1. 简便运算的技巧是什么
简便运算方法大全
一、什么是简便运算
“简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。
二、简便运算大全
(一)、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
说明:适用于加法交换律和乘法交换律。
1/4
(二)、结合律
(1)加括号法
①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要
2/4
变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括号法
①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
①分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500这里35是相同因数。
③注意构造,让算式满足乘法分配律的条件。
3
2. 一年级百位竖式加减计算简便方法
竖式加法例子解析812+173
解题思路:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:2+3=5
步骤二:1+7=8
步骤三:8+1=9
根据以上计算步骤组合计算结果为985
验算:985-812=173
(2)一年级简便计算方法的讲解扩展阅读&验算结果:将减数与被减数个位对齐,再分别与对应计数单位上的数相减,不够减的需向高位借1,依次计算可以得出结果,减数小于被减数将两数调换相减最后结果加个负号;小数部分相减可参照整数相减步骤;
解题过程:
步骤一:5-2=3
步骤二:8-1=7
步骤三:9-8=1
根据以上计算步骤组合计算结果为173
存疑请追问,满意请采纳
3. 简便运算的技巧
简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。
主要用三种方法:加减凑整、分组凑整、提公因数法。
他们使用的都是数学计算中的拆分凑整思想。
主要步骤:
①遇见复杂的计算式时,先观察有没有可能凑整;
②运用四则运算凑成整十整百之后再进行简便计算。
2/4
加减凑整法
1、将计算式中的某一个数拆分,使其能与其他的数凑成整十,整百【例1】;
2、补上一个数,能够与其他数凑整,最后再减去这个数
分组凑整法
在只有加减法的计算题中,将算式中的各项重新分下组凑整,主要采用两个公式:G老师讲奥数(微)。【例3】
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
减法的性质:a-b-c=a-(b+c)。
提公因数法
使用乘法分配律提取公因数,a x (b±c)=a x b±a x c;
如果没有公因数,可以根据乘法结合律变化出公因数,详见【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做简算,是享受。细观察,找特点。
连续加,结对子。连续乘,找朋友。
连续减,减去和。连续除,除以积。
减去和,可连减。除以积,可连除。
乘和差,分别乘。积加减,莫慌张,
同因数,提出来,异因数,括号放。
同级算,可交换。特殊数,巧拆分。
合理算,我能行。
1方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
3方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
7方法六:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,需注意:
1.连续性
2.等差性
计算方法:头减尾,除公差。
8方法六:找朋友法
例题:
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。“带符号搬家”)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(去括号时,括号前面是减号,括号里面的运算符号要变成逆运算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(运用除法性质)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(运用除法性质)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
4. 一年级数学小窍门知识
破十法:
加九减一,加八减二,加七减三,加六减四,加五见五
数字拆分法
9+6=9+(1+5)=(9+1)+5=15
一五6,二四6,三三6,四二6,五一6;6的组成没遗漏。
一六7,二五7,三四7,四三7,五二7,六一7;7的组成记仔细。
一七8,二六8,三五8,四四8,五三8,六二8,七一8;8的组成记全它。
一八9,二七9,三六9,四五9,五四9,六三9,七二9,八一9;
9的组成全都有。
一九10,二八10,三七10,四六10,五五10,六四10,七三10,八二10,九一10;10的组成共九句。
凑十歌
一九一九好朋友,
二八二八手拉手,
三七三七真亲密,
四六四六一起走,
五五凑成一双手。
一加九,十只小蝌蚪,
二加八,十只花老鸭,
三加七,十只老母鸡,
四加六,十只金丝猴,
五加五,十只大老虎。
20以内的进位加法
看大数,分小数,凑成十,加剩数。
退位减法
退位减法要牢记,先从个位来减起;
哪位不够前位退,本位加十莫忘记;
如果隔位退了1,0变十来最好记。
连续退位的减法
看到0,向前走,看看哪一位上有。
借走了往后走,0上有点看作9
例如1:加法8+5 看到8就想到2,因此5可以分成2和3,8和2组成10,10+3=13,所以8+5=13。
例如2:减法15-9
第一种:15可以分成10和5,10-9=1,再用1+5=6,所以15-9=6;
第二种:9可以分成5和4,15-5=10,10-4=6,所以15-9=6。
运用凑十法与破十法解答下列各题
7+8= 6+9= 9+4= 11-4= 6+7= 7+4=
12-9= 14-8= 2+9= 13-6= 14-5= 8+8=
4+9= 5+7= 14-6= 15-7= 8+4= 14-7=
5+8= 6+8= 7+4= 14-7= 12-8=
13-9= 12-8= 3+9= 4+9= 12-9=
5+6= 2+9= 12-9= 14-7= 13-8=
2+9= 4+7= 6+4= 3+7= 13-7=
( )+5=10 ( )+4=7 ( )-3=3 ( )-6=2 9-( )=2
3+( )=10 6-( )=1 ( )-7=3 ( )+2=5
0+( )=4
( )-0=6 10-( )=8 4+( )=9 7-( )=6 ( )-3=0
( )+7=8 5-( )=2 ( )-5=5 ( )+6=9 1+( )=8
7-( )=7 6+( )=10 ( )+2=8 ( )-3=4 3+( )=4
9-( )=0 ( )+6=7 4+( )=8 ( )-9=1 ( )-3=5
( )+1=4 ( )-7=4 ( )+8=10 9-( )=4 ( )-5=1
4+( )=10 ( )+5=5 ( )-2=5 10-( )=2 ( )-6=4
学习10以内数加减法的方法
一、加法:大数记心里,小数往上数,如4+2= 把4记在心里,往上数两个数,5、6, 之后得出结果4+2=6
二、减法:大数记在心里,小数往下数,如6-3= 把6记在心里,往下数三个数,5、4、3, 之后得出结果6-3=3
家长需配合每日为宝贝出30道10以内加减法,提升孩子的算术能力,注意不要让孩子数指头,养成习惯不好改,培养心算能力。
20以内加减法窍门
20以内不进位加减法
1、11-20的数可以和孩子玩猜数游戏。用3种方式描述数:
① 个位是2,十位是1 。
② 1个十,5个一。
③ 比11大,比13小。
用这些方式描述数,让孩子猜,或者反过来孩子描述大人猜,直到熟练。
2、用计数器拨数。
家长说数,孩子拨数。边拨边说数的组成。如12是由1个十和2个一组成的。
在一年级的数学教学中,一般的孩子在学前班时就学会了10以内加减法,进入小学后,20以内不进位不退位的加减法稍加练习也能熟练掌握。但是,孩子学习进位加法和退位减法就不是那么轻松了,部分学生的计算速度大大下滑,计算的准确率也降低了,两极分化初露端倪。有的学生由于计算速度跟不上,开始拖拉作业,成为数学学习困难者。
那么,到底是什么原因造成了孩子学习20以内进位加法以及退位减法的困难呢?小编认为,这和我们运用的计算进位加法和退位减法的算法有关。算法不外乎数数法和数字推理法,数数法就是通过数数来计算,包括借助实物数数和单纯数数两种。数字推理法指的是包含凑十法、拆分法等的运用数字进行推算的方法。
然而,数字推理法对学生的思维要求高,需要的思维步骤也多,并不利于学生熟练掌握最终到达到脱口而出的地步。以运用最为广泛的凑十法为例,求9加6等于几,学生在解决问题之前就需要这几个思考过程:一、判定该题是不是进位加法;二、如果是进位加法,怎样才能凑成10。这样确定方法后才能进行下面的运算:
9+6=9+(1+5)=(9+1)+5=10+5=15
从上面的运算中可以看出,这是一个运用加法结合律进行简便计算的一个过程,而且属于不能直接运用题中数据,需要拆分才能进行简便运算的一类。所以,看似简单的凑十法,其思维是不简单的,包含着一系列逻辑推理过程,它的认知基础与一年级学生所具有的知识结构和思维能力之间存在一定的距离,一定程度上造成了学生计算的困难。那么,怎样的方法才能更好地解决这一难题呢?
20以内的进位加法。
怎样才能使学生能在较短时间内掌握20以内进位加法呢?其实只要将其转化为学生已经掌握的10以内减法就行了,归纳下来口诀是:“加九减一,加八减二,加七减三,加六减四,加五减五。”怎样用口诀,以“加九减一”为例,“加九减一”是指一个数与9相加,将这个数减去1作为它们和的个位。
例如:8+9=( )就拿 8减去1结果7,用7来作和的个位,即8+9=17, 5+9=( )就拿5减去1等于4,用4来作和的个位,即5+9=14。
“加八减二,加七减三,加六减四,加五减五”的方法同上
20以内退位减法。
20以内退位减法与20以内进位加法相反,就是把20以内退位减法转化为10以内加法。口诀是:“减九加一,减八加二,减七加三,减六加四,减五加五。”如何用口诀,以“减九加一”为例,“减九加一”是指一个数减去9,将这个数的个位加上1所得的结果就是它们的差。
例如:17-9=( )就拿17的个位7加上1结果是8,即17-9=8,13-9=( )就拿13的个位3加上1结果是4,即13-9=4
例如:17-2=( )分清哪个是个位,哪个是十位,先看个位数能不能减,7-2如果够减,就用十以为的减法,7记在心里,然后倒数6,5,得5,然后十位的1不变,就得了15.
“减八加二,减七加三,减六加四,减五加五”与“减九加一”的方法一样。
一年级学生还不能正确的进行抽象思维,采用以上方法,能使习惯依赖摆实物来计算的学生脱离实物也能快速准确的算出结果,避免了死记硬背,盲目多练,提高了运算速度,降低了出错率,减轻了学生的学习负担。
5. 小学一年级计算简便方法
一年级简便计算过程分析18+23+32
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
18+23+32
=18+32+23
=50+23
=73
(5)一年级简便计算方法的讲解扩展阅读\计算过程:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:8+2=0 向高位进1
步骤二:1+3+1=5
根据以上计算步骤组合计算结果为50
存疑请追问,满意请采纳
6. 小学数学简便计算公式
总结了小学数学的计算公式,及其灵活运用,简便计算技巧。
①加法
加法交换律:a+b=b+a;
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
②减法
a-b=-(b-a)
a-b-c=a-(b+c)
减法有一个口诀:加括号,变符号。
③乘法
乘法交换律:a x b=b x a;
乘法结合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小学数学试题中常考的一种题型-计算复杂数式。
经常就会用到乘法分配律,来提取公因数,简化计算。
【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19
分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等于0);
a x b÷c=a÷cxb(c不等于0);
以上公式是解四则运算题目的基本关系式。
灵活学习,灵活运用。
它们除了正着用,有时候还得会倒着用。
【例2】计算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已经凑出来了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)
=47.9x(6.6+3.4)+17
=496
注意:例2题目中我们将乘法分配律倒着使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外还用到了一个特别的公式。
529x0.34=529÷10x10x0.34
这个公式总结出来,即:
a x b=a÷c x c x b(c不等于0)。
7. 简便计算的窍门和技巧是什么
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以“带符号搬家”。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括号法
在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
方法三:乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配;提取公因式:注意相同因数的提取;注意构造,让算式满足乘法分配律的条件。
方法四:拆分法
拆分法属于为了方便计算把一个数拆成几个数,这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小。
方法五:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
8. 数学简便计算,有哪几种方法
简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。
它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。
就像68+77=?
大多数人不一定立刻能算出结果,
如果换成70+75=?
相信每一个人都可以一口算出和是145。
这里其实就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇见复杂的计算式时,
先观察有没有可能凑整,
凑成整十整百之后再进行计算,
不仅简便,而且避免计算出错。
①加减凑整
【例题1】999+99+29+9+4=?
题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例题2】5999+499+299+19=?
看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。
没有枪没有炮,自己去创造!
先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分组凑整
在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。
【例题3】100-95+92-89+86-83+80-77=?
题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。
根据加法减法运算性质,我们给相邻的项加上括号。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。
③提取公因数法
这就需要用到乘法分配律提取公因数,
又称为提取公因数法。
如果没有公因数,我们可以采取乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例题4】47.9x6.6+529x0.34=?
很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。
9. 加减法怎么教孩子简便一年级
先教分解
如果想让孩子真正的理解加减的意义,那么,就要让孩子操作实物,不断的练习,从练习中理解。我还是推荐这一种,因为都说数学是思维的体操,理解加减的意义才能真正的让孩子的思维得到锻炼。加法,实际上就是:将两个集合和在一起,变成一个集合。减法:将一个集合分开,分成两个。孩子真正的理解加减法的意义,不是算会那道题,而是理解加减法之间的关系。比如:6个苹果,可以分成2个和4个苹果,也可以反过来说是4个和2个苹果,同时,2个和4个苹果(或者4个苹果和2个苹果)合起来就是6个苹果。也就是说:1、从分解组合开始教孩子,一边分,一边用语言表述,一定要用嘴巴说出来,能说出来的孩子,表示她自己真的掌握了。2、从5以内的开始。先从分解2开始。3、每次分开后表述完,要记得在合起来。希望可以帮助到您
打基础的方法
1、学数数
学计算之前先学数数,这谁都知道,但是利用多种数数形式来为计算打基础,却被相当多的父母所忽视。不少父母在孩子会唱读1~100之后就认为孩子已学会了数数,而可以教计算了,但实际上孩子并没有真正建立数的概念,也没有真正掌握计数的技巧。
数数的内容其实很多,除了要建立数的一对一的概念以外,还要包括多种数数的技能,主要形式有:
①N加1,即按递增1的顺序正着数,这是学N加1计算的基础;
②N减1,即按递减1的顺序倒着数,这是学N减1计算的基础;
③数单数,建立奇数概念;
④数双数,建立偶数概念;
⑤逢10数,建立进位概念;
⑥逢5数,将5作为一个基本单元,这是一个很重要的数数技能,因为在提高数数和计算技能方面,5的重要性仅次于10。
2、计算N加1,凡是能正着依次数数并理解其含义是依次递增1个的幼儿,都能轻而易举地学会计算N加1,包括10加1、20加1、99加1乃至100加1。
3、计算N减1,凡是能倒着数数并理解其含义是依次递减1个的幼儿都能学会计算N减1的题,包括11减1,21减1、100减1乃至101减1。
4、整10相加或相减,如10加10、20加10、……90加10,凡是会逢10数数并理解其含义是依次递增或递减10个的幼儿都能很容易地学会。