导航:首页 > 知识科普 > 真菌常用的诱变方法有哪些

真菌常用的诱变方法有哪些

发布时间:2022-06-13 13:17:00

⑴ 请问真菌诱变是化学剂的含量以及紫外线的时间选择谢谢

紫外线是属于物理诱变,一般是253.7nm波长的紫外线(15w紫外灯)距离30cm,照射10-20秒到10—20分钟,具体时间根据你诱变的菌种而定。但要记住微生物有光照复活的现象,所以诱变后要在红光下操作,还有不要见到其他光源。诱变致死率在百分之70-75最好。
化学诱变的主要方法比较多,我就说一个自己还记得的吧!
就是亚硝酸盐诱变
一)1mol每升的醋酸作为缓冲液:取6.12g醋酸+蒸馏水至100ml。将NAAC溶液徐徐加入到刚才配制的溶液中混匀,然后调节PH到4.5为止。
二)0.6mol每升的亚硝酸钠溶液:4.14g+蒸馏水到100ml
三)0.7mol每升的磷酸氢钠溶液:9.94g该物质+蒸馏水到100ml
上述是所需溶液的配制方法,注意三种溶液使用前需要灭菌。
做法你应该会吧?!!全部是自己打的啊刚好考试复习过!!~~希望能帮助到你。

⑵ 请问用紫外线对真菌的原生质体进行诱变的成功率高吗要注意些什么谢谢!

是的。紫外线杀菌就是通过紫外线的照射,破坏及改变微生物的DNA(脱氧核糖核酸)结构,使细菌当即死亡或不能繁殖后代,达到杀菌的目的。真正具有杀菌作用的是UVC紫外线,因为C波段紫外线很易被生物体的DNA吸收,尤以253.7nm左右的紫外线最佳,这是因为细胞对光波的吸收谱线有一个规律,在250~270nm的紫外线有最大的吸收,被吸收的紫外线实际上作用于细胞遗传物质即DNA,它起到一种光化作用,紫外光子的能量被DNA中的碱基对吸收,引起遗传物质发生变异,使细菌当即死亡或不能繁殖后代,达到杀菌的目的。

由于紫外线会杀死细胞,因此紫外线消毒时要注意不能直接照射到人的皮肤,尤其是人的眼睛,紫外线杀菌灯点亮时不要直视灯管,由于短波紫外线不透过普通玻璃,戴眼镜可避免眼睛受伤害。如果不小心眼受伤,一般情况也无关大碍,就象被太阳光灼伤一样,严重的可滴眼药水或人乳,帮助复原。在有人的场合,不要使用有臭氧灯管,臭氧浓度高时对人不利。

紫外线杀菌属于纯物理消毒方法,具有简单便捷、广谱高效、无二次污染、便于管理和实现自动化等优点,随着各种新型设计的紫外线灯管的推出,紫外线杀菌的应用范围也不断在扩大。 另可参考网络资料:http://ke..com/view/773897.htm

紫外线杀菌灯的应用和注意事项:

1.每一种微生物都有其特定紫外线杀灭、死亡剂量标准,其剂量是照射强度与照射时间的乘积(杀菌剂量=照射强度·照射时间/K=I·t),即紫外线的照射剂量则取决于紫外线的强度大小以及照射时间的长短,高强度短时间与低强度长时间之照射其效果是相同的。
2.石英灯管使用一段时间后会逐渐老化,紫外线照射强度会发生衰退,为达到彻底消毒的效果,应定期检查测石英灯的照射强度,发现强度不够时应立即更换。
3.紫外线的只能沿直线传播,穿透能力弱,任何纸片、铅玻璃、塑料都会大幅降低照射强度。因此消毒时尽量应使消毒部位充分暴露于紫外线下,定期擦拭灯管,以免影响紫外线穿透率及照射强度。
4.紫外线对人体的的皮肤能产生很大的伤害性,不要在有人的场所使用UV灯,更不要用眼睛直视点燃的灯管,由于短波紫外线不能透过普通玻璃,所以戴眼镜可避免眼睛受伤害。
5.在有人员活动的场所,一般不能使用臭氧灯管,因为臭氧会促进人体的血红蛋白凝结,造成人体供氧不足,发生头晕、恶心的感觉,影响身体健康,特别在臭氧浓度达到>0.3ppm (mg/m2 )时,将会对人体造成严重的伤害。
6.低压放电灯中之紫蓝色光芒为汞蒸气压,虽然汞蒸气压的强度与紫外线仍然有其关联性,但是并不直接代表紫外线之强度,这也就是说,紫外线的强度无法用肉眼来判定。
7.灯具加反光罩可以保证紫外线能量的集中,另外可以避免给工作人员造成损伤。反光罩一定要用对253.7nm紫外线材料吸引少反射多的材料制作,表面氧化抛光处理过的铝对短波紫外线的反射系数最大,所以一般紫外线灯具的反光系统均用铝材制成。

⑶ 诱变育种的方法

物理、化学诱变的方法及其机理如下述。 应用较多的是辐射诱变,即用α射线、β射线、γ射线、Χ射线、中子和其他粒子、紫外辐射以及微波辐射等物理因素诱发变异。当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团 。它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。由此又影响到细胞内的一些生化过程,如 DNA合成的中止、各种酶活性的改变等,使各部分结构进一步深刻变化,其中尤其重要的是染色体损伤。由于染色体断裂和重接而产生的染色体结构和数目的变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。那些带有染色体突变或基因突变的细胞,经过细胞世代将变异了的遗传物质传至性细胞或无性繁殖器官,即可产生生物体的遗传变异。
诱变处理的材料宜选用综合性状优良而只有个别缺点的品种、品系或杂种。由于材料的遗传背景和对诱变因素的反应不同,出现有益突变的难易各异,因此进行诱变处理的材料要适当多样化。由于不同科、属、种及不同品种植物的辐射敏感性不同,其对诱变因素反应的强弱和快慢也各异。如十字花科白菜的敏感性小于禾本科的水稻、大麦,而水稻、大麦的敏感性又小于豆科的大豆。另外,辐射敏感性的大小还同植物的倍数性、发育阶段、生理状态和不同的器官组织等有关。如二倍体植物大于多倍体植物,大粒种子大于小粒种子,幼龄植株大于老龄植株,萌动种子大于休眠种子,性细胞大于体细胞等。根据诱变因素的特点和作物对诱变因素敏感性的大小,在正确选用处理材料的基础上,选择适宜的诱变剂量是诱变育种取得成效的关键(表 1)。适宜诱变剂量是指能够最有效地诱发作物产生有益突变的剂量,一般用半致死剂量(LD50)表示。不同诱变因素采用不同的剂量单位。Χ、γ射线线吸收剂量以拉德(rad)或戈瑞(GY)为单位,照射剂量以伦琴(R)为单位,中子用注量表示。同时要注意单位时间的照射剂量(剂量率、注量率)以及处理的时间和条件。
辐照方法分外照射和内照射两种,前者指被照射的植物接受来自外部的γ射线源、Χ射线源或中子源等辐射源辐照,这种方法简便安全,可进行大量处理。后者指将放射性物质(如32P、35S等)引入植物体内进行辐照,此法容易造成污染,需要防护条件,而且被吸收的剂量也难以精确测定。干种子因便于大量处理和便于运输、贮藏,用于辐照最为简便。 化学诱变除能引起基因突变外,还具有和辐射相类似的生物学效应,如引起染色体断裂等,常用于处理迟发突变,并对某特定的基因或核酸有选择性作用。化学诱变剂主要有:①烷化剂。这类物质含有1个或多个活跃的烷基,能转移到电子密度较高的分子中去,置换其他分子中的氢原子而使碱基改变。常用的有甲基磺酸乙酯(EMS)、乙烯亚胺(EI)、亚硝基乙基脲烷(NEU)、亚硝基甲基脲烷(NMU)、硫酸二乙酯(DES)等。②核酸碱基类似物。为一类与DNA碱基相类似的化合物。渗入DNA后,可使DNA复制发生配对上的错误。常用的有5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR)等。③抗生素。如重氮丝氨酸、丝裂毒素C等,具有破坏DNA和核酸的能力,从而可造成染色体断裂。
化学诱变主要用于处理种子,其次为处理植株。种子处理时,先在水中浸泡一定时间,或以干种子直接浸在一定浓度的诱变剂溶液中处理一定时间,水洗后立即播种,或先将种子干燥、贮藏,以后播种。植株处理时,简单的方法是在茎秆上切一浅口,用脱脂棉把诱变剂溶液引入植物体,也可对需要处理的器官进行注射或涂抹。应用的化学诱变剂浓度要适当(表 2)。处理时间以使受处理的器官、组织完成水合作用和能被诱变剂所浸透为度。化学诱变剂大都是潜在的致癌物质,使用时必须谨慎。

⑷ 灵芝诱变育种的物理方法有哪些

物理诱变是利用超声波、高温、激光、各种射线包括紫外线、X射线、γ射线、快中子、α射线、β射线等物理因素诱导真菌发生变异的方法。其中应用较普遍的有应用γ射线、紫外线、X射线等辐照育种,如太空育种灵芝。中国医学科学院药用植物研究所研究人员于1999年11月,利用“神舟1号”宇宙飞船搭载灵芝菌种,在封舱和开舱过程中均得到北京市公证处的公证。经过多年的研究,采用传统生物技术和分子生物学及空间育种技术相结合,探明空间环境对灵芝的生物学效应,经对神舟飞船搭载灵芝多年的栽培试验,选育出高产优质的太空新菌株,其子实体产量比对照增长15%左右。开展搭载灵芝与地面对照在生物学特性、生理、生化、遗传性状、成分含量等方面的研究,并对各基因组DNA进行了AFLP指纹比较,表明搭载灵芝菌株基因发生了变异,其中灵芝三萜酸成分比对照高10倍多。该项研究填补了药用真菌空间育种的空白。

⑸ 诱变育种常用的方法有

诱变育种:是用物理或化学的诱变剂使诱变对象内的遗传物质(DNA)的分子结构发生改变, 引起性状变异并通过筛选获得符合要求的变异菌株的一种育种方法。

物理方法:射线(紫外线、X光线、Y射线,中子线),激光微束,离子束,微波,超声波,热力等
化学诱变常用方法:浸渍法、涂抹法、滴液法、注射法、施入法和熏蒸法。化学诱变剂(碱基类似物、烷化剂,移码诱变剂,硫酸二乙酯(DFS)、5-溴尿嘧 啶(5-BU)、氮芥(Nm)、N'广甲基N'亚硝基胍(NTG))。

生物方法:空间条件处理诱变,病原微生物诱变,转基因诱变

秋水仙素是从百合科植物秋水仙(Colchicum autumnale)的根、茎、种子等器官中提炼出来的一种药剂,分子式为C22H25O6N。积水仙素是淡黄色粉末,纯品是针状无色结晶性,性极毒,融点为155℃,易溶于水、酒料、氯仿和甲醛中,不易溶解于乙醚、苯。
秋水仙素能抑制细胞分裂时纺锤丝的形成,使已正常分离的染色体不能拉向两极,同时秋水仙素又抑制细胞板的形成,使细胞有丝分裂停顿在分裂中期。由于它并不影响染色体的复制,因而造成加倍后的染色体仍处于一个细胞中,导致形成多倍体。处理过后,如用清水洗净秋水仙素的残液,细胞分裂仍可恢复正常。
人工诱导多倍体常用秋水仙素的水溶液。配制方法为,将秋水仙素直接溶于冷水中,或先将其溶于少量酒精中,再加冷水。配制好的溶液应放入棕色玻璃瓶内保存,且保存时应置于暗处,避免阳光直射,此外瓶盖应拧紧,以减少与空气的接触,避免造成药效损失。
3.秋水仙素的浓度与处理时间
秋水仙素溶液的浓度及处理时间的长短是诱导多倍体成功的关键因素。一般秋水仙素处理的有效浓度有0.0006%~1.6%,比较适宜的浓度为0.2%~0.4%。处理时间长短与所用秋水仙素的浓度有密切关系,一般浓度俞大,处理时间则要愈短,相反则可适当延长。多数实验表明,浓度大,处理时间短的效果比浓度小,处理时间长要好。但处理时间一般不应小于24小时或以处理细胞分裂的1~2个周期为原则。
由于不同植物,不同器官或组织在一定条件下对秋水仙素的反应不同,因此,须根据不同情况来掌握处理的浓度和时间。例如,东北林业大学张敩方等人用白花类型金鱼草种子进行多倍体诱变,采用浓度0.3%~0.5%的秋水仙素处理24小时诱变效果较好。另有实验表明,处理矮牵牛种子的适宜浓度为0.01%~0.1%,以0.05%处理时间24小时效果最佳。在不同器官方面,处理种子的浓度可稍高些,持续时间可稍长(一般为24~48小时);处理幼苗时,浓度应低些,处理时间可稍短点;植物幼根对秋水仙素比较敏感,极易受损害,因此,对根处理时应采用秋水仙素溶液与清水交替间歇的方法较好。
秋水仙素溶液只是影响正在分裂的细胞,对于处于其他状态的细胞不起作用。因此,对植物材料处理的适宜时期是种子(干种子或萌动种子)、幼苗、幼根与茎的生长点、球茎与球根的萌动芽等。如果处理材料的发育阶段较晚,被诱导的植株易出现嵌合体。

4.秋水仙素处理的方法
(1)浸渍法
此法适合于处理种子,枝条盆栽小苗的茎段生长点。
一般,选干种子或萌动种子,将它们放于培养器内,再倒入一定浓度的秋水仙素溶液,溶液量为淹没种子的2/3为宜。处理时间多为24小时,浓度0.2%~1.6%。浸渍时间不能太长,一般不超过6天,以免影响根的生长。最好是在发根以前处理完毕。处理完后应及时用清水洗净残液,再将种子播种或沙培。对于百合类植物,常采二倍体鳞片浸于0.05%~0.1%的秋水仙素溶液,处理1~3小时后洗净扦插。唐菖蒲实生小球也可用浸渍法促使染色体加倍。
盆栽幼苗,处理时将盆倒置,使幼苗顶端生长点浸入秋水仙素溶液内,以生长点全部浸没为度。对于组织培养试管苗也可采用浸渍法处理,只是处理时须用纱布或湿滤纸覆盖根部,处理时间因材料可从几个小到几天。对插条,一般处理1~2天。
(2)滴定法
用滴管将秋水仙素水溶液滴在子叶、幼苗的生长点上(即顶芽或侧芽部位)。一般6~8小时滴一次,若气候干燥,蒸发快,中间可加滴溜馏水一次,如此反复处理一至数日,使溶液透过表皮渗入组织内起作用。若水滴难以停留在芽处,则可用棉球包裹幼芽,再滴芽液处理。此法与浸种法相比,可避免植株根系受到伤害,也比较节省药液。
(3)毛细管法
将植株的顶芽、腋芽用脱脂棉或纱布包裹后,将脱脂棉与纱布的另一端浸在盛有秋水仙素溶液的小瓶中,小瓶置于植株近旁,利用毛细管吸水作用逐渐把芽浸透,此法一般多用于大植株上芽的处理。
(4)涂抹法
将秋水仙素乳剂涂抹在牙上或梢端,隔一段时间再将乳剂洗去。
(5)套罩法
保留新梢顶芽,除去牙下数叶,套上一个胶囊。内盛0.65%的琼脂加适量秋水仙素,经24小时即可除去胶囊。
(6)注射法
采用微量注射器将一定浓度的秋水仙素溶液注入植株顶芽或侧芽中。
(7)复合处理法
据日本山川邦夫(1973年)报道,将好望角苣苔属(Streptocarpus,属苦苣苔科植物)中的一些种用秋水仙素处理11天,又用 0.04~0.05Gy(4~5rad)的X射线照射,可提高染色体加倍植株的出现率达到60%。而单独用秋水仙素处理时为30%。采用复合处理法还获得了两株八倍体。

5.秋水仙素诱导多倍体需注意的事项
(1)幼苗生长点的处理愈早愈好,获得全株四倍性细胞的数目就愈多,处理时间愈晚,则大多是混杂的嵌合体。
(2)植物组织经秋水仙素处理后,在生长上会受到一定影响,如果外界条件对它生长不适宜,也会使试验失败,要注意培育、管理。对形成嵌合体的可采用摘顶、分离繁殖、细胞培养等方法。
(3)处理期间,注意处理时的室温,当温度较高时,处理浓度应低一些,处理时间要短些;相反,当室温较低时,处理浓度应高些,处理时间应长点。
(4)诱导多倍体时,处理的植物材料应选二倍体类型,且生长发育处理幼苗期,材料数量上应尽量多数,以便选择有利变异。
(5)处理完后,须用清水冲洗干净,以避免残留药液继续使染色体加倍,从而对植株造成伤害。
(6)秋水仙素属剧毒物质,配制和使用时,一定要注意安全,避免秋水仙素粉末在空中飞扬,以免误入呼吸道内;也不可触及皮肤。可先配成较高浓度溶液,保存于棕色瓶中,盖紧盖子,放于黑暗处,用时再稀释。

⑹ 病原真菌毒性怎么实现人工诱变

人工诱变常用的诱变剂(mutagen)有物理的和化学的两类常用物理诱变剂有紫外线X射线γ射线超声波等化学诱变剂很多,有天然嘧啶类似物天然嘌呤类似物烷化剂类移码诱变剂以及其他

突变的类型很多,在抗病性研究中,经常诱导的有颜色突变生化突变和毒性突变颜色突变菌株与生化突变菌株多用于遗传研究和致病机制研究

人工诱导毒性突变,先要选择适宜的诱变剂,用诱变剂处理孢子或接种的叶片在预备试验中,先确定诱变方法最适诱变剂量和处理时间作出剂量致死曲线和剂量突变曲线一般致死率达95%~99%的剂量为紫外线诱变的适宜剂量(井金学等,1993)

检出突变体的标记类型很多,有毒性标记形态标记颜色标记生化标记抗药性标记等专性寄生菌的毒性突变研究,适用毒性标记,有时也配合使用颜色标记,例如白化体(albino)毒性突变表型用作物的一套单基因系和近等基因系检测发现突变菌落后,进行单孢子分离,在检出品系或感病品种上繁殖,获得突变菌株随后用来进一步研究突变性质,确定毒性谱发生有性世代的病原菌,还要使突变菌株自交,明确其遗传性质以及计算突变率

兼性寄生菌易于用培养基培养,还可利用生化标记,应用选择性培养基,检测抗药性突变和营养缺陷型突变,一个菌落就是一个突变体,比照在完全培养基上产生的菌落总数,计算突变率对于能培养的真菌,诱导营养缺陷型等生化突变已有一套标准方法可以参照

⑺ 用化学法如何进行菌种诱变有哪位做过此项目具体的操作过程

已知的有烷化剂、碱基类似物(base analog)、羟胺(hydroxylamine)、吖啶色素等。

常用化学诱变剂的种类及作用机制

(一)烷化剂

是栽培作物诱发突变的最重要的一类诱变剂。药剂带有一个或多个活泼的烷基。通过烷基置换,取代其它分子的氢原子称为"烷化作用"所以这类物质称烷化剂。
烷化剂分为以下几类:
1. 烷基磺酸盐和烷基硫酸盐
代表药剂:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES)
2. 亚硝基烷基化合物
代表药剂:亚硝基乙基脲(NEH)、N-亚硝基-N-乙基脲烷(NEU)
3. 次乙胺和环氧乙烷类
代表药剂:乙烯亚胺(EI)
4. 芥子气类
氮芥类、硫芥类
烷化剂的作用机制--烷化作用 作用重点是核酸,导致DNA断裂、缺失或修补。

(二)核酸碱基类似物

这类化合物具有与DNA碱基类似的结构。
代表药剂:
5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 为胸腺嘧啶(T)的类似物
2-氨基嘌呤(AP) 为腺嘌呤(A)的类似物
马来酰肼(MH) 为尿嘧啶(U)的异构体
作用机制:作为DNA的成份而渗入到DNA分子中去,使DNA复制时发生配对错误,从而引起有机体变异。

(三)其它诱变剂

亚硝酸 能使嘌呤或嘧啶脱氨,改变核酸结构和性质,造成DNA复制紊乱。HNO2还能造成DNA双链间的交联而引起遗传效应。
叠氮化钠(NaN3) 是一种呼吸抑制剂,能引起基因突变,可获得较高的突变频率,而且无残毒。

以下是具体的使用方法,希望对你有点作用!!!!!!!!!!

化学诱变剂的剂量主要决定于其浓度和处理时间。

化学诱变剂都具毒性,其中90%以上是致癌物质或极毒药品,使用时要格外小心,不能宜接用口吸,避免与皮肤直接接触,不仅要注意自身安全,也要防上污染环境,造成公害。

一、碱基类似物

用于诱发突变的碱基类似物有5-BU、5-FU、BUdr、5-IU等他们是胸腺嘧啶的结构类似物,AP、6-MP是腺嘌呤的给、结构类似物。最常用是5-BU和AP。

当将这类物质加人到培养基中,在繁殖过程中可以掺人到细菌DNA分子中,不影响DNA的复制。它们的诱变作用是取代核酸分子中碱基的位置,再通过DNA的复制,引起突变,困此,也叫掺人诱变剂。显然这一类诱变剂要求微生物细胞必顿处在代谢的旺盛期,才能获得最佳的诱变效果。

(一)碱基类似物的诱变机制

正常的碱基存在着同分异构体,互变异构现象在嘧啶分子中以酮式和烯醇式的形式出现,而嘌呤分子中以氨基和亚氨基互为变构的形式出现、一般互变异构现象在碱基类似物中比正常DNA碱基中频率更高。

5-BU 导致A:T碱基对转换为GC碱基

2-氨基嘌呤也可以诱发DNA分子中A:T- G:C或G:C- A:T的转换。

(二)碱基类似物的诱变处理方法(以5-BU为例)

1.单独处理

将微生物液体培养到对数期.离心除去培养液,加入生理盐水或缓冲液.饥饿培养8-10h,消耗其体内的贮存物质、将5-BU加入到经饥饿培养的培养液中,处理浓度为25-40ug/ml,温合均匀.取0.1-0.2ml菌悬液加人到琼脂培养基上涂布培养。在适宜温度下,使之在生长过程中诱变处理。培养后挑取单菌落,进行筛选。如果是处理真菌、放线菌孢子,则要提高5-BU的浓度,常处理浓度为 0.1mg/ml。

2.与辐射线复合处理

据报道;如果菌体先用5-BU等碱基类似物进行处理,使它们首先渗人到DNA分予中,然后用辐射线照射,诱变效果会比单独使用射线要好。因此碱基类似物也是一种辐射诱变的增敏剂。从而提高突变率。

二、烷化剂

(一)烷化剂的作用机制

烷化剂分单功能烷化剂和双功能或多功能烷化剂两大类。前者仅一个烷化基团,对生物毒性小,诱变效应大。后者具有两个或多个烷化基团,毒性大,致死率高,诱变效应较差。主要原因是双功能烷化剂有硫芥、氮芥。

烷化剂主要是通过烷化基团使DNA分子上的碱基及磷酸部分烷化,DNA复制时导致碱基配对错误而引起突变,碱基中容易发生烷化作用的是嘌呤类。其中鸟嘌呤N7是最易起反应的位点,几乎可以和所有烷化剂起烷化作用;此外,DNA分子中比较多的烷化位点是鸟嘌呤O6和胸腺嘧啶O4,这些可能都是引起突变的主要位点。其次引起烷化的位点是鸟嘌呤N3、腺嘌呤N2,腺嘌呤N7和胞嘧啶N3。这些位点引起碱基置换的仅占烷化作用的10%左右。因此,由这些位点改变所引起的突变仅是少数。

烷化剂也能造成磷酸和核糖之间的共价键断裂,而造成突变。

(二)烷化剂的性质

溶液烷化剂的性质比较活泼,不太稳定,在水溶液中容易发生分解。它们大部分半衰期很短,其长短与温反、溶液PH关系很大。因此,化学诱变剂要现用现配还要避光。配制烷化剂时,要采用合适的出缓冲液。 有毒!!!!

(三)常用的烷化剂

亚硝基胍(NTG)

黄色晶体物质,性质不稳定,容易光解,黄色变为绿色时,诱变效应际低。

有超诱变剂之称,常用缓冲溶液有磷酸缓冲液和Tri缓冲液。

诱变处理方法:

①用一定值的磷酸缓冲液或Tri缓冲液洗制成菌悬液。②NTG母液:配制需加助溶剂甲酰胺或丙酮少许,然后加缓冲液,其比例为缓冲液9ml:NTG丙酮溶液lml,浓度为NTG 1mg/ml ;使用时取母液0.2ml + 菌悬液1.8ml,NTG终浓度为100ug/ ml。一般随菌种不同而异,细菌一般为100-1000 ug/ ml,放线菌、真菌为l000-3000 ug/ ml。③放线菌在生长适宜的温度下培养,(细菌30-35℃、真菌25-28℃、放线菌30-32℃)处理若干时间,一般细菌20-60min,孢子90-120 min④终止反应。冷的生理盐水50倍稀释处理,或经过离心洗涤处理,作一定稀释度分离于平皿。如果是细菌,把后培养基按一定浓度加入到菌体沉淀物中,振荡培养1.5-2h,经2-3次细胞分裂,再涂平皿。

处理完毕后,马上把接触过NTG的器皿用NaOH浸泡处理。

NTG除以上直接以溶液处理外,还可以按以下方法诱变处理,摇瓶振荡处理:在接菌后的培养基中加人5-10 ug/ ml NTG.并加几滴吐温60或吐温80,使成乳化状(注意吐温对该菌生长是否有影响);在平皿上生长过程处理:如果将NTG、琼脂和菌体混合制成平板,NTG浓度为10-50 ug/ ml。或将琼脂培养基制成平板.然后将NTG和菌体混合涂抹平析,此时NTG浓度为10-20 ug/ ml。

经后培养的培养液.除部分进行平皿分离外。剩余的培养液可以加人适量的药物,保存于冰箱内数天。如日本有人把经过NTG处理后的大肠杆菌培养液,用50%甘油(最终浓度为12.5%)于-40℃、-80℃保存。在以后数天内随时可取出融化,稀释分离,突变体死亡很少。

据报道.无论是用辐射处理,还是用化学诱变剂处理后的菌悬液或后增养液,浸在冰浴中2-3h,试验的重复性很好。认为在大肠杆菌、枯草杆菌和放线菌等可以采取这一措施来提高诱变效果。

NTG是一种强烈致癌物质,操作时要带橡皮手套,穿工作服,带口罩,用称量瓶称量,最好在通风橱中进行。凡接触过NTG的器皿必须及时、单独处理,例用自来水大量冲洗或用1-2N的NaOH浸泡过夜,洗净。

2.甲基磺酸乙酯(简称EMS)

甲基磺酸乙酯是磺酸酯类中诱变效果较好的一种烷基化合物,外观呈粉末状或无色液体,难溶于水,不稳定,易水解成无活性物质。

EMS的诱变处理方法:

① EMS 母液的配制:为了安全和防上失效,配制前将需用的器皿,置冰箱内预冷,然后在冰浴中进行配制。取0.5ml EMS原液,加人到10 ml pH7.2磷酸缓冲液中,加盖,并轻轻转动试管。由于在水溶液中易失效,故尽可能低温保藏,并要现用现配。

②取新鲜的菌体,经前培养至对数期.离心洗涤,用缓冲液制成8 ml菌悬液(107-108ml-1)。对于丝状菌孢子,则前培养至萌动期,悬液含 106 ml-1。

③取EMS母液2ml,加人到以8ml的菌悬液中。在适宜温度下处理一定时间(根据预实验绪果确定)。处理的最终浓度为0 .lmol/L。对于真菌孢子,则为0.2-0.5rnol/L。

④EMS处理一定时间后,用50倍生理盐水稀释或加入一定量的2%NaS2O3溶液或多次离心、洗涤,以终止反应。

EMS是剧毒的诱变剂,在整个诱变过程,包括配制药品、操作处理、保存等都要严守安全,不能接触皮肤,所有接触过EMS的器皿,单独用大量水冲洗洗涤,或用10%NaS2O3溶液浸泡过夜,再用清水冲洗干净。

三、脱氨剂

亚硝酸是一稀常用的诱变剂,毒性小.不稳定,易挥发.其钠盐易在酸性缓冲液中产生NO和NO2

(一)亚硝酸的诱变机制

脱去碱基中的氨基变成酮基,引起转换而发生变异。A→H,C→U,G→X。 A:T→G:C和G:C→A:T。亚硝酸的诱变也可以发坐回复突变。

亚硝酸除了脱氨基作用外,还可引起DNA交联作用,DNA复制,从而导致奕变。

(二)亚硝酸的处理方法

1.试剂的配制

(1)1mol/L pH4.5醋酸缓冲液

(2)0.1mol/L亚硝酸钠溶液

(3)0.07mol/L pH8.6磷酸氢二钠溶液

以上试剂用前均要灭菌。

2.处理方法

取孢子悬液1 ml,pH4.5醋酸缓冲液2ml及硝酸钠溶液lml,最后处理浓度为0.025 mol/L ;25-26℃保温10-20min,加入的磷酸氢二钠溶液 20 ml,使出下降至pH 6. 8左右,以终止反应。稀释分离于平板。

如果是处理细菌,亚硝酸最后浓度以0.05 mol/L。

在亚硝酸处理菌体或孢子时要严格控制好温度,否则会影响诱变效果。

四、移码诱变剂

移码诱变剂与DNA相互结合引起碱基增添或缺失而造成突变。它们主要包括吖啶黄、吖啶橙、ICR-171、ICR-191等。移码诱变剂对噬菌体有强烈的诱变作用,诱发细菌、放线菌的质粒脱落比其他诱变剂效果更为显着。如某些产生抗生素的放线菌。用处理后,发现产量明显下降,主要就是由于控制抗生素合成的质粒脱落造成的。

吖啶黄的性质和使用方法:

淡黄色晶体,微溶于热水,溶于乙醇和乙醚,不稳定,见光易分解。

使用时,先用少许乙醇溶解,配成一定浓度的母液。通常处理方法是特它们加入培养基中,使最后浓度为10-50ug/ml,混合后制成平板,适温培养,在生长过程中处理。另外还可将吖啶黄加人到培养液中,浓度为10-20 ug/ml ,在适温条件下,振荡培养过程中处理。

五、羟化剂【以羟胺为例】

羟胺的简称HA,常以盐酸羟胺形式存在,为白色晶体,溶于水,不稳定易分解,具腐蚀性。

1.羟胺的诱变机制

当羟胺浓度为0.1-1.0mol/L pH6.0时,主要与胞嘧啶反应,使羟化的C与A配对,在0.1-1.0mol/L pH9.0,羟胺可以与鸟嘧啶反应,10-3 mol/L时,羟胺可以与胸腺嘧啶、鸟嘌呤和尿嘧啶起反应。但据分析,羟胺与T、G反应的是它的产物,而不是它本身。此外,羟胺有时还能和细胞中其他物质作用产生过氧化氯,也具有诱变作用。

2.羟胺的处理方法

常用浓度为0.1%-5%,可直接在溶液中处理,时间1-2h,然后分离培养。但一般都加到琼脂平板或振荡培养基中。然后接入孢 子或细菌,在适温下培养,生长过程中处理.所用浓度比直接处理时低些。

六、金属盐类

用于诱变育种的金属盐类主要有氯化锂、硫酸锰等。其中氯化理比较常用,与其他诱变剂复合处理,效果相当显着。

氯化锂称之为助诱变剂,氯化锂是白色粉末,易溶于水,使用时通常加到培养基中。

为了速免受破坏.倒平板时,当培养基温度冷却到50-60℃时才加入制成平板,然后把细菌或孢子涂布分离,处理终浓度为0.3%-1.5%。

七、其他化学诱变剂

1.秋水仙素

秋水仙碱是诱发细胞染色休多倍体的诱变剂。秋水仙碱的主要作用是破坏细胞有丝分裂过程中纺锤丝的形成。导致多倍体的产生。

2.抗生素

作为诱变剂的抗生素主要有链黑霉素、争光霉素、丝裂霉素、放线菌素、光辉霉素和阿霉素等。这些抗生素都是抗癌药物,它们在微生物育种中虽有应用,但效果不如烷化剂等诱变剂显着,应用并不广泛。一般不单独使用,常与其他诱变剂一起复合使用。

八、直视化学诱变剂的操作安全

化学诱变剂多数是极毒的致癌药品,在进行诱变操作后的处置以及诱变剂的保藏等方面的安全防护都是极其重要的。如有疏忽,就可能对健康和环境带来恶果,万万不可麻痹。

⑻ 用语言表述诱变育种的一般流程图

诱变育种的操作要点

(一)出发菌株的选择
用来进行诱变的菌株称为出发菌株。诱变育种的目的在于提高微生物代谢产物的产量、改进质晕或产生新的代谢产物。因此,选择出发菌株对诱变效果尤为重要。
1.作为出发菌株疢对诱变剂敏感,变异幅度大。
2.从自然界分离到的野生型菌株,对诱变剂敏感,易发生正向突变。由自发突变经
筛选得到的菌株也属于野生型菌株。
3.经诱变处理获得的高产菌株再诱变时易出现负突变,继续提高产量较难,不易直接作出发菌株。
4.选择易于表现出基因发生改变的单倍体细胞,酵母菌二倍体细胞很稳定,应该挑选异宗接合的单倍体菌株或用子囊孢子进行诱变。
5.选择单核或细胞核少的细胞,在霉菌的诱变育种中,多采用分生孢子或孢子囊孢
子进行诱变处理。

(二)细胞悬液的制备

1.采用生理状态一致的单细胞或单孢子进行诱变处理,不可能使细胞均匀地接触诱
变剂,还可以减少分离性表型延迟现象的发生。因此,诱变处理前的细胞应尽可能达到同步培养和对数生长期状态。
2. 一般诱变处理真菌孢子或酵母菌营养细胞,其细胞悬液浓度应为106个/ml而细菌营养细胞或放线菌孢于浓度为108个/ml,细胞悬液浓度可用平板计数法和血球计数板法测定。
3.一般情况,使用物理诱变剂处理时,用生理盐水配制细胞悬液;而使用化学诱变剂处理时,由于pH变化易引起诱变剂性质的改变而都使用缓冲液配制细胞悬液。

(三)诱变剂和处理方法的选择

1.诱变剂的选择 对诱变剂的要求是使遗传物质改变大,难于产生回复突变,这样获得的突变株突变性状稳定。亚硝基胍(NTG)和甲基磺酸己酯(EMS)等烷化虽能引起高频度的变异,但它们多是引起碱基对转换突变,易发生回变;而能引起染色体大损伤或移码的紫外线、γ-射线等诱变剂,其有优越性能。

2.诱变剂量的选择 选择最适诱变剂量,也就是在提高突变率的基础上,即能扩大变异幅度,又能使变异向正向突变范围移动的剂量。研究方向正向突变多出现在偏低剂量中,形态变异多发生在偏高剂量中,而一般形态变异多趋向于降低产量。
3.诱变处理方法的选择
(1)紫外线与光复活的交替处理 能使紫外线诱变作用得到显着增强。多次紫外线照射后,并在每次照射后进行-次光复活,突变率将大大提高。
(2)诱变剂的复合处理有一定的协同效应,复合处理有以下几种方式:两种或多种
诱变因子先后使用;同—种诱变剂重复使用;两种或两种以上诱变剂的交替使用等。

(四)中间培养

突变基因的出现并不意味着突变表型的出现,表型的改变落后于基因型改变的现象,称为表型延迟。其原因是分离性延迟和生理性延迟造成的。为此,必须将诱变处理的菌液进行中间培养,即将菌液接入完全液体培养基中培养过夜。

(五)突变株的分离
1.营养缺陷性菌株的分离

(1)淘汰野生型、浓缩缺陷型
(2)缺陷菌株的检出
(3)营养缺陷型的鉴定

2.抗性突变菌株的分离
(1)抗药性突变株的分离
(2)抗代谢结构类似物突变菌株的分离

3.产量性状突变的分离

⑼ 产油真菌的诱变育种

紫外诱变和微波诱变是较常用的物理诱变方法,
它们操作简单,对设备要求不高,不需要昂贵的设备,
比较适合基层单位进行诱变育种。本文就这两种方法
对不同多不饱和脂肪酸诱变效果进行比较研究,为采
用这两种方法进行产油菌株诱变育种提供一些依据
1 试验材料与方法
1.1 实验材料
1.1.1 菌株
本实验室分离并保存。
FR3,刺孢小克银汉霉(Cunninghamella echinulata);
AGEDm59、AGEDm 95为菌株AGED激光诱变
株,多形单毛孢(Monoblepharispolymorpha Comu)。
其中FR37-~][麻酸含量、AGEDm59花生四稀酸含
量、AGEDm 95二十碳五烯酸和二十二碳六烯酸含量
较高。
1.1.2 实验仪器
超净工作台、格兰氏微波炉、索氏抽提器、粉碎机、电子天平;
气相色谱仪:福立9790气相色谱仪,CT-IA氮、
氢、空气发生器(武汉科林分析技术研究所),GPI一2
气体净化器(福立仪器)。
1.1.3 试验试剂
乙醚、石油醚、苯、甲醇、氢氧化钾;
GLA 甲脂、AA甲脂、EPA甲脂及DHA 甲脂标准
品购白Sigma公司,其他试剂均为分析纯。
1.1.4 培养基
斜面培养基为PDA 培养基;种子和发酵培养基
为PDY液体培养基。
1.2 试验方法
1.2.1 孢子悬液的制备
FR3取7天种龄、AGEDm59、AGEDm 95取l0
天种龄的斜面菌株,用无菌水洗下孢子(并用接种针轻
刮表面),FR3配成10一、AGEDm59、AGEDm 95配
成l0。浓度的孢子液。
1.2.2 诱变及保种
紫外诱变:先打开紫外灯照射30min,取0.5ml孢
子悬液到倒好DPA固体培养基的平皿中,涂布均匀,
放在紫外灯下(紫外灯为25W,照射距离为35cm)
照射,之后置于25℃避光24h培养。随机挑取单菌落
于斜面中保存。
微波诱变:由于微波照射会产生热效应,因此在进
行微波诱变时采用了间歇性照射【6】,即先照射一段时
间后进行冷却,再照射,照射时间为各次照射时间的
累加。250mi三角瓶装100ml经过活化的孢子悬液(即
先在150r/min的摇床上振荡5h)【7】,用中等强度功率
照射,每次照射的时间为l0秒,随机挑取的诱变株都
保存于斜面中。
1.2.3 菌丝培养和收获
把长好的诱变株从斜面转到500ml三角瓶中(内
装200mlPDY液体培养基),置于25℃ 中l50转/分钟
摇床上培养。FR3培养4天,AGEDm59、AGEDm 95
培养6天后下样,用滤布过滤获得湿菌丝体。将所得
湿菌丝体在36℃烘箱内烘干,称重,计算生物量;
1.2.4 油脂提取及甲脂化
将干菌体粉碎,并用脱脂滤纸包好,用100ml乙
醚在43~C进行索氏提取6h,回收溶剂,用N2吹走残
留溶剂称重,计算粗油脂量。油脂甲脂化的方法见参考
文献
1.2.5 气相色谱分析条件
色谱柱:FFAP交联石英毛细管柱(0.25mmx 0.25
pmx30m);检测器:氢火焰检测器(FID);载气:N2(流量60 mLlmin):温度:进样器温度160℃ ,检测器温
度240℃;柱温:160℃升至200℃ (8℃/rnin),继续升
至220℃ (2℃/min),恒温7min,降至160℃ 。
1.2.6 多不饱和脂肪酸含量分析
用微量进样器吸取l 上层清液进样分析,对照
标准品保留时间进行定性,由面积归一化法确定相对
百分含量。
2 结果与分析
紫外诱变中不同致死率对诱变的效果影响较大,
据报道,在致死率为75~80%之间诱变的效果最好I9J,
3株菌株从致死率为75~80%的照射剂量中共获得105
株紫外诱变株,其中F 为2l株,AGEDm59为58
株, AGEDm95为26株。
微波诱变中致死率对诱变效果的影响不同的研究
有不同的结果,本实验采用的致死率为40~60%【l0】,
从3株菌中共获得78株微波诱变株,其中FR3为27
株,AGEDm59为25株, AGEDm95为26株。
2.1 生物量
从表l的生物量看,AGED系列2株菌紫外诱变
的正诱变率远高于微波诱变,对菌株FR3而言微波诱
变正诱变率略高于紫外诱变。从生物量的平均提高率
和最大提高率上也得到同样的结果,但提高的幅度不
大,只有菌株FR3微波诱变的最大提高率和AGEDm59
紫外诱变的最大提高率超过10%,分别达到10.29%
和l3.87% 。
从结果分析来看,两种诱变方法均不能大幅度提
高生物量。
2.2 油脂产量
从表2可看出,在油脂产量正诱变率、平均提高
率和最大提高率上微波诱变比紫外诱变有显着提高。
除了AGEDm59两种诱变效果比较接近外,其它的两
株菌的平均提高率和最大提高率微波诱变比紫外诱变
几乎提高2倍以上,而且微波诱变的最大提高率比较
稳定,都在20%左右。
从结果分析来看,采用微波诱变来提高油脂产量
可以取得较好的效果。

⑽ 微生物育种的诱变育种

1.1物理诱变
1.1.1紫外照射
紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm,因此在260nm 的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。
紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。
1.1.2电离辐射
γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基,这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。
除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。
1.1.3离子注入
离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。
离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性,随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。
离子注入法进行微生物诱变育种,一般实验室条件难以达到,目前应用相对较少。
1.1.4 激光
激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用,都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。
激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。
1.1.5 微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。
因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。
1.1.6 航天育种
航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间,利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。
航天育种较其它育种方法特殊,是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。
1.1.7 常压室温等离子体诱变育种
常压低温等离子体(Atmospheric and Room Temperature Plasma)简称为ARTP,指能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。ARTP技术作为一种新型的物理方法,在微生物诱变育种领域有着广阔的应用前景。
等离子体中适当剂量的活性粒子作用于微生物,能够使微生物细胞壁/膜的结构及通透性改变,并引起基因损伤,菌株出现遗传物质损伤后,微生物启动SOS修复机制,其诱导产生DNA聚合酶Ⅳ和V,它们不具有3ˊ核酸外切酶校正功能,于是在DNA链的损伤部位即使出现不配对碱基,复制仍能继续前进。在此情况下允许错配可增加存活的机会。ARTP对遗传物质造成的损伤,多样性较高;又SOS诱导修复本身为容错性修复,因此,ARTP多样性的损伤将可能在修复过程中包容于DNA链中,在微生物进行复制修复时,其可能带来多样性的错配可能。
ARTP应用于微生物突变育种,成本低、操作方便,没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备;ARTP对遗传物质的损伤机制多样,具有较高的正突变率,突变性能多样,对于真菌、细菌、藻类等都有效果;ARTP对环境无污染,保证操作者的人身安全,无论用何种气体放电,其均无有害气体产生。

阅读全文

与真菌常用的诱变方法有哪些相关的资料

热点内容
沉积学研究的基本方法 浏览:981
基金净资产的计算方法在哪里约定 浏览:395
怎么快速学习数学的方法 浏览:256
鉴定母牛发情常用哪些方法 浏览:9
学生党下横叉的快速方法 浏览:504
绿萝生虫子怎么办最快的方法 浏览:514
女性最佳取环方法 浏览:363
手机信号最强的方法 浏览:802
图片粘贴排版方法视频 浏览:373
抗疫和防疫的方法和技巧手抄报 浏览:75
小学生如何能快速答卷的方法 浏览:76
当体温升高时常用哪些方法降温 浏览:38
车窗抛物方法视频教程 浏览:604
盐水去头屑的最佳方法 浏览:227
冬季开花花卉怎么养正确方法图文 浏览:957
如何制作腐植酸的方法 浏览:47
体育信息的研究方法 浏览:320
口袋最简单的方法怎么折呢 浏览:18
压力表的常见问题和解决方法 浏览:154
肾上腺素的释放水平检测方法 浏览:281