⑴ 离子交换纯化多糖使用什么方法检测收集
离子交换纯化多糖使用什么方法检测收集
鉴定多糖(参考资料):
1.苯酚-硫酸法 需要多糖的纯品和特定的酶
2.蒽酮-硫酸法 多糖在浓硫酸水合产生的高温下迅速水解,产生单糖,单糖在强酸条件下与苯酚反应生成橙色衍生物。在波长490nm左右处和一定浓度范围内,该衍生物的吸收值与单糖浓度呈线性关系,从而可用比色法测定其含量,所用的单糖对照品尽量采用与其多糖组成一致或为含量较高的单糖,这样测得的值较准确。
3.3,5-二硝基水杨酸比色法(DNS法) 在碱性条件下显色,较准确测定还原糖与总糖的含量从而求出多糖的含量,可消除还原性杂质的干扰。
多糖的分离纯化
在多糖提取物中,常会有无机盐、蛋白质、色素及小分子物质等杂质,必须分别除去.一般是先脱除非多糖组分,再对多糖组分进行分级.
2.1 除蛋白:除蛋白质时一般选择能使蛋白质沉淀而不使多糖沉淀的试剂来处理,如酚、三氯乙酸、鞣酸等。但必须处理时间短,温度低,避免多糖降解。Sevage法(氯仿:戊醇/丁醇=4:1)和三氟三氯乙烷法在避免降解上有较好效果但要达到除尽游离蛋白质的目的仍需反复处理。如能加入蛋白质水解酶,使蛋白质大分子进行一定程度的降解,再用Sevage法处理,一般效果更好。
为了避免使用有机溶剂也可采用反复冻融的方法除蛋白,将多糖液浓缩后,一20℃室温反复冻融7~8次,离心除去蛋白质。另外,蛋白质在等电点时溶解度最小,用氢氧化钙饱和液调pH10~pH11可除去偏碱性的蛋白质,然后再用硫酸调pH5~pH6,可除去偏酸性的蛋白质。冻融和等电点沉淀除蛋白质操作简单,但多糖液里往往有低浓度的蛋白质残留,应与其它方法结合使用。
2.2 脱色:植物多糖提取物中含有酚类化合物而使其颜色较深,可用吸附剂(纤维素、硅藻土、活性炭等)、离子交换柱(DEAE一纤维素)、氧化剂(H2O2)等脱除。活性炭比表面积大,吸附能力强,在进行当归多糖的提取时只向多糖液中加入了0.1%左右的活性炭,煮沸后滤过即完成了脱色操作。此法成本低廉,适合工业化生产。
2.3 除小分子杂质
小分子杂质如低聚寡糖的残留往往影响多糖的生物活性,需要进一步脱除,提高纯度。传统的方法是透析法,该法操作简单、技术成熟,但周期长,往往需要2一3天,常温下操作有可能造成多糖的霉变,必要时需加入少量防腐剂或需在低温条件下进行。随着膜分离技术的发展,纤维滤器透析法已经发展起来了,它利用不同孔径的膜使大小不同的分子分级,这种方式可缩短生产周期,而且条件温和,无疑是多糖脱除杂质的一条新途径。
2.4 多糖的分级纯化
采用一般方法提取的多糖通常是多糖的混合物,分级的方法可达到纯化的目的.可按溶解性不同进行分级、按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级.
2.4.1按溶解性不同分离
2.4.1.1分步沉淀法
分步沉淀法是根据不同多糖在不同浓度低级醇、酮中具有不同溶解度的性质,从小到大按比例加入甲醇或乙醇或丙酮进行分步沉淀.
2.4.1.2 盐析法
盐析法是根据不同多糖在不同盐浓度中溶解度不同而将其分离的一种方法。常用的盐析剂有氯化钠、氯化钾、硫酸铵等,其中以硫酸铵最佳。
2.4.2 按电离性质不同分离
2.4.2.1季胺盐沉淀法
季胺氢氧化物是一类乳化剂,能与酸性多糖形成不溶性化合物季铵络合物,此络合物在低离子强度的水溶液中不溶解而产生沉淀。若提高多糖液pH值或加入硼砂缓冲液,也可使中性多糖沉淀分离。常用季铵盐有十六烷基三甲基季铵盐的溴化物及其氢氧化物和十六烷基吡啶。
2.4.3 柱层析法
2.4.3.1凝胶柱层析法
凝胶柱层析法常用的凝胶有葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sepharose),以不同浓度的盐溶液和缓冲溶液作为洗脱剂,从而使不同大小的多糖分子得到分离纯化,但不适宜粘多糖的分离。
2.4.3.2纤维素阴离子交换剂柱层析法
纤维素阴离子交换剂柱层析法常用的交换剂为DEAE一纤维素和ECTEOLA一纤维素,分类硼砂型和碱型两种,洗脱剂可用不同浓度碱溶液、硼砂溶液、盐溶液,其优点可吸附杂质、纯化多糖,并适用于分离各种酸性、中性多糖和粘多糖。如百合多糖、北沙参多糖、太子参多糖等。
2.4.3.3 活性炭柱层析法
活性炭吸附量大、效率高,是分离水溶性物质的常用吸附剂。柱层析时活性炭中常拌入等量的硅藻土作稀释剂,以增加溶液的流速。糖溶液上柱后先用水洗脱无机盐、单糖等再依次增加乙醇浓度进行洗脱。
2.4.3.4 离子交换柱层析和普通凝胶柱层析联用法
有些植物的多糖成分复杂, 除中性多糖外,还含有糖醛酸等,因此往往两种不同性质的色谱柱联用才能得到单一多糖组分。
2.4.3.5 三种层析柱联用
采用离子交换葡聚糖凝胶柱、丙烯葡聚糖凝胶柱和葡聚糖凝胶柱三者联用,即先进行DEAE—SephadexA柱层析,用蒸馏水洗脱。水洗组分进一步用SephacrylS柱层析,得到主要组分再用SephadexG一100柱层析,有时会有较高的得率。
三、多糖的纯度鉴定
经过分级纯化的多糖在测定结构前须进行纯度鉴定.而且多糖的纯度不能用通常化合物的纯度标准来衡量,因为即便是多糖纯品,其微观也并不均一,仅代表相似链长的多糖分子的平均分布,通常所谓的多糖纯品也只是一定相对分子质量范围的多糖的均一组分.目前常用于多糖纯度的鉴定方法有:高效液相、 凝胶层析法、电泳法、色谱法、旋光度法等.
多糖的单糖组分的鉴定称取多糖粗品8 mg,用2 mL浓度为1 mol/L硫酸100*C水解6 h。饱和Ba(OH)2中和至中性,抽滤,取滤液,浓缩,毛细管点样,薄层层析法分析。采用硅胶G板105"(2活化2 h后使用。标准糖分别为D一半乳糖,D一葡萄糖,D一甘露糖,L一山梨糖、L一阿拉伯糖。展开剂为正丁醇一冰醋酸一水(4:1:5)(体积比)。用AgNO3一NaOH 溶液显色。
⑵ 果胶酶的检测方法
果胶酶活性的检测
[目的]
本检测方法是用来果胶酶的催化活性。本方法适用于各种固体和液体果胶酶制剂。
[说明]
本方法适合于果胶酶的质量分析和质量控制领域。但不是本公司产品及其它公司产品的绝对活力的预测,而各种酶制剂的最终的酶活力在良好的实验操作下仍可发挥出更好的催化活力。
[原理]
果胶物质主要存在于植物初生壁和细胞中间,果胶物质是细胞壁的基质多糖。果胶包括两种酸性多糖(聚半乳糖醛酸、聚鼠李半乳糖醛酸)和三种中性多糖(阿拉伯聚糖、半乳聚糖、阿拉伯半乳聚糖)。果胶酶本质上是聚半乳糖醛酸水解酶,果胶酶水解果胶主要生成β-半乳糖醛酸,可用次碘酸钠法进行半乳醛酸的定量,从而测定果胶酶活力。
[果胶酶活力单位定义]
1g(或1ml液体酶)酶粉,于50.0℃、pH3.5条件下,每分钟催化果胶水解生成1微克半乳糖醛酸的酶量为一个活力单位。
1. 试剂和仪器
*本标准所使用所有的试剂若无任何说明,均为分析纯
1.1 醋酸
1.2 碘
1.3 碘花钾
1.4 浓硫酸
1.5 果胶(sigma公司)
1.6 硫代硫酸钠
1.7 碳酸钠
1.8 可溶性淀粉
1.9 水浴锅
1.10 碘量瓶
2. 试剂的制备
2.1 pH3.5的酸水
用醋酸将蒸馏水调至3.5
2.2 1%果胶溶液:
准确称取分析纯果胶1g,用酸水溶解煮沸,冷却后过滤,定至100ml。
2.2 0.1N碘液:
准确称取碘化钾5g,用蒸馏水溶解后,加入2.54g碘,溶解后定容至100ml。
2.3 0.025mol/L硫代硫酸钠:
准确称取6.2g硫代硫酸钠,加蒸馏水后定容至1L
2.4 0.5%可溶性淀粉指示剂:
准确称取可溶性淀粉0.5g放入沸水中消煮至透明。
2.5 1M碳酸钠溶液:
准确称取10.6g碳酸钠,定容于100ml的水中
2.6 2N硫酸:
吸10ml的浓硫酸倒入170ml的水中
2.7 酶样的制备
准确称取1.000g固体酶或移取1ml液体酶样,定容至100ml,于50℃水浴浸取1小时,过滤,滤液为供试酶液。则该酶已经稀释100倍。
3. 程序
3.1 取1%果胶酶10ml加入5ml酶液和5ml蒸馏水(PH3.5),在50℃水浴中保温反应1小时。
3.2 取出后加热煮沸2~3min,冷却后,补水至20ml。
3.3 取5ml反应液于100ml碘量瓶中,加1M碳酸钠溶液1ml,0.1N碘液5ml,摇匀,具塞,于室温暗处下放置20min。
3.4 取出后加2N硫酸2ml,立即用0.05N硫代硫酸钠溶液滴定至浅黄色,加1ml0.5%可溶性淀粉溶液,继续滴定至蓝色消失为止。
3.5 空白试验以煮沸失活的酶液或蒸馏水代替酶液进行滴定。
3.6 每个酶样最少做两个平行样。
4. 计算
4.1 将测得的各平行样求OD值的均值。
4.2 计算酶的活性单位依据以下公式
酶的活力= [(B-A)*N*0.5*175*20*n*1000]/[51*52*W*60 ]
单位: U/g(ml)
式中: A:样品滴定所消耗硫代硫酸钠的毫升数。
B:空白滴定所消耗硫代硫酸钠的毫升数。
N:硫代硫酸钠摩尔浓度。
0.5:1当量硫代硫酸钠相当于0.5当量半乳糖醛酸。
20:反应液总体积
51:酶液体积以1ml计
52:吸取反应液
n:稀释倍数
W:酶粉重量g或酶液体积ml
⑶ 壳寡糖对酸性体有什么作用
体内的免疫细胞在体液PH值7.4左右时,活性最强。它能分辨出正常细胞和异常细胞,并选择性地去识别绞杀异常细胞,壳寡糖是自然界唯一带正电荷的碱性糖,进入人体可改善酸性环境,能有效调节PH值,保持体内酸碱平衡,给机体创造一个不易生病的环境,进而增强人体抵御疾病的能力。
⑷ 果胶提取有几种方法。
一下的方法应该够你用的了:::
果胶提取加工技术及其制备方法
1、一种果胶寡聚糖、其制备工艺及防治植物病害的应用
2、含有起抑制雄性生殖毒性作用的果胶的药物组合物
3、利用废渣和废水固态发酵生产果胶酶
4、具有果胶乙酰酯酶活性的多肽和编码该多肽的核酸
5、利用银杏外种皮为原料提取的银杏型果胶和提取方法
6、豆腐柴叶制备果胶工艺
7、草酸青霉固态发酵生产果胶酶
8、果胶膜组合物
9、向日葵低酯果胶的分离纯化方法
10、胡萝卜素、果胶、食用纤维连续提取方法
11、作为具有泡沫头饮料的泡沫稳定剂的果胶
12、口服可溶性经调节柑桔果胶抑制癌症转移的方法
13、从向日葵盘和杆中提取食用低酯果胶的方法
14、从柑桔果皮中提制果胶同时联产酒、油、酱、色素和柑桔皮甙的方法
15、果胶酶制剂
16、豆腐柴提取果胶的方法
17、一种生产果胶的方法
18、用草酸提取-铁盐沉淀工艺提取向日葵低酯食用果胶的方法
19、分子筛法制备果胶
20、改性甜菜果胶的生产方法
21、从番木瓜中提取食用果胶
22、果胶代血浆及制备方法
23、用苹果废料制取果胶冻工艺
24、甜菜渣制取果胶的方法
25、由甜菜粕制备果胶新方法
26、从大量废弃芭蕉茹及冻坏生蕉果中提炼果胶三法
27、一种金属盐法提制果胶的方法
28、从橙皮等柑桔类果皮中提制高质量果胶的方法
29、山楂果胶和果汁的分离、提纯、浓缩方法
30、一种向日葵盘提取低酯果胶的生产方法
31、从马铃薯粉渣中提取低酯果胶的方法
32、保健果胶、果汁及其制备方法
33、从柑桔皮中同时提取天然黄色素、桔油和果胶的方法
34、用蚕沙残渣提取果胶的方法
35、向日葵低酯果胶的提取方法
36、保健果胶及果汁
37、胶态果胶铋药物
38、使用果胶酶处理制取山楂汁的方法及产品
39、应用高分子量脱乙酰基甲壳素脱除果胶和澄清果(蔬)汁的方法
40、柑桔废弃物提取低酯果胶的方法
41、果汁-果胶-食用纤维连续提取方法
42、颗粒状果胶酶制剂及其制造方法
43、预酸解、高酸度连续提取生产果胶的方法及设备
44、柠檬皮果胶的提取方法
45、一种利用柑桔类果皮中果胶酯酶的脱酯方法及其应用
46、果胶组合物及其制备方法
47、果胶组合物及其制备方法
48、枯草芽孢杆菌及固体碱性果胶酶生产工艺
49、假酸浆果胶粉及其生产方法
50、向日葵低酯果胶的纯化方法
51、半导体激光辐照选育果胶酶高产菌株
52、从胡麻籽中提取高果胶含量的胡麻胶的方法
53、用高酯果胶在酸性环境中稳定蛋白质的方法
54、改性的果胶材料
55、活性人参果胶囊(片)及其制备方法
56、含有果胶酯酶的洗涤剂组合物
57、含有碱性果胶降解酶的洗涤剂组合物
58、含果胶裂解酶的洗涤剂组合物
59、超果胶酶及其生产工艺
60、具有果胶酯酶活性的酶
61、苎麻优质果胶的制备方法
62、包含果胶甲酯酶和两种底物的组合物
63、获得精选果胶级分的方法、这样的级分及其用途
64、固态发酵果渣、菜渣制备果胶酶
65、炭黑曲霉突变株K58固体发酵生产果胶酶
66、含有解果胶酶的洗涤剂组合物
67、长寿果胶囊及其制备方法
68、地衣芽孢杆菌果胶降解醇
69、新的果胶酸裂解酶
70、果胶及其生产方法,含果胶的酸性蛋白食品及其生产方法
71、用于糊状物质中的果胶、其制备方法、包含该果胶的糊状物质及其应用
72、果胶的生产方法
73、酶促修饰果胶的方法
74、分级分离的果胶产品的制造方法
75、包含抗坏血酸和果胶的组合物
76、含有果胶酸盐裂解酶和漂白体系的洗涤剂组合物
77、用于稳定蛋白质的果胶
78、果胶酶制剂的生产方法
79、含有果胶酸裂解酶和特定表面活性剂体系的洗涤剂组合物
80、大毛霉液态发酵含果胶的废渣制备果胶酶
81、可降低钙离子灵敏度的果胶
82、用于多肽的表达和分泌的果胶酸裂解酶融合体
83、苎麻脱胶果胶酶的生产及其在苎麻脱胶工艺中的应用
84、防治植物病害的碱性果胶解聚酶制剂及其使用方法
85、一种香蕉皮中果胶的提取方法
86、含有甜菜果胶的面包组合物
87、一种果胶酸性寡糖及用途
88、利用果胶酶制取柑橘皮低甲氧基果胶的方法
89、一种果胶酸性寡糖的制备方法
90、提高蛋白酶和果胶酶活力的麦芽制备方法
91、一株产碱性果胶酶工程菌及其构建和用该菌生产碱性果胶酶的方法
92、获得果胶的方法
93、苎麻中果胶含量的测定方法
94、来源于西印度樱桃果实的果胶和其应用
95、果胶的制造法及使用果胶的凝胶剂及凝胶状食品
96、一种用温度策略促进重组毕赤酵母高产碱性果胶酶的方法
97、一种从柚子皮中提取柚皮甙和果胶的方法
98、芦荟苹果胶冻及其制作方法
99、打瓜的综合利用及从打瓜中提取果胶的方法
100、果胶的改性方法及其应用
101、一种不饱和果胶低聚糖及复合生物防腐剂
102、一株吉氏芽孢杆菌突变株及其发酵生产碱性果胶酶
103、一种从薜荔花被中提取低酯果胶的方法
104、采用水萃取法从薜荔籽中提取优质低酯果胶的方法
105、一株嗜碱细菌及其固态发酵生产碱性果胶酶
106、包含果胶的基质形成组合物
107、一种高活力果胶复合酶制备方法
108、胶体果胶铋分散片
109、盐析法提取豆腐柴叶中果胶
110、癞葡萄果胶制备工艺
111、发酵法制备碱性果胶酶过程中提高碱性果胶酶酶活的方法
112、果胶酸裂解酶变体
113、一种黑曲霉菌株及其在果胶酶固态发酵生产中的应用
114、果胶薄膜
115、一种果胶酶亲和吸附剂的制备方法
116、一种碱性果胶酶制剂的复配和应用方法
117、一种碱性果胶酶高产菌及其筛选方法和用该菌株发酵法生产碱性果胶酶
118、生物化学法制取果胶
119、可高产果胶酶的塔宾曲霉及在固态发酵生产中的应用
120、果胶及其生产方法,含果胶的酸性蛋白食品及其生产方法
121、柑桔皮制备果胶的方法
122、全棉机织物淀粉酶、果胶酶、蛋白酶连续浸轧-汽蒸法前处理工艺
123、从柚子中同时提取果胶、柚皮甙等八种产物的方法
124、包含枯草杆菌果胶酸裂解酶的洗涤剂组合物
125、果胶凝胶的就地形成
126、含糖用甜菜果胶和类胡萝卜素的组合物
127、含有果胶和抗坏血酸的组合物
128、黄姜中提取果胶的方法
129、制备含纤维果胶的方法及其产品和应用
130、含有与聚果胶酸酯和EDTA螯合的银的抗菌溶液
131、一种口服复方胶体果胶铋制剂及制备方法
132、一种提高碱性果胶酶在棉纺织精练工艺中稳定性的方法
133、含有果胶的植物材料的改进处理方法
134、高活性液体食品级果胶酶的制造方法
135、从柑桔类果皮中提取桔子油和果胶的方法
136、抗菌性果胶纤维素
137、苹果果胶的脱色及生产白色细粉的苹果果胶的工艺
138、一种酰胺化果胶的生产工艺
139、大豆种皮制备果胶新方法
140、一种利用苹果渣制取高纯度果胶的方法
141、含高重量份钙盐的在体交联果胶骨架给药系统
142、大豆种皮联产制备果胶和重金属离子吸附剂的方法
143、用解聚果胶作为稳定剂制备食品的方法
144、利用剑麻麻渣制备叶绿素铜钠及果胶的方法
145、低分子柑桔果胶用于增强免疫功能的应用
146、低分子柑桔果胶用于调节血糖血脂和改善脂肪肝中的应用
147、胶体果胶铋干混悬剂及其制备方法
148、柑橘类果皮中果胶的提取与制备工艺
149、一种从白构皮制浆蒸煮废液中提取果胶的方法
150、利用生物提取与膜分离技术生产果胶的方法
151、基于果胶的冷胶凝糕点糖衣
152、一种低温果胶酶菌株、低温果胶酶及其生产方法
153、一种以果胶为基质的脂肪替代品的生产方法
154、一种利用果皮生产果胶的方法
155、纳米胶体果胶铋及其颗粒剂药物
156、利用膜技术从向日葵盘中分离低酯果胶的方法
157、果胶提取方法
158、甘薯果胶及其生产技术
159、一种双水相萃取体系分离纯化果胶酶的方法
160、一种含果胶颗粒的含乳饮料及其生产方法
161、低甲氧基苹果果胶的生产工艺
162、高分子苹果果胶的生产工艺
163、一株克劳氏芽孢杆菌突变株及其发酵生产碱性果胶酶
164、一种果胶/聚乙烯醇水凝胶材料及其制备方法
165、用于低卡路里凝胶的含果胶组合物的胶凝剂
166、果胶-5-氟尿嘧啶结肠癌双靶向前体药物及制备方法
167、果胶酶在抑制藻华中的应用及方法
168、含有果胶烯化氧衍生物的组合物
169、含有果胶的酸化乳制品
170、一种果胶快速分级方法
171、一种苹果果胶的生产方法
172、柿皮中果胶、单宁及色素的连续提取方法
173、一种产果胶酶的工程菌株
174、里氏木霉液体发酵生产纤维素酶、木聚糖酶、葡聚糖酶和果胶酶的方法
175、解淀粉类芽孢杆菌P17菌株,由其所得的低温果胶酶及其分离纯化方法
176、以苹果果胶为主要组分的润肠排毒的功能食品及其制备方法
177、以苹果果胶为主要组分的调节血脂降胆固醇的功能食品及其制备方法
178、以苹果果胶为主要组分的调节血糖的功能食品及其制备方法
179、色果胶囊及其生产方法
180、黑曲霉液态发酵果胶酶及其对白水和纸浆中胶体物质控制
181、一种果胶中残留的有机溶剂的测定方法
182、经果胶改性的抗性淀粉、含其的组合物和制备抗性淀粉的方法
183、一种从柑桔皮中提取液体果胶方法
184、由秋葵果实荚分离的果胶多糖
185、果胶的制备方法和用所述果胶的胶凝剂和凝胶状食物
186、纯棉机织物果胶酶、双氧水温堆前处理工艺
187、可食性食品果胶保鲜膜及其制备方法和应用。
⑸ 糖链分析有哪些常规方法和步骤
蛋白质糖基化是人体中最重要的一种蛋白质翻译后修饰方式,人体中超过50%的蛋白质是糖基化的。研究发现,寡糖在蛋白质结构构造、生物活性中起着至关重要的作用,人类许多疾病的发生和发展都与蛋白上N-糖链的结构和表达量的改变有关。因此,发展和建立分析N-糖链的方法,对生物和病理学研究具有积极现实意义。目前的研究方法主要是化学衍生法,其缺点是需要引入额外的化学试剂、操作步骤繁琐以及有副反应发生。化学酶标记法由于没有化学衍生法的特点,为研究糖蛋白中的N-糖链,提供了新的思路。首先,在本实验室前人工作的基础上,以Boc-Asn-GlcNAc为基础结构单元物质合成了同位素标记糖基受体d0/d8-PDPZ-Boc-Asn-GlcNAc,优化了受体合成方法:以DMT-MM作为反应缩合剂,探索温度、时间、反应物比例对受体产率的影响,合成受体反应产率达到95-98%。随后,我们以标准糖肽SGP为反应底物,对比Endo-M酶、(?)Endo-M-N175Q酶的转糖基活性和水解活性,结果表明Endo-M-N175Q酶的转糖基活性几乎是Endo-M酶的2倍,且Endo-M-N175Q酶几乎丧失对转糖基产物的水解能力。紧接着我们以标准糖蛋白牛胰核糖核酸酶B为研究对象,对比丙酮富集N-糖链和N-糖苷酶F释放N-糖链两种方法检测糖链的效率,结果表明N-糖苷酶F释放N-糖链简便、高效。为了检验该方法的实用性,我们以卵清蛋白为实际样品,成功、高效地检测出一系列N-糖链(M5N2、M6N2、M7N2、M4N3、M5N3、M3N4、 M3N5、M4N4、M3N6),和文献己报到的寡糖数量一致,正离子模式下这些寡糖都是以二价或三价的形式出现。相比于传统的化学衍生化法,Endo-M-N175Q酶可以一步完成酶解和转移两个过程,避免了繁琐的步骤以及副反应的发生。因此,我们提出的以含有Boc-Asn-G1cNAc结构单元的化学物质作为糖基受体、结合Endo-M-N-175Q酶的特性、以HPLC/ESI-MS为检测手段,这一全新的分析方法,对分析糖蛋白中的N-糖链切实高效可行。…
⑹ HPLC 测寡糖的体系及注意事项
目前常见分析寡糖的色谱柱主要有强极性的C18柱、NH2柱和专门糖柱三种方式。
而常见的检测器有示差、蒸发光散射和电化学检测器三种。
给你一个较简单的体系参数,
色谱柱:CAPCELL PAK NH2 UG80 2.0*250mm
检测器:RI
流动相:85%CH3CN
流速:0.2mL/min
温度:40℃
进样量:根据你的样品浓度而定(参考值670微克/mL,5微升)
样品:fructose,galactose,glucose,sucrose,maltose,isomaltose
⑺ 求甘露寡糖检测方法
根据β-葡聚糖和甘露寡糖在流动相和液相色谱柱的固定相之间具有不同的分配系数,将样品注入液相色谱柱,用H2O做流动相,糖类分子流出后,经示差检测器检测,用外标法定量。
除非另有说明,在分析中仅使用确认为分析纯的试剂;蒸馏水或去离子水或符合GB/T6682中规定的一级水或相当纯度的水。试验中所用制品按GB/T 603的规定制备。
盐酸:37%。
乙腈:色谱纯
氢氧化钠:40%。
葡萄糖和甘露糖混合标液(1000mg/L):分别称取葡萄糖和甘露糖各0.100g,用纯水定容100mL后用0.45μm微孔滤膜过滤,备用。
仪器:水浴锅、漩涡混合器、电炉、手提式压力蒸汽灭菌锅、高压液相色谱仪、带示差检测
器。
样品处理
精确称取1.000g(准确至0.0002g)样品放入一个20mL的耐热玻璃制的带螺帽的小试管中,加入7.5mL盐酸(37%),小心的将小瓶盖近后用漩涡混合器混合,得到均一的悬浮液。将小瓶放入30℃水浴中处理45min,每15min用漩涡混合器震荡混合一次。然后将悬浮物定量的转移到200mL杜氏瓶中(同时用约70-80mL的水洗涤后倒入瓶中),将瓶子放入高压灭菌锅121℃处理60min。完成后马上冷却,将溶液调pH到6-7,然后定容至200mL。使用0.45微米孔径的醋酸纤维素膜过滤备用。
液相色谱参考条件 :
1、色谱柱:Hyper REZ XP Carbohydrate Ca++,长300mm,内径7.7mm,粒径8μm;
2、柱温:70℃;
3、流动相:H2O,用前过0.22μm滤膜;
4、流速:0.6 ml/min;
5、进样体积:40μl;
标准曲线的绘制:
分别吸取甘露糖/葡萄糖标液12.5、25.0、37.5mL到50mL容量瓶中,用高纯水定容到刻度,得到甘露糖、葡萄糖各为250、500、750、1000mg/L的混合标样。在上述色谱条件下准确进样40μl,得到色谱峰面积和标准物质量浓度之间的回归方程,绘制标准曲线。
在同样的色谱条件下,将处理好的样品注入色谱仪中,记录各色谱峰的保留时间和锋面积。用糖标样色谱峰的峰面积来定量,计算出样品中葡萄糖、甘露糖的含量。
结果计算
试样中β-葡聚糖或甘露寡糖含量X以质量分数(%)表示,按式(A.1)计算: file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image002.gif file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msohtml1/01/clip_image004.gif……………………………………(A.1)式中:
A——根据样品溶液的峰面积,在标准曲线上查得的样品溶液的葡萄糖或甘露糖的含量,单
位为毫克每升(mg/L);
m——样品质量,单位为克(g);
0.2——样品处理定容的体积,单位为升(L);
0.9——将葡萄糖或甘露糖换算成β-葡聚糖或甘露寡糖的系数。
每个试样取两个平行样进行测定,以其算术平均值为结果,结果保留到小数点后一位。
在重复条件下或得的两次独立测试结果的绝对差值不大于这两个测定值的算术平均值的10%
⑻ 怎样检测物质含有酸性
溶解于水 检测氢离子 再用用石蕊,甲基橙等PH指示剂来检测.
物质的酸性是由其水溶液中的氢离子量来衡量的.其检测方法很多.目前比较准确的方法是用已知浓度的强碱性溶液来滴定.这个方法准确,但是操作烦琐,需要的有相关的玻璃仪器.还有就是用一个pH计,目前市面上有很多种,台式的或者笔式的均可.优点是方便快捷,但是如果是要求精度很高就难以满足.还有一种是最简单快捷的,就是到试剂商店,买一盒pH试纸,用试纸比色法就可以检测酸性.精度差一些,但是如果要求不高,只是大致了解,该方法就非常实用.还有就是用一些试剂来检测,比如说石蕊、酚酞之类的见酸变色的试剂,根据颜色变化即可判断酸碱.这种方法的基本上没有太多精度可言,主要只是用于了解是酸性还是碱性.
各种检测方法因地制宜,按照需要来选择.
个人认为以上方法都不太行
例如氨基酸,叫酸肯定是带酸性的,可是氨基是碱性的.如果一个氨基酸里的氨基足够多,可以使氨基酸的水溶液呈碱性,但它仍符合“含有酸性”这个条件
我认为的方法是:用碱性的染色剂处理染色后用显微镜观察,这个是最保险的
⑼ 如何让分离单糖和多糖
1.多糖的分离
1.1分级沉淀法
糖类多数可溶于水,三糖以下尚可溶于乙醇。随着聚合度的增大,在乙醇中的溶解度逐步降低。根据这一性质,在糖的浓水溶液中,分次加入乙醇,使酵的浓度渐增,5%。10%,15%,20%…90%,分取各次析出的沉淀,在产量和醇浓度之间画出曲线,以此可以粗略地观察出糖的组分。若遇糖的衍生物,如甲醚、乙酸醑,其极性低于糖,可在有机溶剂中进行分级沉淀嘲1。多糖的分子量范围广,且有共沉淀现象。此法只能作粗略的分离用,需反复进行及综合使用别的方法才能达到糖的组分均一,物理常数恒定。
1.2凝胶层析法
凝胶层析法(凝胶过滤法或分子筛层析法)主要利用具有三维网状结构的多孔性凝胶,其孔径大小决定于合成凝胶时所加交联剂的程度。当含有混合溶质的溶液流经适当的凝胶柱时,小分子易扩散入孔中,而大的则不易扩散,各溶质洗脱顺序随分子量由大及小,渐次流出。此法对于不同聚合度的糖类分离特别有效。方法快速、简单,条件温和。常用的有葡聚糖凝胶(sephadex G)、琼脂糖凝胶(SepharoseBio—gel A)、聚丙烯酰胺凝胶(Bio—gel P)等,常用的洗脱剂是各种浓度的盐溶液及缓冲液,但它们的离子强度最好不低于0.020。
1.3纤维素柱层析
纤维素对多糖的分离,是利用混合糖的溶液,流经预先以另一种溶剂(如乙醇)混悬的纤维素柱,多糖在此多孔支持介质上析出沉淀,再以递减醇浓度的稀醇逐步洗脱,溶出各种多糖。流出柱的先后顺序通常是水溶性大的先出柱,水溶性差的最后出柱,与分级沉淀法正好相反。此法较分级沉淀法为优,因为其接触面大。纤维素柱层析还可用丙酮、水饱和丁醇、异丙醇、水饱和甲乙酮等,或用丁醇:乙酸:水(9:2:1)、乙酸乙酯:乙酸:水(7:2:2)等系统。混合溶液可调节其组成比例。酸性多糖层析时,可利用其和季铵盐络合沉淀的反应,在洗脱液中加少量十六烷基吡啶氯化物,可使分离软骨硫酸盐等多糖获得好效果。
1.4离子交换纤维素层析
常用的阳离子交换纤维素有CM-cellulose、P—celhlose、SE—cellulose、SM-cellulose;阴离子交换纤维素有DEAE-cellulose、ECTE—cellulose、PAB-cellulose、TEAE-cellulose等。其中阳离子交换纤维素特别适用于分离酸性、中性多糖和粘多糖。交换剂对多糖的吸附力与多糖的结构有关,通常多糖分子中酸性基团增加则吸附力随之增加:对于线状分子,分子量大的较分子量小的易吸附;直链的较分枝的易吸附。在pH 6时酸性多糖可吸附于交换剂上,中性多糖则不能被吸附。当用硼砂将交换荆预处理后,则中性多糖也可以被吸附。分离酸性多糖所用的洗脱剂通常是pH相同离子强度不同的缓冲液,分离中性多糖的洗脱剂则是不同
浓度的硼砂溶液。
1.5季铵盐沉淀法
阳离子型清洁剂如十六烷基三甲铵盐(CTA盐)和十六烷基吡啶盐(CP盐)等和酸性多糖阴离子可以形成不溶于水的沉淀,使酸性多糖自水溶液中沉淀出来,中性多糖留存在母液中而分离。若再利用硼酸络合物。中性多糖亦可沉淀,或在高pH的条件下,增加中性醇羟基的解离度而使之沉淀。
1.6制各性区域电泳
分子大小、形状及所负电荷不同的多糖其在电场的作用下迁移速率是不同的,故可用电泳的方法将不同的多糖分开,电泳常用的载体是玻璃粉。具体的操作是用水将玻璃粉拌成胶状、装柱,用电泳缓冲液(如0.05mol/L硼砂水溶液,pH9.3)平衡3天,将多糖加于柱上端,接通电源,上端为正极(多糖的电泳方向是向负极的),下端为负极,其单位厘米的电压为1.2-2V,电流30—35mA,电泳的时间为5 -12小时。电泳完毕后将玻璃粉载体推出柱外,分割后分别洗脱、检测。该方法分离效果较好,但只适合于实验室小规模使用,且电泳柱中必须有冷却夹层。
1.7金属离子沉淀法
铜盐沉淀多糖,可用CuCl2,CuSO4,Cu(OAc):的溶液或是Fehling试剂、乙二胺铜试剂。通常需加过量的试剂用于沉淀,但Fehling试剂不可太多过量,因其有使多糖铜复合物沉淀重新溶解的危险。沉淀分解恢复可用酸的醇溶液或用螯合试剂。常用的铜盐分级沉淀法是Fehling试剂法和醋酸铜乙醇法。饱和Ba(OH):溶液可使树胶类多糖沉淀,特别容易使B(1,4)一D一甘露聚糖沉淀而和木聚糖分离。另据报道,国外多采用LKB柱色谱,用比旋光度、示差折射及紫外检测多糖,各组分的峰位自动记录,分离效果高且方便。
⑽ 测定糖的含量的方法有哪些
糖的测定方法
一般有四种方法:
1、 直接滴定法。
原理为 糖还原天蓝色的氢氧化铜为红色的氧化亚铜。缺点:水样中的还原性物质能对糖的测定造成影响。
2、 高锰酸钾滴定法。
所用原理同直接滴定法。缺点:水样中的还原性物质能对糖的测定造成影响,过程较为复杂,误差大。
3、硫酸苯酚法。
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
缺点:如果水样呈橙红色(大部分水样为黄色),会对比色法造成较大的干扰。
4、蒽酮法
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
缺点:,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。
综合比较;采用蒽酮法能将最为准确地测定尾水中糖的含量。
(一) 直接滴定法
Ⅰ、原理
v 一定量的碱性酒石酸铜甲、乙液等量混合,立即生成天蓝色的氢氧化铜沉淀,这种沉淀很快与酒石酸钠反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。在加热条件下,以次甲基蓝作为指示剂,用标液滴定,样液中的还原糖与酒石酸钾钠铜反应,生成红色的氧化亚铜沉淀,待二价铜全部被还原后,稍过量的还原糖把次甲基蓝还原,溶液由蓝色变为无色,即为滴定终点。根据样液消耗量可计算出还原糖含量。
样品经除去蛋白质后,在加热条件下,以次甲基蓝做指示剂,滴定标定过的碱性酒石酸铜溶液(用还原糖标准溶液标定碱性酒石酸铜溶液),根据样品溶液消耗体积计算还原糖量。
Ⅱ、仪器和试剂
1.仪器
酸式滴定管,可调电炉(带石棉板),250ml容量瓶。
2.试剂
1. 盐酸。
2. 碱性酒石酸铜甲液:称取15g硫酸铜(CuSO4·5H2O)及0.05g次甲基蓝,溶于水中并稀释至1000mL。
3. 碱性酒石酸铜乙液:称取50g酒石酸钾钠与75g氢氧化钠,溶于水中,再加入4g亚铁氰化钾,完全溶解后,用水稀释至1000 ml,贮存于橡胶塞玻璃瓶内。
4. 乙酸锌溶液:称取21.9 g乙酸锌,加3ml冰乙酸,加水溶解并稀释至100ml。
5. 亚铁氰化钾溶液:称取10.6g亚铁氰化钾,用水溶解并稀释至100ml。
6. 葡萄糖标准溶液:准确称取1.0000g经过96℃±2℃干燥2h的纯葡萄糖,加水溶解后加入5ml盐酸,并以水稀释至1000L。此溶液相当于1mg/ml葡萄糖(注:加盐酸的目的是防腐,标准溶液也可用饱和苯甲酸溶液配制)。
7. 果糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的果糖。
8. 乳糖标准溶液:按⑹操作,配制每毫升标准溶液相当于1mg的乳糖。
9. 转化糖标准溶液:准确称取1.0526g纯蔗糖,用100ml水溶解,置于具塞三角瓶中加5ml盐酸(1+1),在68℃~70℃水浴中加热15min,放置至室温定容至1000ml,每ml标准溶液相当于1.0mg转化糖。
Ⅲ、实验步骤
1.样品处理
⑴ 乳类、乳制品及含蛋白质的食品:称取约2.50~5.00g固体样品(吸取25~50ml液体样品),置于250 ml容量瓶中,加50 ml水,摇匀。边摇边慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀。静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。(注意:乙酸锌可去除蛋白质、鞣质、树脂等,使它们形成沉淀,经过滤除去。如果钙离子过多时,易与葡萄糖、果糖生成络合物,使滴定速度缓慢;从而结果偏低,可向样品中加入草酸粉,与钙结合,形成沉淀并过滤。)
⑵ 酒精性饮料:吸取100ml样品,置于蒸发皿中,用1 mol/L氢氧化钠溶液中和至中性,在水浴上蒸发至原体积1/4后,移入250ml容量瓶中,加水至刻度。
⑶ 含多量淀粉的食品:称取10.00~20.00g样品,置于250ml容量瓶中,加200ml水,在45℃水浴中加热1h,并时时振摇(注意:此步骤是使还原糖溶于水中,切忌温度过高,因为淀粉在高温条件下可糊化、水解,影响检测结果。)。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液于另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氢化钾溶液,加水至刻度,混匀,沉淀,静置30 min,用干燥滤纸过滤,弃去初滤液,滤液备用。
⑷ 汽水等含有二氧化碳的饮料:吸取100ml样品置于蒸发皿中,在水浴上除去二氧化碳后,移入250ml容量瓶中,并用水洗涤蒸发皿,洗液并入容量瓶中,再加水至刻度,混匀后备用。(注意:样品中稀释的还原糖最终浓度应接近于葡萄糖标准液的浓度。)
2. 标定碱性酒石酸铜溶液:吸取5.0ml碱性酒石酸铜甲液及5.0ml乙液,置于150ml锥形瓶中(注意:甲液与乙液混合可生成氧化亚铜沉淀,应将甲液加入乙液,使开始生成的氧化亚铜沉淀重溶),加水10 ml,加入玻璃珠2粒,从滴定管滴加约9 ml葡萄糖标准溶液或其他还原糖标准溶液,直至溶液兰色刚好褪去为终点,记录消耗的葡萄糖标准溶液或其他还原糖标准溶液总体积,平行操作三份,取其平均值,计算每10 ml(甲、乙液各5 ml)碱性酒石酸铜溶液相当于葡萄糖的质量或其他还原糖的质量(mg)。(注意:还原的次甲基蓝易被空气中的氧氧化,恢复成原来的蓝色,所以滴定过程中必须保持溶液成沸腾状态,并且避免滴定时间过长。)
3. 样品溶液预测:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,控制在2 min内加热至沸,趁沸以先快后慢的速度,从滴定管中滴加样品溶液,并保持溶液沸腾状态,待溶液颜色变浅时,以每两秒1滴的速度滴定,直至溶液蓝色褪去,出现亮黄色为终点。如果样品液颜色较深,滴定终点则为兰色褪去出现明亮颜色(如亮红),记录消耗样液的总体积。(注意:如果滴定液的颜色变浅后复又变深,说明滴定过量,需重新滴定。) 当试样溶液中还原糖浓度过高时应适当稀释,再进行正式测定,使每次滴定消耗试样溶液的体积控制在与标定碱性酒石酸酮溶液时所消耗的还原糖标准溶液的体积相近,约在10ml左右。当浓度过低时则采取直接加入10ml样品溶液,免去加水10ml,再用还原糖标准溶液滴定至终点,记录消耗的体积与标定时消耗的还原糖标准溶液体积之差相当于10ml试样溶液中所含还原糖的量。
4. 样品溶液测定:吸取5.0 ml碱性酒石酸铜甲液及5.0 ml乙液,置于150 ml锥形瓶中,加水10 ml,加入玻璃珠2粒,在2 min内加热至沸,快速从滴定管中滴加比预测体积少1 ml的样品溶液,然后趁沸继续以每两秒1滴的速度滴定直至终点。记录消耗样液的总体积,同法平行操作两至三份,得出平均消耗体积。
5. 计算
样品中还原糖的含量(以某种还原糖计)按下式计算。
X=〔A/(m×V/250×1000)〕×100
式中:X--样品中还原糖的含量(以某种还原糖计),单位 g/100g;
A—碱性酒石酸铜溶液(甲、乙液各半)相当于某种还原糖的质量,单位 mg;
m--样品质量,单位 g;
V--测定时平均消耗样品溶液的体积,单位 ml;
计算结果保留小数点后一位。
注意:
滴定结束,锥形瓶离开热源后,由于空气中氧的氧化,使溶液又重新变蓝,此时不应再滴定。
(二)高锰酸钾滴定法
v 原理 将样液与一定量过量的碱性酒石酸铜溶液反应,还原糖将二价铜还原为氧化亚铜,经过滤,得到氧化亚铜沉淀,加入过量的酸性硫酸铁溶液将其氧化溶解,而三价铁盐被定量地还原为亚铁盐,用高锰酸钾标准溶液滴定所生成的亚铁盐,根据高锰酸钾溶液消耗量可计算出氧化亚铜的量,再从检索表中查出氧化亚铜量相当的还原糖量,即可计算出样品中还原糖含量。
(三)硫酸苯酚法
Ⅰ、原理
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
多糖在硫酸的作用下先水解成单糖,并迅速脱水生成糖醛衍生物,然后与苯酚生成橙黄色化合物。再以比色法测定。
Ⅱ、试剂
1. 浓硫酸:分析纯,95.5%
2. 80%苯酚:80克苯酚(分析纯重蒸馏试剂)加20克水使之溶解,可置冰箱中避光长期储存。
3. 6%苯酚:临用前以80%苯酚配制。(每次测定均需现配)
4. 标准葡聚糖(Dextran,瑞典Pharmacia),或分析纯葡萄糖。
5. 15%三氯乙酸(15%TCA):15克TCA加85克水使之溶解,可置冰箱中长期储存。
6. 5%三氯乙酸(5%TCA):25克TCA加475克水使之溶解,可置冰箱中长期储存。
7. 6mol/L 氢氧化钠:120克分析纯氢氧化钠溶于500ml水。
8. 6mol/L 盐酸
Ⅲ、操作。
1.制作标准曲线:准确称取标准葡聚糖(或葡萄糖)20mg于500ml容量瓶中,加水至刻度,分别吸取0.4、0.6、0.8、1.0、1.2、1.4、1.6及1.8ml,各以蒸馏水补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却,室温放置20分钟以后于490nm测光密度,以2.0ml水按同样显色操作为空白,横坐标为多糖微克数,纵坐标为光密度值,得标准曲线。
2.样品含量测定:
①取样品1克(湿样)加1ml 15%TCA溶液研磨,再加少许5%TCA溶液研磨,倒上清液于10毫升离心管中,再加少许5%TCA溶液研磨,倒上清液,重复3次。最后一次将残渣一起到入离心管。注意:总的溶液不要超出10毫升。(既不要超出离心管的容量)。
②离心,转速3000转/分钟,共三次。第一次15分钟,取上清液。后两次各5分钟取上清液到25毫升锥形比色管中。最后滤液保持18毫升左右。(测肝胰腺样品时,每次取上清液时应过滤。因为其脂肪含量大容易夹带残渣。)
③水浴,在向比色管中加入2毫升6mol/L 盐酸之后摇匀,在96℃水浴锅中水浴2小时。
④定容取样。水浴后,用流水冷却后加入2毫升6mol/L 氢氧化钠摇匀。定容至25毫升的容量瓶中。吸取0.2 ml的样品液,以蒸馏补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却室温放置20分钟以后于490nm测光密度。每次测定取双样对照。以标准曲线计算多糖含量。
Ⅳ、注意
(1)此法简单、快速、灵敏、重复性好,对每种糖仅制作一条标准曲线,颜色持久。
(2)制作标准线宜用相应的标准多糖,如用葡萄糖,应以校正系数0.9校正μg数。
(3)对杂多糖,分析结果可根据各单糖的组成比及主要组分单糖的标准曲线的校正系数加以校正计算。
(4)测定时根据光密度值确定取样的量。光密度值最好在0.1——0.3之间。比如:小于0.1之下可以考虑取样品时取2克,仍取0.2ml样品液,如大于0.3可以减半取0.1ml的样品液测定。
(四)蒽酮法
Ⅰ、实验原理
糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
该法的特点是几乎可以测定所有的碳水化合物,不但可以测定戊糖和己糖,而且可以测所有的寡糖类和多糖类,其中包括淀粉、纤维素等(因反应液中的浓硫酸可以把多糖水解成单糖而发生反应。所以,用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量。在没有必要细致划分各种碳水化合物的情况下,用蒽酮法可以一次测出总量。此外,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。故测定糖的混合物时,常因不同糖类的比例不同造成误差,但测定单一糖类时,则可避免此种误差。
Ⅱ、试剂:
蒽酮试剂,0.20 g蒽酮溶入100 mL 95%浓硫酸中,冰箱保存;
Ⅲ、方法:
样品2.0 mL加5.0 mL蒽酮试剂,混匀,然后水浴煮沸10 min,取出冷却至室温,在620 nm处测定其吸光度,根据标准曲线计算水样中糖的浓度。(标线以葡萄糖为标样)