行星都集中在火星与木星轨道之间的小行星带。其中一些小行星的运行轨道与地球轨道相交,曾有某些小行星与地球发生过碰撞。
小行星是太阳系形成后的物质残余。有一种推测认为,它们可能是一颗神秘行星的残骸,这颗行星在远古时代遭遇了一次巨大的宇宙碰撞而被摧毁。但从这些小行星的特征来看,它们并不像是曾经集结在一起。如果将所有的小行星加在一起组成一个单一的天体,那它的直径只有不到 1500 公里——比月球的半径还小。
小行星是一些围绕太阳运转但因为太小而称不上行星的天体。小行星可大至如直径约1000公里的Ceres 小行星,小至与鹅卵石一般。有16颗小行星的直径超过 240公里。它们位于地球轨道以内到土星的轨道以外的空间中。而大多数小行星集中在火星与木星轨道之间的小行星带里。有些小行星的轨道与地球轨道相交,有些小行星还曾与地球相撞。
小行星是太阳系形成后的剩余物质。一种推测认为它们是一颗在很久以前一次巨大碰撞中被毁的行星的遗留物。然而这些小行星更像是些从未组成过单一行星的物质。事实上,如果将所有的小行星加在一起组成一个单独的天体,它的直径还不到1500公里——比月球的半径还小。
由于小行星是早期太阳系的物质,科学家们对它们的成份非常感兴趣。宇宙探测器经过小行星带时发现,小行星带其实非常空旷,小行星与小行星之间分隔得非常遥远。在1991年以前所获的小行星数据仅通过基于地面的观测。1991年10月,伽利略号木星探测器访问了951 Gaspra小行星,从而获得了第一张高分辨率的小行星照片。1993年8月,伽利略号又飞经了243 Ida小行星,使其成为第二颗被宇宙飞船访问过的小行星。 Gaspra和Ida小行星都富含金属,属于S型小行星。
我们对小行星的所知很多是通过分析坠落到地球表面的太空碎石。那些与地球相撞的小行星称为流星体。当流星体高速闯进我们的大气层,其表面因与空气的摩擦产生高温而汽化,并且发出强光,这便是流星。如果流星体没有完全烧毁而落到地面,便称为陨星。
经过对所有陨星的分析,其中 92.8%的成分是二氧化硅(岩石),5.7%是铁和镍,剩余部分是这三种物质的混合物。含石量大的陨星称为陨石,含铁量大的陨星称为陨铁。因为陨石与地球岩石非常相似,所以较难辨别。
1997年 6月27日,NEAR探测器与253 Mathilde小行星擦肩而过。这次机遇使得科学家们第一次能近距离观察这颗富含碳的 C型小行星。此次访问由于NEAR探测器不是专门用来对其进行考察而成为唯一的一次访。NEAR是用于在1999年 1月对Eros小行星进行考察的。
天文学家们已经对不少小行星作了地面观察。一些知名的小行星有Toutais、Castalia、Vesta和Geographos等。对于小行星Toutatis、Castalia和Geographos,天文学家是在它们接近太阳时,在地面通过射电观察研究它们的。Vesta 小行星是由哈勃太空望远镜发现的。
小行星的发现同提丢斯- 波得定则的提出有密切联系,根据该定则,在距太阳距离为2.8 天文单位处应有一颗行星,1801年元旦皮亚奇果真在该处发现了第一颗小行星谷神星。在随后的几年中同谷神星轨道相近的智神星,婚神星,灶神星相继被发现。天文照相术的引进和闪视比较仪的使用,使得小行星的的年发现率大增,到1940年具有永久性编号的小行星已经有1564颗。其中,德国天文学家恩克和汉森因长于轨道计算,沃尔夫和赖因穆特在观测上有许多发现而贡献尤大。
小行星的命名权属于发现者。早期喜欢用女神的名字,后来改用人名,地名,花名乃至机构名的首字母缩写词来命名。有些小行星群和小行星特别着名,如脱罗央群,阿波罗群,伊卡鲁斯,爱神星,希达尔戈等。按轨道根数作统计分析,轨道倾角在约5 度和偏心率约0.17处的小行星数目最多。柯克伍德缝是按小行星平均日心距离统计得到的最着名的分布特征。小行星数N 与平均冲日星等m 之间有统计关系logN=0.39m-3.3,小行星直径d 同绝对星等g 之间满足统计公式logd(公里)=3.7-0.2g。小行星数随直径的分布在直径约30公里附近出现间断。
编辑本段【研究】
1760年有人猜测太阳系内的行星离太阳的距离构成一个简单的数字系列。按这个系列在火星和木星之间有一个空隙,这两颗行星之间也应该有一颗行星。18世纪末有许多人开始寻找这颗未被发现的行星。着名的提丢斯-波得定则就是其中一例。当时欧洲的天文学家们组织了世界上第一次国际性的科研项目,在哥达天文台的领导下全天被分为24个区,欧洲的天文学家们系统地在这24个区内搜索这颗被称为“幽灵”的行星。但这个项目没有任何成果。
1801年1月1日晚上,朱塞普·皮亚齐在西西里岛上巴勒莫的天文台内在金牛座里发现了一颗在星图上找不到的星。皮亚齐本人并没有参加寻找“幽灵”的项目,但他听说了这个项目,他怀疑他找到了“幽灵”,因此他在此后数日内继续观察这颗星。他将他的发现报告给哥达天文台,但一开始他称他找到了一颗彗星。此后皮亚齐生病了,无法继续他的观察。而他的发现报告用了很长时间才到达哥达,此时那颗星已经向太阳方向运动,无法再被找到了。
高斯此时发明了一种计算行星和彗星轨道的方法,用这种方法只需要几个位置点就可以计算出一颗天体的轨道。高斯读了皮亚齐的发现后就将这颗天体的位置计算出来送往哥达。奥伯斯于1801年12月31日晚重新发现了这颗星。后来它获得了谷神星这个名字。1802年奥伯斯又发现了另一颗天体,他将它命名为智神星。1803年婚神星,1807年灶神星被发现。一直到1845年第五颗小行星义神星才被发现,但此后许多小行星被很快地发现了。到1890年为止已有约300颗已知的小行星了。
1890年摄影术进入天文学,为天文学的发展给予了巨大的推动。此前要发现一颗小行星天文学家必须长时间记录每颗可疑的星的位置,比较它们与周围星位置之间的变化。但在摄影底片上一颗相对于恒星运动的小行星在底片上拉出一条线,很容易就可以被确定。而且随着底片的感光度的增强它们很快就比人眼要灵敏,即使比较暗的小行星也可以被发现。摄影术的引入使得被发现的小行星的数量增长巨大。1990年电荷藕合元件摄影的技术被引入,加上计算机分析电子摄影的技术的完善使得更多的小行星在很短的时间里被发现。今天已知的小行星的数量约达22万。
一颗小行星的轨道被确定后,天文学家可以根据对它的亮度和反照率的分析来估计它的大小。为了分析一颗小行星的反照率一般天文学家既使用可见光也使用红外线的测量。但这个方法还是比较不可靠的,因为每颗小行星的表面结构和成分都可能不同,因此对反照率的分析的错误往往比较大。
比较精确的数据可以使用雷达观测来取得。天文学家使用射电望远镜作为高功率的发生器向小行星投射强无线电波。通过测量反射波到达的速度可以计算出小行星的距离。对其它数据(衍射数据)的分析可以推导出小行星的形状和大小。此外,观测小行星掩星也可以比较精确地推算小行星的大小。
现在也已经有一系列非载人宇宙飞船在一些小行星的附近对它们进行过研究:
1991年伽利略号在它飞往木星的路程上飞过小行星951,1993年飞过小行星243。
NEAR号于1997年飞过小行星253并于2001年在小行星433登陆。
1999年深空1号在26千米远处飞掠小行星9969。
2002年星尘号在3300千米远处飞掠小行星5535。
由于小行星是从早期太阳系残留下来的物质,科学家对它们的构成非常感兴趣。宇宙探测器在经过小行星带时发现,小行星带其实非常空旷,小行星与小行星之间的距离非常遥远。1991 年以前,人们都是通过地面观测以获得小行星的数据。1991 年 10 月,伽利略号木星探测器访问了 951 Gaspra 小行星,拍摄了第一张高分辨率的小行星照片。1993 年 8 月,伽利略号又飞临 243 Ida 小行星,使其成为第二颗被宇宙飞船访问过的小行星。Gaspra 和 Ida 小行星都富含金属,属于 S 型小行星。1997年 6月27日,NEAR 探测器与 253 Mathilde 小行星擦肩而过。这次难得的机会使得科学家们第一次能够近距离地观察这颗富含碳的 C 型小行星。由于 NEAR 探测器并不是专用对其进行考察的,这次访问成为至今对它进行的唯一的一次访问。NEAR是用于在 1999年 1 月对 Eros 小行星进行考察的。
天文学家们已经对不少小行星作了地面观察。一些知名的小行星有 Toutais、Castalia、Vesta 和 Geographos 等。对于小行星 Toutatis、Castalia 和Geographos,天文学家是在它们接近太阳时,在地面通过射电观察研究它们的。Vesta 小行星是由哈勃太空望远镜发现的。
编辑本段【命名】
C-类小行星253 Mathilde小行星的名字由两个部分组成:前面的一部分是一个永久编号,后面的一部分是一个名字。每颗被证实的小行星先会获得一个永久编号,发现者可以为这颗小行星建议一个名字。这个名字要由国际天文联会批准才被正式采纳,原因是因为小行星的命名有一定的常规。因此有些小行星没有名字,尤其是在永久编号在上万的小行星。假如小行星的轨道可以足够精确地被确定后,那么它的发现就算是被证实了。在此之前,它会有一个临时编号,是由它的发现年份和两个字母组成,比如2004 DW。
第一颗小行星是皮亚齐于1801年在西西里岛上发现的,他给这颗星起名为谷神·费迪南星。前一部分是以西西里岛的保护神谷神命名的,后一部分是以那波利国王费迪南四世命名的。但国际学者们对此不满意,因此将第二部分去掉了。因此第一颗
小行星的正式名称是小行星1号谷神星。
此后发现的小行星都是按这个传统以罗马或希腊的神来命名的,比如智神星、灶神星、义神星等等。
但随着越来越多的小行星被发现,最后古典神的名字都用光了。因此后来的小行星以发现者的夫人的名字、历史人物或其他重要人物、城市、童话人物名字或其它神话里的神来命名。比如小行星216是按埃及女王克丽欧佩特拉命名的,小行星719阿尔伯特是按阿尔伯特·爱因斯坦命名的,小行星17744是按女演员茱迪·福斯特命名的,小行星1773是按格林童话中的一个侏儒命名的,等等。截至2007年3月6日,已计算出轨道(即获临时编号)的小行星共679,373颗(查询),获永久编号的小行星共150,106颗(查询),获命名的小行星共12,712颗。
对于一些编号是1000的倍数的小行星,习惯上以特别重要的人、物来命名。(但偶有例外)例如:
(1)编号为1000的倍数的已命名小行星
1000 皮亚齐
2000 赫歇尔
3000 达芬奇
4000 喜帕恰斯
5000 国际天文联会
6000 联合国
7000 居里
8000 牛顿
9000 HAL(例外)
10000 Myriostos(例外)
15000 CCD
17000 Medvedev(例外)
20000 伐楼拿
21000 网络全书
25000 天体测量
50000 夸欧尔
56000 美索不达米亚
71000 Hughdowns(例外)
由于永久编号已超过100,000,一些原来应付5位编号的程序便无法支援,因此出现了一些在万位采用英文字母的编号表示方法,即A=10、B=11……Z=35;a=36……z=61,在此安排下,619,999号以下的小行星仍然可以用5位表示。
(2)部分与华人有关的着名小行星
第一颗在中国土地上发现的小行星:139 九华星(Juewa)(发现者J.C. Watson)
第一颗由中国人发现的小行星:1125/3789 中华(China) (发现者张钰哲,后1125更改为3789)
第一颗以中国人名命名的小行星:1802 张衡(Zhang Heng)(发现者紫金山天文台)
第一颗以中国地名命名的小行星:2045 北京(Peking)(发现者紫金山天文台)
第一颗以中国县名命名的小行星:3611 大埔(Dabu)(发现者紫金山天文台)
第一颗以台湾人名字命名的小行星:2240 蔡(Tsai)(蔡章献)(发现者哈佛天文台)
第一颗以中国太空船名字命名的小行星:8256 神舟(Shenzhou)(发现者紫金山天文台)
为表扬香港中学生陈易希在发明上的成就命名的小行星:20780 陈易希星(Chanyikhei)(发现者LINEAR小组)
为纪念北京奥运会而命名的:2008北京奥运星
编辑本段【形成】
爱达小行星一开始天文学家以为小行星是一颗在火星和木星之间的行星破裂而成的,但小行星带内的所有小行星的全部质量比月球的质量还要小。今天天文学家认为小行星是太阳系形成过程中没有形成行星的残留物质。木星在太阳系形成时的质量增长最快,它防止在今天小行星带地区另一颗行星的形成。小行星带地区的小行星的轨道受到木星的干扰,它们不断碰撞和破碎。其它的物质被逐出它们的轨道与其它行星相撞。大的小行星在形成后由于铝的放射性同位素26Al(和可能铁的放射性同位素60Fe)的衰变而变热。重的元素如镍和铁在这种情况下向小行星的内部下沉,轻的元素如硅则上浮。
这样一来就造成了小行星内部物质的分离。在此后的碰撞和破裂后所产生的新的小行星的构成因此也不同。有些这些碎片后来落到地球上成为陨石。
编辑本段【结构】
通过光谱分析所得到的数据可以证明小行星的表面组成很不一样。按其光谱的特性小行星被分几类:
C-小行星:这种小行星占所有小行星的75%,因此是数量最多的小行星。C-小行星的表面含碳,反照率非常低,只有0.05左右。一般认为C-小行星的构成与碳质球粒陨石(一种石陨石)的构成一样。一般C-小行星多分布于小行星带的外层。
S-小行星:这种小行星占所有小行星的17%,是数量第二多的小行星。S-小行星一般分布于小行星带的内层。S-小行星的反照率比较高,在0.15到0.25之间。它们的构成与普通球粒陨石类似。这类陨石一般由硅化物组成。
M-小行星:剩下的小行星中大多数属于这一类。这些小行星可能是过去比较大的小行星的金属核。它们的反照率与S-小行星的类似。它们的构成可能与镍-铁陨石类似。
E-小行星:这类小行星的表面主要由顽火辉石构成,它们的反照率比较高,一般在0.4以上。它们的构成可能与顽火辉石球粒陨石(另一类石陨石)相似。
V-小行星:这类非常稀有的小行星的组成与S-小行星差不多,唯一的不同是它们含有比较多的辉石。天文学家怀疑这类小行星是从灶神星的上层硅化物中分离出来的。灶神星的表面有一个非常大的环形山,可能在它形成的过程中V-小行星诞生了。
地球上偶尔会找到一种十分罕见的石陨石,HED-非球粒陨石,它们的组成可能与V-小行星相似,它们可能也来自灶神星。
G-小行星:它们可以被看做是C-小行星的一种。它们的光谱非常类似,但在紫外线部分G-小行星有不同的吸收线。
B-小行星:它们与C-小行星和G-小行星相似,但紫外线的光谱不同。
F-小行星:也是C-小行星的一种。它们在紫外线部分的光谱不同,而且缺乏水的吸收线。
P-小行星:这类小行星的反照率非常低,而且其光谱主要在红色部分。它们可能是由含碳的硅化物组成的。它们一般分布在小行星带的极外层。
D-小行星:这类小行星与P-小行星类似,反照率非常低,光谱偏红。
R-小行星:这类小行星与V-小行星类似,它们的光谱说明它们含较多的辉石和橄榄石。
A-小行星:这类小行星含很多橄榄石,它们,主要分布在小行星带的内层。
T-小行星:这类小行星也分布在小行星带的内层。它们的光谱比较红暗,但与P-小行星和R-小行星不同。
过去人们以为小行星是一整块完整单一的石头,但小行星的密度比石头低,而且它们表面上巨大的环形山说明比较大的小行星的组织比较松散。它们更象由重力组合在一起的巨大的碎石堆。这样松散的物体在大的撞击下不会碎裂,而可以将撞击的能量吸收过来。完整单一的物体在大的撞击下会被冲击波击碎。此外大的小行星的自转速度很慢。假如它们的自转速度高的话,它们可能会被离心力解体。今天天文学家一般认为大于200米的小行星主要是由这样的碎石堆组成的。而部分较小的碎片更成为一些小行星的卫星,例如:小行星87便拥有两颗卫星。
编辑本段【轨道】
(1)小行星带的小行星
约90%已知的小行星的轨道位于小行星带中。小行星带是一个相当宽的位于火星和木星之间的地带。谷神星、智神星等首先被发现的小行星都是小行星带内的小行星。
(2)火星轨道内的小行星
火星轨道内的小行星总的来说分三群:
阿莫尔型小行星群:这一类小行星穿越火星轨道并来到地球轨道附近。其代表性的小行星是1898年发现的小行星433,这颗小行星可以到达离地球0.15天文单位的距离。1900年和1931年小行星433来到地球附近时天文学家用这个机会来确定太阳系的大小。1911年发现的小行星719后来又失踪了,一直到2000年它才重新被发现。这个小行星组的命名星小行星1221阿莫尔的轨道位于离太阳1.08到2.76天文单位,这是这个群相当典型的一个轨道。
阿波罗小行星群:这个小行星群的小行星的轨道位于火星和地球之间。这个组中一些小行星的轨道的偏心率非常高,它们的近日点一直到达金星轨道内。这个群典型的小行星轨道有1932年发现的小行星1862阿波罗,它的轨道在0.65到2.29天文单位之间。小行星69230在仅1.5月球距离处飞略地球。
阿登型小行星群:这个群的小行星的轨道一般在地球轨道以内。其命名星是1976年发现的小行星2062阿登。有些这个组的小行星的偏心率比较高,它们可能从地球轨道内与地球轨道向交。
这些小行星被统称为近地小行星。近年来对这些小行星的研究被加深,因为它们至少理论上有可能与地球相撞。比较有成绩的项目有林肯近地小行星研究计划(LINEAR)、近地小行星追踪(NEAT)和洛维尔天文台近地天体搜索计划(LONEOS)等。
(3)在其它行星的轨道上运行的小行星
在其它行星轨道的拉格朗日点上运行的小行星被称为特洛伊小行星。最早被发现的特洛伊小行星是在木星轨道上的小行星,它们中有些在木星前,有些在木星后运行。有代表性的木星特洛伊小行星有小行星588和小行星1172。1990年第一颗火星特洛伊小行星小行星被发现,此后还有其它四颗火星特洛伊小行星被发现。
土星和天王星之间的小行星
土星和天王星之间的小行星有一群被称为半人马小行星群的小行星,它们的偏心率都相当大。最早被发现的半人马小行星群的小行星是小行星2060。估计这些小行星是从柯伊伯带中受到其它大行星的引力干扰而落入一个不稳定的轨道中的。
柯伊伯带带的小行星:全称为艾吉沃斯-柯伊伯带(英语:Edgeworth-Kuiper belt;EKB,一般简称作柯伊伯带,或译作古柏带、库柏带等) 黄色点环为柯伊伯带(Kuiper Belt)
外海王星天体及类似天体:半人马小行星
外海王星天体
柯伊伯带
类QB1天体
类冥天体
2:1共振天体
黄道离散天体
欧特云 Oort
海王星以外的小行星属于柯伊伯带,在这里天文学家们发现了最大的小行星如小行星50000等。
水星轨道内的小行星(水内小行星)
虽然一直有人猜测水星轨道内也有一个小行星群,但至今为止这个猜测未能被证实。
E. 常用数据校验方法有哪些
奇偶校验”。内存中最小的单位是比特,也称为“位”,位有只有两种状态分别以1和0来标示,每8个连续的比特叫做一个字节(byte)。不带奇偶校验的内存每个字节只有8位,如果其某一位存储了错误的值,就会导致其存储的相应数据发生变化,进而导致应用程序发生错误。而奇偶校验就是在每一字节(8位)之外又增加了一位作为错误检测位。在某字节中存储数据之后,在其8个位上存储的数据是固定的,因为位只能有两种状态1或0,假设存储的数据用位标示为1、1、 1、0、0、1、0、1,那么把每个位相加(1+1+1+0+0+1+0+1=5),结果是奇数,那么在校验位定义为1,反之为0。当CPU读取存储的数据时,它会再次把前8位中存储的数据相加,计算结果是否与校验位相一致。从而一定程度上能检测出内存错误,奇偶校验只能检测出错误而无法对其进行修正,同时虽然双位同时发生错误的概率相当低,但奇偶校验却无法检测出双位错误。
MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc 发明,由 MD2/MD3/MD4 发展而来的。MD5的实际应用是对一段Message(字节串)产生fingerprint(指纹),可以防止被“篡改”。举个例子,天天安全网提供下载的MD5校验值软件WinMD5.zip,其MD5值是,但你下载该软件后计算MD5 发现其值却是,那说明该ZIP已经被他人修改过,那还用不用该软件那你可自己琢磨着看啦。
MD5广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,来验证该用户的合法性。
MD5校验值软件WinMD5.zip汉化版,使用极其简单,运行该软件后,把需要计算MD5值的文件用鼠标拖到正在处理的框里边,下面将直接显示其MD5值以及所测试的文件名称,可以保留多个文件测试的MD5值,选定所需要复制的MD5值,用CTRL+C就可以复制到其它地方了。
参考资料:http://..com/question/3933661.html
CRC算法原理及C语言实现 -来自(我爱单片机)
摘 要 本文从理论上推导出CRC算法实现原理,给出三种分别适应不同计算机或微控制器硬件环境的C语言程序。读者更能根据本算法原理,用不同的语言编写出独特风格更加实用的CRC计算程序。
关键词 CRC 算法 C语言
1 引言
循环冗余码CRC检验技术广泛应用于测控及通信领域。CRC计算可以靠专用的硬件来实现,但是对于低成本的微控制器系统,在没有硬件支持下实现CRC检验,关键的问题就是如何通过软件来完成CRC计算,也就是CRC算法的问题。
这里将提供三种算法,它们稍有不同,一种适用于程序空间十分苛刻但CRC计算速度要求不高的微控制器系统,另一种适用于程序空间较大且CRC计算速度要求较高的计算机或微控制器系统,最后一种是适用于程序空间不太大,且CRC计算速度又不可以太慢的微控制器系统。
2 CRC简介
CRC 校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(既CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。
16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(既乘以 )后,再除以一个多项式,最后所得到的余数既是CRC码,如式(2-1)式所示,其中B(X)表示n位的二进制序列数,G(X)为多项式,Q(X)为整数,R(X)是余数(既CRC码)。
(2-1)
求CRC 码所采用模2加减运算法则,既是不带进位和借位的按位加减,这种加减运算实际上就是逻辑上的异或运算,加法和减法等价,乘法和除法运算与普通代数式的乘除法运算是一样,符合同样的规律。生成CRC码的多项式如下,其中CRC-16和CRC-CCITT产生16位的CRC码,而CRC-32则产生的是32位的CRC码。本文不讨论32位的CRC算法,有兴趣的朋友可以根据本文的思路自己去推导计算方法。
CRC-16:(美国二进制同步系统中采用)
CRC-CCITT:(由欧洲CCITT推荐)
CRC-32:
接收方将接收到的二进制序列数(包括信息码和CRC码)除以多项式,如果余数为0,则说明传输中无错误发生,否则说明传输有误,关于其原理这里不再多述。用软件计算CRC码时,接收方可以将接收到的信息码求CRC码,比较结果和接收到的CRC码是否相同。
3 按位计算CRC
对于一个二进制序列数可以表示为式(3-1):
(3-1)
求此二进制序列数的CRC码时,先乘以 后(既左移16位),再除以多项式G(X),所得的余数既是所要求的CRC码。如式(3-2)所示:
(3-2)
可以设: (3-3)
其中 为整数, 为16位二进制余数。将式(3-3)代入式(3-2)得:
(3-4)
再设: (3-5)
其中 为整数, 为16位二进制余数,将式(3-5)代入式(3-4),如上类推,最后得到:
(3-6)
根据CRC的定义,很显然,十六位二进制数 既是我们要求的CRC码。
式(3 -5)是编程计算CRC的关键,它说明计算本位后的CRC码等于上一位CRC码乘以2后除以多项式,所得的余数再加上本位值除以多项式所得的余数。由此不难理解下面求CRC码的C语言程序。*ptr指向发送缓冲区的首字节,len是要发送的总字节数,0x1021与多项式有关。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned char i;
unsigned int crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&0x8000)!=0) {crc*=2; crc^=0x1021;} /* 余式CRC乘以2再求CRC */
else crc*=2;
if((*ptr&i)!=0) crc^=0x1021; /* 再加上本位的CRC */
}
ptr++;
}
return(crc);
}
[code]
按位计算CRC虽然代码简单,所占用的内存比较少,但其最大的缺点就是一位一位地计算会占用很多的处理器处理时间,尤其在高速通讯的场合,这个缺点更是不可容忍。因此下面再介绍一种按字节查表快速计算CRC的方法。
4 按字节计算CRC
不难理解,对于一个二进制序列数可以按字节表示为式(4-1),其中 为一个字节(共8位)。
(4-1)
求此二进制序列数的CRC码时,先乘以 后(既左移16位),再除以多项式G(X),所得的余数既是所要求的CRC码。如式(4-2)所示:
(4-2)
可以设: (4-3)
其中 为整数, 为16位二进制余数。将式(4-3)代入式(4-2)得:
(4-4)
因为:
(4-5)
其中 是 的高八位, 是 的低八位。将式(4-5)代入式(4-4),经整理后得:
(4-6)
再设: (4-7)
其中 为整数, 为16位二进制余数。将式(4-7)代入式(4-6),如上类推,最后得:
(4-
很显然,十六位二进制数 既是我们要求的CRC码。
式(4 -7)是编写按字节计算CRC程序的关键,它说明计算本字节后的CRC码等于上一字节余式CRC码的低8位左移8位后,再加上上一字节CRC右移8位(也既取高8位)和本字节之和后所求得的CRC码,如果我们把8位二进制序列数的CRC全部计算出来,放如一个表里,采用查表法,可以大大提高计算速度。由此不难理解下面按字节求CRC码的C语言程序。*ptr指向发送缓冲区的首字节,len是要发送的总字节数,CRC余式表是按0x11021多项式求出的。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[256]={ /* CRC余式表 */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x 1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
crc=0;
while(len--!=0) {
da=(uchar) (crc/256); /* 以8位二进制数的形式暂存CRC的高8位 */
crc<<=8; /* 左移8位,相当于CRC的低8位乘以 */
crc^=crc_ta[da^*ptr]; /* 高8位和当前字节相加后再查表求CRC ,再加上以前的CRC */
ptr++;
}
return(crc);
}
很显然,按字节求CRC时,由于采用了查表法,大大提高了计算速度。但对于广泛运用的8位微处理器,代码空间有限,对于要求256个CRC余式表(共512字节的内存)已经显得捉襟见肘了,但CRC的计算速度又不可以太慢,因此再介绍下面一种按半字节求CRC的算法。
5 按半字节计算CRC
同样道理,对于一个二进制序列数可以按字节表示为式(5-1),其中 为半个字节(共4位)。
(5-1)
求此二进制序列数的CRC码时,先乘以 后(既左移16位),再除以多项式G(X),所得的余数既是所要求的CRC码。如式(4-2)所示:
(5-2)
可以设: (5-3)
其中 为整数, 为16位二进制余数。将式(5-3)代入式(5-2)得:
(5-4)
因为:
(5-5)
其中 是 的高4位, 是 的低12位。将式(5-5)代入式(5-4),经整理后得:
(5-6)
再设: (5-7)
其中 为整数, 为16位二进制余数。将式(5-7)代入式(5-6),如上类推,最后得:
(5-
很显然,十六位二进制数 既是我们要求的CRC码。
式(5 -7)是编写按字节计算CRC程序的关键,它说明计算本字节后的CRC码等于上一字节CRC码的低12位左移4位后,再加上上一字节余式CRC右移4位(也既取高4位)和本字节之和后所求得的CRC码,如果我们把4位二进制序列数的CRC全部计算出来,放在一个表里,采用查表法,每个字节算两次(半字节算一次),可以在速度和内存空间取得均衡。由此不难理解下面按半字节求CRC码的C语言程序。*ptr指向发送缓冲区的首字节,len是要发送的总字节数,CRC余式表是按0x11021多项式求出的。
unsigned cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[16]={ /* CRC余式表 */
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
}
crc=0;
while(len--!=0) {
da=((uchar)(crc/256))/16; /* 暂存CRC的高四位 */
crc<<=4; /* CRC右移4位,相当于取CRC的低12位)*/
crc^=crc_ta[da^(*ptr/16)]; /* CRC的高4位和本字节的前半字节相加后查表计算CRC,
然后加上上一次CRC的余数 */
da=((uchar)(crc/256))/16; /* 暂存CRC的高4位 */
crc<<=4; /* CRC右移4位, 相当于CRC的低12位) */
crc^=crc_ta[da^(*ptr&0x0f)]; /* CRC的高4位和本字节的后半字节相加后查表计算CRC,
然后再加上上一次CRC的余数 */
ptr++;
}
return(crc);
}
[code]
5 结束语
以上介绍的三种求CRC的程序,按位求法速度较慢,但占用最小的内存空间;按字节查表求CRC的方法速度较快,但占用较大的内存;按半字节查表求CRC的方法是前两者的均衡,即不会占用太多的内存,同时速度又不至于太慢,比较适合8位小内存的单片机的应用场合。以上所给的C程序可以根据各微处理器编译器的特点作相应的改变,比如把CRC余式表放到程序存储区内等。[/code]
hjzgq 回复于:2003-05-15 14:12:51
CRC32算法学习笔记以及如何用java实现 出自:csdn bootcool 2002年10月19日 23:11 CRC32算法学习笔记以及如何用java实现
CRC32算法学习笔记以及如何用java实现
一:说明
论坛上关于CRC32校验算法的详细介绍不多。前几天偶尔看到Ross N. Williams的文章,总算把CRC32算法的来龙去脉搞清楚了。本来想把原文翻译出来,但是时间参促,只好把自己的一些学习心得写出。这样大家可以更快的了解CRC32的主要思想。由于水平有限,还恳请大家指正。原文可以访问:http://www.repairfaq.org/filipg/LINK/F_crc_v31.html 。
二:基本概念及相关介绍
2.1 什么是CRC
在远距离数据通信中,为确保高效而无差错地传送数据,必须对数据进行校验即差错控制。循环冗余校验CRC(Cyclic Rendancy Check/Code)是对一个传送数据块进行校验,是一种高效的差错控制方法。
CRC校验采用多项式编码方法。多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2为模,加减时不进,错位,如同逻辑异或运算。
2.2 CRC的运算规则
CRC加法运算规则:0+0=0
0+1=1
1+0=1
1+1=0 (注意:没有进位)
CRC减法运算规则:
0-0=0
0-1=1
1-0=1
1-1=0
CRC乘法运算规则:
0*0=0
0*1=0
1*0=0
1*1=1
CRC除法运算规则:
1100001010 (注意:我们并不关心商是多少。)
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
10011,.,,....
10011,.,,....
-----,.,,....
00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
-----,....
01011....
00000....
-----....
10110...
10011...
-----...
01010..
00000..
-----..
10100.
10011.
-----.
01110
00000
-----
1110 = 余数
2.3 如何生成CRC校验码
(1) 设G(X)为W阶,在数据块末尾添加W个0,使数据块为M+ W位,则相应的多项式为XrM(X);
(2) 以2为模,用对应于G(X)的位串去除对应于XrM(X)的位串,求得余数位串;
(3) 以2为模,从对应于XrM(X)的位串中减去余数位串,结果就是为数据块生成的带足够校验信息的CRC校验码位串。
2.4 可能我们会问那如何选择G(x)
可以说选择G(x)不是一件很容易的事。一般我们都使用已经被大量的数据,时间检验过的,正确的,高效的,生成多项式。一般有以下这些:
16 bits: (16,12,5,0) [X25 standard]
(16,15,2,0) ["CRC-16"]
32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]
三: 如何用软件实现CRC算法
现在我们主要问题就是如何实现CRC校验,编码和解码。用硬件实现目前是不可能的,我们主要考虑用软件实现的方法。
以下是对作者的原文的翻译:
我们假设有一个4 bits的寄存器,通过反复的移位和进行CRC的除法,最终该寄存器中的值就是我们所要求的余数。
3 2 1 0 Bits
+---+---+---+---+
Pop <-- | | | | | <----- Augmented message(已加0扩张的原始数据)
+---+---+---+---+
1 0 1 1 1 = The Poly
(注意: The augmented message is the message followed by W zero bits.)
依据这个模型,我们得到了一个最最简单的算法:
把register中的值置0.
把原始的数据后添加r个0.
While (还有剩余没有处理的数据)
Begin
把register中的值左移一位,读入一个新的数据并置于register的0 bit的位置。
If (如果上一步的左移操作中的移出的一位是1)
register = register XOR Poly.
End
现在的register中的值就是我们要求的crc余数。
我的学习笔记:
可为什么要这样作呢?我们从下面的实例来说明:
1100001010
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
-》 10011,.,,....
10011,.,,....
-----,.,,....
-》 00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
我们知道G(x)的最高位一定是1,而商1还是商0是由被除数的最高位决定的。而我们并不关心商究竟是多少,我们关心的是余数。例如上例中的G(x)有5 位。我们可以看到每一步作除法运算所得的余数其实就是被除数的最高位后的四位于G(x)的后四位XOR而得到的。那被除数的最高位有什么用呢?我们从打记号的两个不同的余数就知道原因了。当被除数的最高位是1时,商1然后把最高位以后的四位于G(x)的后四位XOR得到余数;如果最高位是0,商0然后把被除数的最高位以后的四位于G(x)的后四位XOR得到余数,而我们发现其实这个余数就是原来被除数最高位以后的四位的值。也就是说如果最高位是0就不需要作XOR的运算了。到这我们总算知道了为什么先前要这样建立模型,而算法的原理也就清楚了。
以下是对作者的原文的翻译:
可是这样实现的算法却是非常的低效。为了加快它的速度,我们使它一次能处理大于4 bit的数据。也就是我们想要实现的32 bit的CRC校验。我们还是假设有和原来一样的一个4 "bit"的register。不过它的每一位是一个8 bit的字节。
3 2 1 0 Bytes
+----+----+----+----+
Pop <-- | | | | | <----- Augmented message
+----+----+----+----+
1<------32 bits------> (暗含了一个最高位的“1”)
根据同样的原理我们可以得到如下的算法:
While (还有剩余没有处理的数据)
Begin
检查register头字节,并取得它的值
求不同偏移处多项式的和
register左移一个字节,最右处存入新读入的一个字节
把register的值和多项式的和进行XOR运算
End
我的学习笔记:
可是为什么要这样作呢? 同样我们还是以一个简单的例子说明问题:
假设有这样的一些值:
当前register中的值: 01001101
4 bit应该被移出的值:1011
生成多项式为: 101011100
Top Register
---- --------
1011 01001101
1010 11100 + (CRC XOR)
-------------
0001 10101101
首4 bits 不为0说明没有除尽,要继续除:
0001 10101101
1 01011100 + (CRC XOR)
-------------
0000 11110001
^^^^
首4 bits 全0说明不用继续除了。
那按照算法的意思作又会有什么样的结果呢?
1010 11100
1 01011100+
-------------
1011 10111100
1011 10111100
1011 01001101+
-------------
0000 11110001
现在我们看到了这样一个事实,那就是这样作的结果和上面的结果是一致的。这也说明了算法中为什么要先把多项式的值按不同的偏移值求和,然后在和 register进行异或运算的原因了。另外我们也可以看到,每一个头字节对应一个值。比如上例中:1011,对应01001101。那么对于 32 bits 的CRC 头字节,依据我们的模型。头8 bit就该有 2^8个,即有256个值与它对应。于是我们可以预先建立一个表然后,编码时只要取出输入数据的头一个字节然后从表中查找对应的值即可。这样就可以大大提高编码的速度了。
+----+----+----+----+
+-----< | | | | | <----- Augmented message
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+-----> +----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
以下是对作者的原文的翻译:
上面的算法可以进一步优化为:
1:register左移一个字节,从原始数据中读入一个新的字节.
2:利用刚从register移出的字节作为下标定位 table 中的一个32位的值
3:把这个值XOR到register中。
4:如果还有未处理的数据则回到第一步继续执行。
用C可以写成这样:
r=0;
while (len--)
r = ((r << | p*++) ^ t[(r >> 24) & 0xFF];
可是这一算法是针对已经用0扩展了的原始数据而言的。所以最后还要加入这样的一个循环,把W个0加入原始数据。
我的学习笔记:
注意不是在预处理时先加入W个0,而是在上面算法描述的循环后加入这样的处理。
for (i=0; i<W/4; i++)
r = (r << ^ t[(r >> 24) & 0xFF];
所以是W/4是因为若有W个0,因为我们以字节(8位)为单位的,所以是W/4个0 字节。注意不是循环w/8次
以下是对作者的原文的翻译:
1:对于尾部的w/4个0字节,事实上它们的作用只是确保所有的原始数据都已被送入register,并且被算法处理。
2:如果register中的初始值是0,那么开始的4次循环,作用只是把原始数据的头4个字节送入寄存器。(这要结合table表的生成来看)。就算 register的初始值不是0,开始的4次循环也只是把原始数据的头4个字节把它们和register的一些常量XOR,然后送入register中。
3A xor B) xor C = A xor (B xor C)
总上所述,原来的算法可以改为:
+-----<Message (non augmented)
|
v 3 2 1 0 Bytes
| +----+----+----+----+
XOR----<| | | | |
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+----->+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
算法:
1:register左移一个字节,从原始数据中读入一个新的字节.
2:利用刚从register移出的字节和读入的新字节XOR从而产生定位下标,从table中取得相应的值。
3:把该值XOR到register中
4:如果还有未处理的数据则回到第一步继续执行。
我的学习笔记:
对这一算法我还是不太清楚,或许和XOR的性质有关,恳请大家指出为什么?
谢谢。
到这,我们对CRC32的算法原理和思想已经基本搞清了。下章,我想着重根据算法思想用java语言实现。
hjzgq 回复于:2003-05-15 14:14:51
数学算法一向都是密码加密的核心,但在一般的软路加密中,它似乎并不太为人们所关心,因为大多数时候软体加密本身实现的都是一种编程上的技巧。但近几年来随着序列号加密程序的普及,数学算法在软体加密中的比重似乎是越来越大了。
我们先来看看在网路上大行其道的序列号加密的工作原理。当用户从网路上下载某个Shareware -- 共享软体后,一般都有使用时间上的限制,当过了共享软体的试用期后,你必须到这个软体的公司去注册后方能继续使用。注册过程一般是用户把自己的私人信息(一般主要指名字)连同信用卡号码告诉给软体公司,软体公司会根据用户的信息计算出一个序列码出来,在用户得到这个序列码后,按照注册需要的步骤在软体中输入注册信息和注册码,其注册信息的合法性由软体验证通过后,软体就会取消掉本身的各种限制。这种加密实现起来比较简单,不需要额外的成本,用户购买也非常方便,在网上的软体80%都是以这种方式来保护的。
我们可以注意到软体验证序列号的合法性过程,其实就是验证用户名与序列号之间的换算关系是否正确的过程。其验证最基本的有两种,一种是按用户输入的姓名来生成注册码,再同用户输入的注册码相比较,公式表示如下:
序列号 = F(用户名称)
F. 996997乘997996-996996乘997997怎么算
解答过程如下:
996997×997996-996996×997997
=996996×997996+997996-996996×997997
=996996×(997996-997997)+997996
=-996996+997996
=1000
(6)9969的简便计算方法扩展阅读
简便方法计算的相关定律
1、加法交换律:两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b+c=a+c+b
2、加法结合律:先把前两个数相加,或先把后两个数相加,和不变叫做加法结合律。
字母公式:a+b+c=a+(b+c)
3、乘法交换律:两个因数交换位置,积不变。
字母公式:a×b=b×a
4、乘法结合律:先乘前两个数,或先乘后两个数,积不变。
字母公式:a×b×c=a×(b×c)
5、乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变。
字母公式:(a+b)×c=a×c+b×c
6、除法性质的概念为:一个数连续除以两个数,可以先把后两个数相乘,再相除。
字母公式:a÷b÷c=a÷(b×c)
7、商不变的规律
概念:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)
8、减法性质:一个数连续减去两个数,等于这个数减去两个数的和。
字母公式:a-b-c=a-(b+c)
G. 简便计算:997 9969 134
简便计算:
997+9969+134
=(997+3)+( 9969+31)+100
=1000+10000+100
=11100
H. 噪声标准是什么
请问需要哪方面的噪声标准?
GB/T 11348.1-1999 旋转机械转轴径向振动的测量和评定 第 1 部分-总则
GB/T 11348.2-1997 旋转机械转轴径向振动的测量和评定 第 2 部分:陆地安装的大型汽轮发电机组
GB/T 11348.3-1999 旋转机械转轴径向振动的测量和评定 第 3 部分-耦合的工业机器
GB/T 11348.4-1999 旋转机械转轴径向振动的测量和评定 第 4 部分-燃气轮机组
GB/T 11348.5-2002 旋转机械转轴径向振动的测量和评定 第 5 部分-水力发电厂和泵站机组
GB/T 11353-1989 振动发生器辅助台设备特性的描述方法
GB/T 12779-1991 往复式机器整机振动测量与评级方法
GB/T 13309-1991 机械振动台技术条件
GB/T 13310-1991 电动振动台技术条件
GB/T 13364-1992 往复泵机械振动测试方法
GB/T 13436-1992 扭转振动测量仪器技术要求
GB/T 13437-1992 扭转振动减振器特性描述
GB/T 13441-1992 人体全身振动环境的测量规范
GB/T 13442-1992 人体全身振动暴露的舒适性降低界限和评价准则
GB/T 13823.1-1993 振动与冲击传感器的校准方法 基本概念
GB/T 13665-1992 金属阻尼材料阻尼本领试验方法扭摆法和弯曲共振法
GB/T 13823.10-1995 振动与冲击传感器的校准方法 冲击二次校准
GB/T 13823.11-1995 振动与冲击传感器的校准方法 激光干涉法低频振动一次校准
GB/T 13823.13-1995 振动与冲击传感器的校准方法 光切割法冲击校准(一次校准)
GB/T 13823.14-1995 振动与冲击传感器的校准方法 离心机法一次校准
GB/T 13823.15-1995 振动与冲击传感器的校准方法 瞬变温度灵敏度测试法
GB/T 13823.16-1995 振动与冲击传感器的校准方法 温度响应比较测试法
GB/T 13823.17-1996 振动与冲击传感器的校准方法 声灵敏度测试
GB/T 13823.18-1997 振动与冲击传感器的校准方法 互易法校准
GB/T 13823.12-1995 振动与冲击传感器的校准方法 安装在钢块上的无阻尼加速度计共振频率测试
GB/T 13823.2-1992 振动与冲击传感器的校准方法 激光干涉振动绝对校准(一次校准)
GB/T 13823.4-1992 振动与冲击传感器的校准方法磁灵敏度测试
GB/T 13823.3-1992 振动与冲击传感器的校准方法 正弦激励法校准(二次校准)
GB/T 13823.5-1992 振动与冲击传感器的校准方法 安装力矩灵敏度测试
GB/T 13823.6-1992 振动与冲击传感器的校准方法 基座应变灵敏度测试
GB/T 13823.7-1994 振动与冲击传感器的校准方法 相位比较法振动校准
GB/T 13823.8-1994 振动与冲击传感器的校准方法 横向振动灵敏度测试
GB/T 13823.9-1994 振动与冲击传感器的校准方法 横向冲击灵敏度测试
GB/T 13824-1992 对振动烈度测量仪的要求
GB/T 13860-1992 地面车辆机械振动测量数据的表述方法
GB/T 13866-1992 振动与冲击测量 描述惯性传感器特性的测定
GB/T 13876-1992 农业轮式拖拉机驾驶员全身振动的评价指标
GB/T 14124-1993 机械振动与冲击对建筑物影响的测量和评价基本方法及使用导则
GB/T 14125-1993 振动与冲击对室内振敏设备影响的测量与数据呈报方法
GB/T 14179-1993 割灌机 手感振动测定方法
GB/T 14412-1993 机械振动与冲击加速度计的机械安装
GB/T 13325-1991 机器和设备辐照的噪声 操作者位置噪声测量的基本准则(工程级)
GB/T 13802-1992 工程机械辐射噪声测量的通用方法
GB/T 13823.17-1996 振动与冲击传感器的校准方法 声灵敏度测试
1
GB/T 14178-1993 割灌机 操作者耳旁噪声测定方法
GB/T 14228-1993 地下铁道车站站台噪声测量
GB/T 14255-1993 家用缝纫机机头噪声声功率级的测定方法
GB/T 14259-1993 声学 关于空气噪声的测量及其对人影响的评价的标准指南
GB/T 14365-1993 声学 机动车辆定置噪声测量方法
GB/T 14366-1993 声学 职业噪声测量与噪声引起的听力损伤评价
GB/T 14368-1993 声学 标准超声功率源
GB/T 14574-2000 声学 机器和设备噪声发射值的标示和验证
GB/T 14623-1993 城市区域环境噪声测量方法
GB/T 15658-1995 城市无线电噪声测量方法
GB/T 15190-1994 城市区域环境噪声适用区划分技术规范
GB/T 16403-1996 声学 测听方法 纯音气导和骨导听阈基本测听法
GB/T 16404-1996 声学 声强法测定噪声源的声功率级 第 1 部分 离散点上的测量
GB/T 16404.2-1999 声学 声强法测定噪声源的声功率级 第 2 部分 扫描测量
GB/T 8-1996 声学 声压法测定噪声源声功率级 使用标准声源简易法
GB/T 9-1996 声学 振速法测定噪声源声功率级 用于封闭机器的测量
GB/T 16710.2-1996 工程机械 定置试验条件下机外辐射噪声的测定
GB/T 16710.4-1996 工程机械 动态试验条件下机外辐射噪声的测定
GB/T 16730-1997 建筑用门空气声隔声性能分级及其检测方法
GB/T 16769-1997 金属切削机床 噪声声压级测量方法
GB/T 16404-1996 声学 声强法测定噪声源的声功率级 第 1 部分- 离散点上的测量
GB/T 16540-1996 声学 在 0.5~15MHz 频率范围内的超声场特性及其测量水听器法
GB/T 16710.3-1996 工程机械 定置试验条件下司机位置处噪声的测定
GB/T 16710.5-1996 工程机械 动态试验条件下司机位置处噪声的测定
GB/T 16850.3-1999 光纤放大器试验方法基本规范 第 3 部分- 噪声参数的试验方法
产生的噪声
GB/T 17213.8-1998 工作过程控制阀 第 8 部分-噪声的考虑 第 1 节-实验室内测量空气动力流流经控制阀
GB/T 17247.1-2000 声学 户外声传播衰减 第 1 部分- 大气声吸收的计算
GB/T 17247.2-1998 声学 户外声传播的衰减 第 2 部分- 一般计算方法
用导则
GB/T 17248.1-2000 声学 机器和设备发射的噪声测定工作位置和其它指定位置发射声压级的基础标准使
GB/T 17248.2-1999
声学 机器和设备发射的噪声工作位置和其他指定位置发射声压级的测量 一个反射
面上方近似自由场的工程法
GB/T 17248.3-1999
法
声学 机器和设备发射的噪声工作位置和其他指定位置发射声压级的测量 现场简易
GB/T 17248.4-1998
级
声学 机器和设备发射的噪声 由声功率级确定工作位置和其他指定位置的发射声压
GB/T 17248.5-1999
法
声学 机器和设备发射的噪声工作位置和其他指定位置发射声压级的测量 环境修正
GB/T 17249.1-1998 声学 低噪声工作场所设计指南 噪声控制规划
GB/T 17250-1998 声学 市区行驶条件下轿车噪声的测量
GB/T 17483-1998 液压泵空气传声噪声级测定规范
GB/T 18022-2000 声学 1~10MHz 频率范围内橡胶和塑料纵波声速与衰减系数的测量方法
GB/T 1859-2000 往复式内燃机 辐射的空气噪声测量工程法及简易法
GB/T 18696.1-2004 声学 阻抗管中吸声系数和声阻抗的测量 第 1 部分-驻波比法
GB/T 18696.2-2002 声学 阻抗管中吸声系数和声阻抗的测量 第 2 部分:传递函数法
GB/T 18697-2002 声学 汽车车内噪声测量方法
GB/T 18698-2002 声学 信息技术设备和通信设备噪声发射值的标示
GB/T 18699.1-2002 声学 隔声罩的隔声性能测定 第 1 部分:实验室条件下测量(标示用)
GB/T 18699.2-2002 声学 隔声罩的隔声性能测定 第 2 部分:现场测量(验收和验证用)
GB/T 19052-2003 声学 机器和设备发射的噪声 噪声测试规范起草和表述的准则
GB/T 19118-2003 农用运输车 噪声测量方法
GB/T 19322-2003 小艇 机动游艇空气噪声的测定
GB/T 19512-2004 声学 消声器现场测量
GB/T 19513-2004 声学 规定实验室条件下办公室屏障声衰减的测定
GB/T 2423.47-1997 电工电子产品环境试验 第 2 部分:试验方法
GB/T 14465-1993 材料阻尼特性术语
GB/T 14527-1993 复合阻尼隔振器和复合阻尼器
GB/T 14654-1993 弹性阻尼簧片减振器
GB/T 14696-1993 船舶振动测量规程
GB/T 14697-1993 船舶局部振动测量规程
GB/T 14790-1993 人体手传振动的测量与评价方法
GB/T 15168-1994 振动与冲击隔离器性能测试方法
GB/T 15619-1995 人体机械振动与冲击术语
GB/T 16305-1996 扭转振动减振器
GB/T 15371-1994 曲轴轴系扭转振动的测量与评定方法
GB/T 16301-1996 船舶机舱辅机振动烈度评价
GB/T 16440-1996 振动与冲击 人体的机械驱动点阻抗
GB/T 16441-1996 振动与冲击 人体 Z 轴向的机械传递率
GB/T 16768-1997 金属切削机床 振动测量方法
GB/T 9-1996 声学 振速法测定噪声源声功率级 用于密闭机器的测量
GB/T 16908-1997 机械振动 轴与配合件平衡的键准则
GB/T 17189-1997 水力机械振动和脉动现场测试规程
GB/T 17958-2000 手持式机械作业防振要求
GB/T 18051-2000 潜油电泵振动试验方法
GB/T 18258-2000 阻尼材料 阻尼性能测试方法
GB/T 18328-2001 振动台选择指南
GB/T 18575-2001 建筑幕墙抗震性能振动台试验方法
GB/T 18703-2002 手套掌部振动传递率的测量与评价
GB/T 2298-1991 机械振动与冲击 术语
GB/T 18707.1-2002 机械振动 评价车辆座椅振动的实验室方法 第 1 部分:基本要求
GB/T 2423.10-1995 电工电子产品环境试验 第 2 部分- 试验方法 试验 Fc 和导则- 振动(正弦)
GB/T 2423.11-1997 电工电子产品环境试验 第 2 部分- 试验方法 试验 Fd- 宽频带随机振动——一般要求
GB/T 2423.12-1997 电工电子产品环境试验 第 2 部分- 试验方法 试验 Fda- 宽频带随机振动——高再现
性
GB/T 2423.13-1997 电工电子产品环境试验 第 2 部分- 试验方法 试验 Fdb- 宽频带随机振动——中再现
性
GB/T 2423.14-1997 电工电子产品环境试验 第 2 部分- 试验方法 试验 Fdc- 宽频带随机振动——低再现
GB/T 2423.42-1995 电工电子产品环境试验低温-低气压-振动(正弦)综合试验方法
GB/T 2423.43-1995 电工电子产品环境试验 第 2 部分- 试验方法 元件、设备和其他产品在冲击(Ea) 、碰
撞(Eb) 、振动(Fc 和 Fd)和稳态加速度(Ga)等动力学试验中的安装要求和导则
GB/T 2423.47-1997 电工电子产品环境试验 第 2 部分:试验方法 试验 Fg:声振
GB/T 2423.48-1997 电工电子产品环境试验 第 2 部分- 试验方法 试验 Ff- 振动--时间历程法
GB/T 2423.49-1997 电工电子产品环境试验 第 2 部分-试验方法 试验 Fe-振动--正弦拍频法
GB/T 2820.9-2002 往复式内燃机驱动的交流发电机组 第 9 部分-机械振动的测量和评价
GB/T 4857.10-1992 包装 运输包装件 正弦变频振动试验方法
GB/T 4857.23-2003 包装 运输包装件 随机振动试验方法
GB/T 4970-1996 汽车平顺性随机输入行驶试验方法
GB/T 4857.7-1992 包装 运输包装件 定频正弦振动试验方法
GB/T 2424.24-1995 电工电子产品环境试验 温度(低温、高温)-低气压-振动(正弦)综合试验导则
GB/T 5395-1995 油锯 手传振动测定方法
GB/T 6072.5-2003 往复式内燃机 性能 第 5 部分- 扭转振动
GB/T 6075.1-1999 在非旋转部件上测量和评价机器的机械振动 第 1 部分:总则
轮发电机组
GB/T 6075.2-2002 在非旋转部件上测量和评价机器的机械振动 第 2 部分:50MW 以上陆地安装的大型汽
GB/T 6075.3-2001 在非旋转部件上测量和评价机器的机械振动 第 3 部分:额定功率大于 15kW 额定转速
在 120r-min 至 15000r-min 之间的在现场测量的工业机器
动装置
GB/T 6075.4-2001 在非旋转部件上测量和评价机器的机械振动 第 4 部分:不包括航空器类的燃气轮机驱
GB/T 6075.5-2002 在非旋转部件上测量和评价机器的机械振动 第 5 部分:水力发电厂和泵站机组
GB/T 6075.6-2002 在非旋转部件上测量和评价机器的机械振动 第 6 部分:功率大于 100kW 的往复式机
器
GB/T 2820.10-2002 往复式内燃机驱动的交流发电机组 第 10 部分-噪声的测量(包面法)
GB/T 2888-1991 风机和罗茨鼓风机噪声测量方法
GB/T 3222-1994 声学 环境噪声测量方法
GB/T 3450-1994 铁路机车司机室噪声允许值
GB/T 3767-1996 声学 声压法测定噪声源声功率级 反射面上方近似自由场的工程法
GB/T 3871.8-1993 农业轮式和履带拖拉机试验方法 第 8 部分 噪声测量
GB/T 3768-1996 声学 声压法测定噪声源声功率级 反射面上方采用包络测量表面的简易法
GB/T 4129-1995 声学 噪声源声功率级的测定 标准声源的性能要求与校准
GB/T 4129-2003 声学 用于声功率级测定的标准声源的性能与校准要求
GB/T 4569-1996 摩托车和轻便摩托车噪声测量方法
GB/T 4595-2000 船上噪声测量
GB/T 4214.1-2000 声学 家用电器及类似用途器具噪声测试方法 第 1 部分-通用要求
GB/T 4583-1995 电动工具噪声测量方法 工程法
GB/T 4759-1995 内燃机排气消声器测量方法
GB/T 4760-1995 声学 消声器测量方法
GB/T 4854.1-2004 声学 校准测听设备的基准零级 第 1 部分-压耳式耳机纯音基准等效阈声压级
GB/T 4980-2003 容积式压缩机噪声的测定
GB/T 5111-1995 声学 铁路机车车辆辐射噪声测量
GB/T 5390-1995 油锯 耳旁噪声测定方法
GB/T 5898-2004 凿岩机械与气动工具噪声测量方法 工程法
GB/T 7111.1-2002 纺织机械噪声测试规范 第 1 部分-通用要求
GB/T 7111.2-2002 纺织机械噪声测试规范 第 2 部分-纺前准备和纺部机械
GB/T 7111.3-2002 纺织机械噪声测试规范 第 3 部分-非织造布机械
GB/T 7111.4-2002 纺织机械噪声测试规范 第 4 部分-纱线加工、绳索加工机械
GB/T 7111.5-2002 纺织机械噪声测试规范 第 5 部分-机织和针织准备机械
GB/T 7111.6-2002 纺织机械噪声测试规范 第 6 部分-织造机械
GB/T 7111.7-2002 纺织机械噪声测试规范 第 7 部分-染整机械
GB/T 7582-2004 声学 听阈与年龄关系的统计分布
GB/T 7584.1-2004 声学 护听器 第 1 部分-声衰减测量的主观方法
GB/T 7612-1987 皮革机械噪声声功率级的测定
GB/T 7965-2002 声学 水声换能器测量
GB/T 7967-2002 声学 水声发射器的大功率特性和测量
GB/T 8016-1995 船用回声测深设备通用技术条件
HG 20503-1992 化工建设项目噪声控制设计规定
GB/T 8485-2002 建筑外窗空气声隔声性能分级及检测方法
HG/T 20570.10-1995 工艺系统专业噪声控制设计
HG/T 21616-1997 化工厂常用设备消声器标准系列
HGJ 13-1988 化学工业炉噪声控制设计规定
HJ/T 16-1996 通风消声器
HJ/T 17-1996 隔声窗
HJ/T 2.4-1995 环境影响评价技术导则 声环境
HJ/T 90-2004 声屏障声学设计和测量规范
HJBZ 17-1997 低噪声洗衣机
HJBZ 18-1997 节能、低噪声房间空气调节器
JB 10046-1999 机床电器噪声的限值及测定方法
JB 3623-1984 锻压机械 噪声测量方法
JB 4017-1985 家用电冰箱噪声测量方法及限值
JB 8551-1997 凿岩机械与气动工具噪声限值
JB 9967-1999 液压机 噪声限值
JB 5137-1991 小型汽油机排气消声器 技术条件
JB 9048-1999 冷轧管机 噪声测量与限值
JB 9968-1999 开式压力机 噪声限值
JB 9969-1999 棒料剪断机、鳄鱼式剪断机、剪板机 噪声限值
JB 9971-1999 弯管机、三辊卷板机 噪声限值
JB 9973-1999 空气锤 噪声限值
JB 9970-1999 冲型剪切机、联合冲剪机 噪声限值
JB 9972-1999 滚丝机、卷簧机、制钉机 噪声限值
5
I. 连减算式用的运算律
1.通过学生自主探究,掌握一个数连续减去两个数的三种计算方法,并能根据具体的情况,灵活地进行简便计算。 2.培养学生灵活选择算法进行简便计算的意识,发展思维的灵活性。 理解连减运算的三种算法,掌握简便计算的方法。 合理灵活地选择简便...9969