导航:首页 > 知识科普 > 有哪些插值的方法

有哪些插值的方法

发布时间:2022-06-12 03:17:15

‘壹’ 什么情况下会使用灰度插值处理,举例说明有哪些常用的灰度插值处理方法

需要进行图像缩放功能情况下会使用灰度插值处理,如数码相机、图像处理软件(如Photoshop);常用的灰度插值处理方法:

1、最临近插值:即将每一个原像素原封不动地复制映射到扩展后对应多个像素中。这种方法在放大图像的同时保留了所有的原图像的所有信息。在传统图像插值算法中,最临近像素插值较简单,容易实现,早期的时候应用比较普遍。但是,该方法会在新图像中产生明显的锯齿边缘和马赛克现象。

2、双线性插值:双线性插值法具有平滑功能,能有效地克服最临近像素插值的不足,但会退化图像的高频部分,使图像细节变模糊。

3、高阶插值:在放大倍数比较高时,高阶插值,如双三次插值和三次样条插值等比低阶插值效果好。

(1)有哪些插值的方法扩展阅读:

灰度插值作为对原图像的像素重新分布,从而来改变像素数量的一种方法。在图像放大过程中,像素也相应地增加,增加的过程就是“插值”发生作用的过程;

“插值”程序自动选择信息较好的像素作为增加、弥补空白像素的空间,而并非只使用临近的像素,所以在放大图像时,图像看上去会比较平滑、干净。不过需要说明的是插值并不能增加图像信息,尽管图像尺寸变大,但效果也相对要模糊些,过程可以理解为白酒掺水。

在大多数GIS文献资料中,区域插值特指数据从一组面(源面)到另一组面(目标面)的重新聚合。例如,人口统计学家经常需要缩减或扩大其数据的行政单位。

如果按县的级别进行人口统计,人口统计学家可能需要缩减数据以预测人口普查区块中的人口数量。如果要在大比例下重新划分区块,可能需要对一组全新的面进行人口预测。

‘贰’ 线性插值法是什么

线性插值法是指使用连接两个已知量的直线来确定在这两个已知量之间的一个未知量的值的方法。

假设我们已知坐标(x0,y0)与(x1,y1),要得到[x0,x1]区间内某一位置x在直线上的值。根据图中所示,我们得到两点式直线方程:

这样通过α就可以直接得到 y。实际上,即使x不在x0到x1之间并且α也不是介于0到1之间,这个公式也是成立的。在这种情况下,这种方法叫作线性外插—参见 外插值。已知y求x的过程与以上过程相同,只是x与y要进行交换。

几何意义:

线性插值的几何意义如右图所示,即为利用过点和的直线来近似原函数。

应用:

1、线性插值在一定允许误差下,可以近似代替原来函数。

2、在查询各种数值表时,可通过线性插值来得到表中没有的数值。

‘叁’ 什么是插值算法

插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
1、Lagrange插值:
Lagrange插值是n次多项式插值,其成功地用构造插值基函数的 方法解决了求n次多项式插值函数问题;
★基本思想将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利 用插值条件⑴确定其中的待定函数,从而求出插值多项式。

2、Newton插值:
Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点;
★基本思想将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件⑴确定Pn(x)的待定系数,以求出所要的插值函数。

3、Hermite插值:
Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值
求一个2n+1次多项式H2n+1(x)满足插值条件
H2n+1(xk)=yk
H'2n+1(xk)=y'k k=0,1,2,……,n ⒀
如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数
一般有更好的密合度;
★基本思想
利用Lagrange插值函数的构造方法,先设定函数形式,再利
用插值条件⒀求出插值函数.

4、分段插值:
插值多项式余项公式说明插值节点越多,误差越小,函数逐近越好,但后来人们发现,事实并非如此,例如:取被插函数,在[-5,5]上的n+1个等距节点:计算出f(xk)后得到Lagrange插值多项式Ln(x),考虑[-5,5]上的一点x=5-5/n,分别取n=2,6,10,14,18计算f(x),Ln(x)及对应的误差Rn(x),得下表
从表中可知,随节点个数n的增加,误差lRn(x)l不但没减小,反而不断的增大.这个例子最早是由Runge研究,后来人们把这种节点加密但误差增大的现象称为Runge现象.出现Runge现象的原因主要是当节点n较大时,对应
的是高次插值多项式,此差得积累"淹没"了增加节点减少的精度.Runge现象否定了用高次插值公式提高逼近精度的想法,本节的分段插值就是克服Runge现象引入的一种插值方法.
分段多项式插值的定义为
定义2: a=x0<x1<…<xn=b: 取[a,b]上n+1个节点 并给定在这些节点 上的函数值f(xR)=yR R=0,1,…,n
如果函数Φ(x)满足条件
i) Φ(x)在[a,b]上连续
ii) Φ(xr)=yR,R =0,1,…,n
iii) Φ(x)zai 每个小区间[xR,xR+1]是m次多项式,
R=0,1,…,n-1则称Φ(x)为f(x)在[a,b]上的分段m次插值多项式
实用中,常用次数不超过5的底次分段插值多项式,本节只介绍分段线性插值和分段三次Hermite插值,其中分段三次Hermite插值还额外要求分段插值函数Φ(x)
在节点上与被插值函数f(x)有相同的导数值,即
★基本思想将被插值函数f〔x〕的插值节点 由小到大 排序,然后每对相邻的两个节点为端点的区间上用m 次多项式去近似f〔x〕.
例题
例1 已知f(x)=ln(x)的函数表为:
试用线性插值和抛物线插值分别计算f(3.27)的近似值并估计相应的误差。
解:线性插值需要两个节点,内插比外插好因为3.27 (3.2,3.3),故选x0=3.2,x1=3.3,由n=1的lagrange插值公式,有
所以有,为保证内插对抛物线插值,选取三个节点为x0=3.2,x1=3.3,x2=3.4,由n=2的lagrange插值公式有
故有
所以线性插值计算ln3.27的误差估计为
故抛物线插值计算ln3.27的误差估计为:
显然抛物线插值比线性插值精确;

5、样条插值:
样条插值是一种改进的分段插值。
定义 若函数在区间〖a,b〗上给定节点a=x0<x1<;…<xn=b及其函数值yj,若函数S(x)满足
⒈ S(xj)=yj,j=0,1,2,…,n;
插值法主要用于道路桥梁,机械设计,电子信息工程等 很多工科领域的优化方法。

‘肆’ 常用的数学插值方法都有哪些

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法

‘伍’ 插值的计算方法是什么

计算方法:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。

根据(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:(A1-A)=(B1-B)/(B1-B2)×(A1-A2)

A=A1-(B1-B)/(B1-B2)×(A1-A2)=A1+(B1-B)/(B1-B2)×(A2-A1)


插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。

如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。

如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。

‘陆’ 插值法计算公式是什么

公式就是:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。

通俗地讲,线性内插法就是利用相似三角形的原理,来计算内插点的数据。

内插法又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。

按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。

介绍:

线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为零。线性插值相比其他插值方式,如抛物线插值,具有简单、方便的特点。

线性插值的几何意义即为概述图中利用过A点和B点的直线来近似表示原函数。线性插值可以用来近似代替原函数,也可以用来计算得到查表过程中表中没有的数值。

‘柒’ 几种GIS空间插值方法

GIS空间插值方法如下:

1、IDW

IDW是一种常用而简便的空间插值方法,它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本点赋予的权重越大。 设平面上分布一系列离散点,已知其坐标和值为Xi,Yi, Zi (i =1,2,…,n)通过距离加权值求z点值。

IDW通过对邻近区域的每个采样点值平均运算获得内插单元。这一方法要求离散点均匀分布,并且密度程度足以满足在分析中反映局部表面变化。

2、克里金插值

克里金法(Kriging)是依据协方差函数对随机过程/随机场进行空间建模和预测(插值)的回归算法。

在特定的随机过程,例如固有平稳过程中,克里金法能够给出最优线性无偏估计(Best Linear Unbiased Prediction,BLUP),因此在地统计学中也被称为空间最优无偏估计器(spatial BLUP)。

对克里金法的研究可以追溯至二十世纪60年代,其算法原型被称为普通克里金(Ordinary Kriging, OK),常见的改进算法包括泛克里金(Universal Kriging, UK)、协同克里金(Co-Kriging, CK)和析取克里金(Disjunctive Kriging, DK);克里金法能够与其它模型组成混合算法。

3、Natural Neighbour法

原理是构建voronoi多边形,也就是泰森多边形。首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。个人感觉这种空间插值方法没有实际的意义来支持。

4、样条函数插值spline

在数学学科数值分析中,样条是一种特殊的函数,由多项式分段定义。样条的英语单词spline来源于可变形的样条工具,那是一种在造船和工程制图时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。

在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。

5、Topo to Raster

这种方法是用于各种矢量数据的,特别是可以处理等高线数据。

6、Trend

根据已知x序列的值和y序列的值,构造线性回归直线方程,然后根据构造好的直线方程,计算x值序列对应的y值序列。TREND函数和FORECAST函数计算的结果一样,但是计算过程完全不同。

‘捌’ 整体插值 局部插值分别有哪些方法

1. 克里格方法概述 克里格方法(Kriging)又称空间局部插值法,是以变异函数理论和结构分析为基础, 在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。 南非矿产工程师D.R.Krige(1951年)

‘玖’ 插值方法有哪些详细介绍下吧…谢谢!

1一维插值(即你所插值的函数是一维的)
线性插值
多项式插值
牛顿插值
三次样条插值
邻近法插值
上述插值方式都是时域插值方式
频域插值方式
sinc插值
小波插值

‘拾’ 二次插值法是什么

二次插值法是用于一元函数在确定的初始区间内搜索极小点的一种方法。它属于曲线拟合方法的范畴。

在求解一元函数f(x)的极小点时,常常利用一个低次插值多项式p(x)来逼近原目标函数,然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数f(x)的近似极小点。

如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。

常用的插值多项式p(x)为二次或三次多项式,分别称为二次插值法和三次插值法。这里我们主要介绍二次插值法的计算公式。

阅读全文

与有哪些插值的方法相关的资料

热点内容
卷闸门的开关安装方法 浏览:793
汽车纽扣电池的安装方法 浏览:890
斗地主快速学会的方法 浏览:877
钢梁安装方法如何做挠度实验 浏览:226
砂砾压实度检测方法 浏览:898
黑底白字解决方法 浏览:741
杭州电脑数据恢复方法 浏览:491
皮沙发的异味处理方法视频 浏览:626
快速缓解头痛的6个方法图片 浏览:662
清除体内的气有哪些方法 浏览:415
老人如何减肥的最好方法 浏览:886
面部神经痛的症状和治疗方法 浏览:611
无锡哪里有臭氧注射治疗方法 浏览:358
如何预防溺水的方法有多少种 浏览:675
dds精华使用方法 浏览:489
自动血糖仪的使用方法图片 浏览:30
如何不用手指指人的三个方法 浏览:54
沉积学研究的基本方法 浏览:985
基金净资产的计算方法在哪里约定 浏览:400
怎么快速学习数学的方法 浏览:261