⑴ 鸡兔同笼有哪五种方法解题
鸡兔同笼解题方法:
(1)方程法;(2)算数法;(3)抬脚法;(4)推理法;
⑵ 鸡兔同笼有哪几种方法
公务员考试行测数量关系题,鸡兔同笼问题的解法,如:
假设法
运用说明:假设全是鸡或全是兔,脚的总数必然要多或少,通过脚数与实际数之差,可以知道造成差的原因,于是知道应有多少只兔或应有多少只鸡。
1)如果求兔的数量,就把所有的动物假设为鸡。
假设把所有的动物都看成是鸡,而实际上每一只兔子是比鸡多了2条腿。
“设鸡求兔”的公式为:
①兔头数=(总足数-2×总头数)÷(4-2);
②鸡头数=总头数-兔头数。
2)如果求鸡的数量,就把所有的动物假设是兔子。
假设全部动物是兔子,每一只鸡多算了2条腿。
“设兔求鸡”的公式为:
①鸡头数=(4×总头数-总足数)÷(4-2);
②兔头数=总头数-鸡头数。
方程法
运用说明:设笼子中装有鸡、兔分别为x只、y只。
x+y=头的总数;
2x+4y=脚的总数。
⑶ 鸡兔同笼共有几种方法
鸡兔同笼共有2种方法:1、算术的方法,按和差问题解决,总腿数÷2-总头数=兔数,总头数-兔数=鸡数。2、代数的方法,用二元一次方程,设鸡为X ,兔为y,x+y=总头数,2x+4y=总腿数,然后解方程。
⑷ 关于鸡兔同笼的解决问题用方法
说起“鸡兔同笼”就要说起1500年前的《孙子算经》里面的经典题目(传到日本变成了”龟鹤问题“),我们就从这道题目入手,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?
解决“鸡兔同笼”问题的第一种方法:枚举法(列表法)。
方法很简单过程很复杂,就是根据不断变化鸡和兔的数量,分别把鸡和兔子的腿的的数量填入表格中,知道找到正确的答案为止,这种方法只适合与课堂教学中的探索和对其他方法的引导,由于这种方法太过笨拙,用时较多,在日常的练习和考试中一般不适用。所以这种方法大家了解即可。
解决“鸡兔同笼”问题的第二种方法:假设法(矛盾法)。
这种解决“鸡兔同笼”问题的主要解决方法之一,该方法主要是根据题目当中的已知条件,对题目进行某种假设,然后按照条件进行推理,找到与题目数量的矛盾之处,最后进行合理的变化从而得出正确的结论。同时呢,假设法也是奥数题目中经常遇到的方法(这里仅对于鸡兔同笼问题进行讲解,其他问题的假设法这里暂时不再赘述),这种方法关键是——通过假设找到与题目中的数量出现的矛盾之处。
我们首先看题目:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
思考过程:假设笼子里面35只全是兔子的话,那么脚的总数应该是:35×4=140(只),但是实际笼子里只有94只脚,这就与我们假设的出现矛盾了,多出了140-94=46只脚,为什么会多出46只脚呢?因为笼子里不全是兔子还有鸡,我们把两只脚的鸡假设成了兔子(现实中一只兔子比一只鸡多两只脚),由于我们的假设而多出了46只脚,多2条腿就有1只鸡,那么多出的46只腿当中有多少个2,就有多少只鸡,我们就用46÷2=23(只),求出了鸡的数量,再用35-23=12(只)得出兔子的数量。
我们总结算式:鸡的数量=(35×4-94)÷(4-2)=23(只)
兔子的数量=35-23=12(只)
归纳公式:如果假设全是兔子:(总头数×一只兔子脚的数量-总脚数)÷(一只兔子脚的数量-一只鸡的脚的数量)
当然,我们还可以假设笼子里全是鸡,如果全是鸡,脚的总数是35×2=70(只)脚,与实际少了94-70=24(只)脚,由于一直鸡比一只兔子少两只脚,每少两只脚就有一只兔子,少24只脚就有:24÷2=12(只)兔子,算出兔子数量,鸡的数量就是:35-12=23(只)。
列出算式:兔子的数量=(94-35×2)÷(4-2)=12(只)
鸡的数量=35-12=23(只)
归纳公式:如果假设全是鸡:(总脚数-总头数×一只鸡脚的数量)÷(一只兔子脚的数量-一只鸡的脚的数量)