1. 急求细菌细胞膜方面的资料!!!
又称细胞质膜,是一层紧贴在细胞壁内侧,包围着细胞质的柔软、脆弱、富有弹性的半透性薄膜,厚约7~8nm,约占细胞干重的10%。通过质壁分离、鉴别性染色、原生质体破裂等方法可在光学显微镜下观察到,或采用电子显微镜观察细菌超薄切片等方法,均可证明细胞膜的存在。�
细胞膜的主要化学成分有磷脂(约占20%~30%)和蛋白质(约占50%~70%),还有少量糖类(如己糖)。其中蛋白质种类多达200余种。
通过电子显微镜观察时,细胞膜呈现3层结构,即在上下两层暗的电子致密层中间夹着一较亮的电子透明层。这是因为,细胞膜的基本结构是由两层磷脂分子整齐地排列而成。每一磷脂分子由1个带正电荷且能溶于水的极性头(磷酸端)和1个不带电荷且不溶于水的非极性尾(烃端)所构成。极性头朝向膜的内外两个表面,呈亲水性;而非极性的疏水尾(长链脂肪酸,其链长和饱和度与细菌的生长温度有关)则埋藏在膜的内层,从而形成一个磷脂双分子层。
常温下,磷脂双分子层呈液态,具有不同功能的周边蛋白和整合蛋白可在磷脂双分子层表面或内侧作侧向运动,犹如漂浮在海洋中的冰山。这就是J.S.Singer和G.L.Nicolson(1972年)提出的细胞膜液态镶嵌模式。
细胞膜的功能为:①能选择性地控制细胞内外的物质(营养物质和代谢产物)的运送与交换;②维持细胞内正常渗透压的屏障作用;③合成细胞壁各种组分(肽聚糖、磷壁酸、LPS等)和糖被等大分子的重要场所;④进行氧化磷酸化或光合磷酸化的产能基地;⑤许多酶(β-半乳糖苷酶、细胞壁和荚膜的合成酶及ATP酶等)和电子传递链的所在部位;⑥鞭毛的着生点,并提供其运动所需的能量等。
2. 微生物培养中如何增加细胞膜的通透性
你用的老教材吧,老教材中没说具有办法。增大细菌细胞膜通透性的方法有:降低环境pH、提高环境温度。(我也是从别处看来的)
3. 细菌的结构
细菌的结构
(一)细菌的基本结构:基本结构指各种细菌必须具备的与生命活动密切相关的细胞结构,包括细胞壁、细胞膜、细胞质和核质。细胞壁是重点。(图11. 细菌结构示意图。)
1.细胞壁:细胞壁是位于细菌最外面,紧贴在细胞膜外的一层结构,比较坚韧,有高度弹性。细胞壁的基本化学组成是肽聚糖。G+菌和G-菌细胞壁还含有各自独特的成份磷壁酸和外膜。G+菌和G-菌的细胞壁结构有很大不同,因此,使得这两类细菌对革兰染色的反应、对作用于细胞壁的抗生素的敏感性、以及两类细菌的致病性均有很大不同。
(1)细胞壁的化学组成
①基本成份―肽聚糖: 是原核细胞生物特有的化学物质。由聚糖骨架、四肽侧链和肽桥或肽键(革兰阳性菌相邻聚糖骨架的四肽侧链通过五肽桥连接。葡萄球菌的五肽桥由五个甘氨酸组成。五肽桥的一端连在四肽侧链的第三位赖氨酸上,另一端连在相邻聚糖链上四肽侧链的第四位丙氨酸上,从而构成三维立体网状结构。青霉素、头孢菌素等可抑制五肽桥的连接。革兰阴性菌无五肽桥,相邻四肽侧链直接以肽键相连,构成二维片层结构。)组成。(图12. G+菌肽聚糖构造示意图。)
②G+菌细胞壁特有的化学组成
A.磷壁酸:分壁磷壁酸和膜磷壁酸,是G+菌细胞壁的特有物质,构成G+菌重要的表面抗原,与细菌分型有关。膜磷壁酸可以粘附宿主细胞,与细菌的致病性有关。
B.表面蛋白:某些G+菌细胞壁表面的特殊蛋白,如链球菌的M蛋白,金黄色葡萄球菌的A蛋白(SPA),均与细菌的致病性有关。
G+菌细胞壁的主要成分即由肽聚糖构成,可达到50层左右,占细胞壁干重的50%-80%。细胞壁的坚韧性主要与肽聚糖层有关。任何可以破坏肽聚糖结构或抑制肽聚糖合成的物质,如溶菌酶、青霉素、头孢菌素、万古霉素、杆菌肽等物质均可因干扰细菌细胞壁肽聚糖的合成而抑制或杀灭G+菌。人体细胞没有细胞壁,也不含肽聚糖,因此青霉素等抗生素对人体细胞无毒。
③G-菌细胞壁特有的化学组成
外膜: G-菌细胞壁肽聚糖含量较少,只有1-2层,只占细胞壁干重的5%-20%。因此,仅靠肽聚糖不足以保护G-细菌,甚至不能抵抗革兰染色时95%乙醇的渗入脱色。因此,必须依靠复杂的外膜来保护细菌。外膜由内向外依次又由脂蛋白、脂质双层和脂多糖组成。也有教科书将脂质双层称为外膜,那么,G-菌细胞壁的特有结构就包括脂蛋白、外膜和脂多糖。
A.脂蛋白:由脂质和蛋白质构成。主要作用是连接脂质双层(外膜)并将其固定在肽聚糖层。
B.脂质双层(外膜):与细胞膜化学组成类似,与物质交换有关。
C.脂多糖(LPS):位于脂质双层外侧, 是G-菌的内毒素,由内向外依次由脂类A、核心多糖和特异多糖组成。
(2)细胞壁的功能
①保护细菌。细菌细胞内由于浓集了大量营养物质和高浓度的无机盐,因此渗透压可以达到5-25个大气压,在外界相对低渗的环境中,如果没有坚韧的细胞壁保护,细菌细胞膜会破裂导致细菌死亡。
②维持细菌的固有外形。如果以溶菌酶或低浓度青霉素抑制细菌细胞壁肽聚糖的合成,可使细菌的细胞壁形成缺陷,原来的杆菌可以变为球形。细胞壁有缺陷的细菌也叫L型细菌,是细菌的一种变异现象。L型细菌在体内常常引起慢性感染。
③参与物质交换。细胞壁上有许多微孔,允许水分子和小于1nm的小分子物质自由通过。
④带有多种抗原决定簇。如磷壁酸是G+菌重要的表面抗原;特异多糖是G-菌重要的表面抗原。抗原的生物学意义主要有2点:
A. 在体内可刺激机体产生免疫应答,引起免疫保护或免疫损伤效应。
B. 在体外可以用来鉴别细菌、诊断细菌感染性疾病。
⑤与细菌的致病性有关。如G+菌的膜磷壁酸可以粘附细胞;G-菌的内毒素可以引起机体发热、白细胞增多,甚至休克死亡。
2.细胞膜:位于细胞壁内侧,是紧包在细胞质外面的一层柔软的、富有弹性和半渗透性的生物膜。和真核细胞膜类似,由脂质双层构成,膜里镶嵌着许多具有特殊功能的酶蛋白和载体蛋白。细胞膜是细菌赖以生存的重要结构。它的功能与真核细胞类似,主要有保护细菌、物质交换、生物合成等。
3.细胞质:是细胞膜包裹的无色透明的溶胶状物质。
(1)化学组成:主要成分是水、蛋白质、核酸、脂类,少量糖类和无机盐。
(2)内含物:细菌的细胞质里含有大量核糖体、胞浆颗粒以及质粒。
①核蛋白体:又叫核糖体, 是细菌合成蛋白质的场所。沉降系数与真核细胞不同,为70S,是抗生素的作用靶点。
②质粒:是细菌染色体以外的遗传物质,由双股环状DNA构成。质粒不是细菌生存所必需的基因,但可编码细菌一些额外的有益于细菌的性状。质粒可在细菌间转移,这是细菌产生耐药性和毒力的重要机制之一。
③胞浆颗粒:多数为细菌贮存的营养物质,包括多糖、脂类、多磷酸盐等。与细菌鉴别有关的胞浆颗粒是异染颗粒。
4.核质:由裸露的双股DNA盘绕组成,没有组蛋白包绕,也没有核膜包裹,因此叫核质,或称为拟核。
(二) 细菌的特殊构造:特殊结构不是所有细菌都具备,而是某些细菌所特有,一般都与细菌的致病性有关,同时可用于细菌的鉴定。
1.芽胞:
(1)概念:为某些革兰阳性菌如破伤风杆菌、肉毒杆菌等菌体内圆形或卵圆形的强折光性小体。芽胞是细菌在外界不利环境中所形成的有极强抵抗力的休眠体而不是繁殖结构。芽胞高度脱水,具有多层膜结构,在环境适宜时可发芽形成一个菌体。
(2)医学意义:①芽胞可成为某些外源性感染的传染源,如破伤风。②芽胞高度耐热,灭菌应以杀灭芽胞为标准。
2。荚膜:
(1)概念:某些细菌如肺炎球菌在营养状况好时分泌的包饶在菌细胞表面的粘液状物质。荚膜可帮助细菌抵抗环境中不利因素,如体内吞噬细胞的吞噬杀灭作用。
(2)医学意义:①抗吞噬作用,增强细菌的致病性。②细菌鉴定。通过血清学检测荚膜的抗原性,也可通过形态上的特征鉴定。荚膜一般不易着色,普通染色时可见到菌细胞周围有一个透明圈。
3.鞭毛:
(1)概念:某些弧菌、螺菌、和部分杆菌细胞壁表面的细长弯曲的蛋白丝状物, 数量可以少到一根,也可以多到数百根。鞭毛是细菌的运动器官,构成细菌的H抗原。
(2)医学意义:①某些细菌如霍乱弧菌的鞭毛可增强其致病性,帮助细菌穿过肠黏膜表面的粘液层, 到达肠黏膜上皮细胞定居、繁殖而致病。②通过观察细菌的动力、检测H抗原等方法对细菌进行鉴定、分型。
4.菌毛:
(1)概念:某些细菌菌体表面由蛋白质构成的极其纤细的、短而直的丝状物。按功能分为普通菌毛和性菌毛。普通菌毛是细菌的黏附结构。性菌毛是细菌传递遗传物质的结构。
(2)医学意义:①与细菌的致病性有关。如淋球菌依靠菌毛黏附在尿道上皮细胞表面,可抵抗尿液的冲刷在局部定居进而繁殖致病。②菌毛在电镜下才能观察
4. 细菌的分类
1、根据形状分为三类,即:球菌、杆菌和螺旋菌(包括号菌、螺菌、螺杆菌)。
2、按细菌的生活方式来分类,分为两大类:自养菌和异养菌,其中异养菌包括腐生菌和寄生菌。
3、按细菌对氧气的需求来分类,可分为需氧(完全需氧和微需氧)和厌氧(不完全厌氧、有氧耐受和完全厌氧)细菌。
4、按细菌生存温度分类,可分为喜冷、常温和喜高温三类。
(4)细菌外膜渗透性检测方法扩展阅读:
细菌的用途与危害
细菌对环境,人类和动物既有用处又有危害。一些细菌成为病原体,导致了破伤风、伤寒、肺炎、梅毒、霍乱和肺结核。在植物中,细菌导致叶斑病、火疫病和萎蔫。感染方式包括接触、空气传播、食物、水和带菌微生物。病原体可以用抗菌素处理,抗菌素分为杀菌型和抑菌型。
细菌通常与酵母菌及其他种类的真菌一起用于酦酵食物,例如在醋的传统制造过程中,就是利用空气中的醋酸菌(Acetobacter)使酒转变成醋。其他利用细菌制造的食品还有奶酪、泡菜、酱油、醋、酒、优格等。细菌也能够分泌多种抗生素,例如链霉素即是由链霉菌(Steptomyces)所分泌的。
细菌能降解多种有机化合物的能力也常被用来清除污染,称做生物复育(bioremediation)。举例来说,科学家利用嗜甲烷菌(methanotroph)来分解美国佐治亚州的三氯乙烯和四氯乙烯污染。
细菌也对人类活动有很大的影响。例如奶酪及优格的制作、部分抗生素的制造、废水的处理等,都与细菌有关。
5. 细胞膜渗透作用的应用
一. 判断植物细胞的死活
例:现有部分洋葱鳞片叶表皮细胞,能否判断它是死的还是活的?为什么?
解答:能。可把洋葱表皮置于质量浓度为0.3g/mL的蔗糖溶液中制成装片观察。根据“渗透作用”原理,看其细胞是否发生质壁分离,如果有质壁分离现象,则此细胞为活细胞,否则为死细胞。这是因为表皮细胞的原生质层在生活状态具有选择透过性,相当于半透膜,外界浓度大于细胞液浓度时,细胞渗透失水,发生质壁分离现象;如果细胞死亡,原生质层便失去选择透过性,变为全透性,细胞不会发生质壁分离。
二. 区分溶液浓度的大小
例:现有两种不同浓度的蔗糖溶液,由于工作疏忽,瓶上的浓度标签丢失。现有一烧杯、玻璃纸、带刻度玻璃管、铁架台,请设计一实验区分两种蔗糖溶液浓度的高低。
解答:这一设计实验运用的是渗透作用原理。设计装置如图所示,操作步骤如下:
(1)将一瓶中的溶液倒入烧杯中;
(2)将另一瓶中的溶液装入由半透膜玻璃纸制成的透析袋中,刻度玻璃管插入袋内溶液里,用细线将袋口和玻璃管扎紧;
(3)将插有玻璃管的透析袋放入盛有溶液的烧杯中,垂直固定在支架上,记录玻璃管液面的刻度;
(4)一段时间后,观察液面的刻度是上升还是下降。
结果分析:如果液面升高,则透析袋中的溶液是高浓度的蔗糖溶液,烧杯中的溶液为低浓度的蔗糖溶液;如果液面下降,则透析袋中的溶液是低浓度的蔗糖溶液,烧杯中的溶液为高浓度的庶糖溶液。
三. 食品加工防腐处理的应用
例:食醋中的醋酸分子是活细胞不需要的小分子物质,蔗糖是活细胞需要的大分子物质,用食醋和蔗糖可将新鲜的大蒜腌制成醋蒜,其原因是这是一个细胞膜选择透过性、渗透作用原理在生活中应用的实例。蔗糖是不能通过细胞膜进入细胞内的,加之蔗糖溶液会使细胞发生渗透作用失水,从而杀灭细菌,保存食物。加醋的目的是尽快杀死蒜细胞,细胞被杀死后,细胞膜失去了选择透过性,各种物质能尽快进入细胞内,这样腌制的味道和颜色便产生了。
四. 作物水肥管理方面的应用
例:家庭养花,如施肥过浓,会引起花卉萎蔫,这时可采取的措施是适当浇灌清水。这是渗透作用原理在生产上应用的实例。引起花卉萎蔫的原因是土壤溶液浓度大于花卉细胞的细胞液浓度,从而导致细胞发生渗透失水,引起萎蔫,因此,只要把土壤溶液浓度降低(如浇灌清水等),即可补救。
五. 观察植物细胞的细胞膜及细胞内的寄生物
如观察寄生在人体红细胞内的微丝蚴,可把红细胞置于蒸馏水中制成装片,让其发生渗透吸水,引起膨胀以至破裂,造成溶血现象,此时微丝蚴便直接暴露出来,便于观察。相反观察植物细胞的细胞膜则利用细胞渗透失水,由于植物细胞的细胞膜紧贴着细胞壁,在一般情况下看不到细胞膜,而通过植物细胞发生渗透失水,造成质壁分离,则能清楚地看到与细胞壁分离开来的原生质层最外面的细胞膜。
六.可以用在医学上,如透析。它使体液内的成分(溶质或水分)通过半透膜排出体外的治疗方法。常用于急性或慢性肾功能衰竭、药物或其他毒物在体内蓄积的情况。原理就是利用半透膜的渗析作用。
6. 很简单是——细菌
应该是的!
细菌
[What]什么是细菌?
细菌(英文:germs;bacteria)隶属生物学一类,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。细菌主要由细胞壁、细胞膜、细胞质、核质体等部分构成,有的细菌还有夹膜、鞭毛、菌毛等特殊结构。绝大多数细菌的直径大小在0.5~5μm之间。可根据形状分为三类,即:球菌、杆菌和螺旋菌(包括号形菌)。 还有一种利用细菌的生活方式来分类,即可分为两大类:腐生生活与寄生生活。
(一)细胞壁
细胞壁厚度因细菌不同而异,一般为15-30nm。主要成分是肽聚糖,由N-乙酰葡糖胺和N-乙酰胞壁酸构成双糖单元,以β(1-4)糖苷键连接成大分子。N-乙酰胞壁酸分子上有四肽侧链,相邻聚糖纤维之间的短肽通过肽桥(革兰氏阳性菌)或肽键(革兰氏阴性菌)桥接起来,形成了肽聚糖片层,像胶合板一样,粘合成多层。
肽聚糖中的多糖链在各物种中都一样,而横向短肽链却有种间差异。革兰氏阳性菌细胞壁厚约20~80nm,有15-50层肽聚糖片层,每层厚1nm,含20-40%的磷壁酸(teichoic acid),有的还具有少量蛋白质。革兰氏阴性菌细胞壁厚约10nm,仅2-3层肽聚糖,其他成分较为复杂,由外向内依次为脂多糖、细菌外膜和脂蛋白。此外,外膜与细胞之间还有间隙。
肽聚糖是革兰阳性菌细胞壁的主要成分,凡能破坏肽聚糖结构或抑制其合成的物质,都有抑菌或杀菌作用。如溶菌酶是N-乙酰胞壁酸酶,青霉素抑制转肽酶的活性,抑制肽桥形成。
细菌细胞壁的功能包括:保持细胞外形;抑制机械和渗透损伤(革兰氏阳性菌的细胞壁能耐受20kg/cm2的压力);介导细胞间相互作用(侵入宿主);防止大分子入侵;协助细胞运动和分裂。
脱壁的细胞称为细菌原生质体(bacterial protoplast)或球状体(spheroplast,因脱壁不完全),脱壁后的细菌原生质体,生存和活动能力大大降低。
(二)细胞膜
是典型的单位膜结构,厚约8~10nm,外侧紧贴细胞壁,某些革兰氏阴性菌还具有细胞外膜。通常不形成内膜系统,除核糖体外,没有其它类似真核细胞的细胞器,呼吸和光合作用的电子传递链位于细胞膜上。某些行光合作用的原核生物(蓝细菌和紫细菌),质膜内褶形成结合有色素的内膜,与捕光反应有关。某些革兰氏阳性细菌质膜内褶形成小管状结构,称为中膜体(mesosome)或间体(图3-11),中膜体扩大了细胞膜的表面积,提高了代谢效率,有拟线粒体(Chondroid)之称,此外还可能与DNA的复制有关。
(三)细胞质与核质体
细菌和其它原核生物一样,没有核膜,DNA集中在细胞质中的低电子密度区,称核区或核质体(nuclear body)。细菌一般具有1-4个核质体,多的可达20余个。核质体是环状的双链DNA分子,所含的遗传信息量可编码2000~3000种蛋白质,空间构建十分精简,没有内含子。由于没有核膜,因此DNA的复制、RNA的转录与蛋白的质合成可同时进行,而不像真核细胞那样这些生化反应在时间和空间上是严格分隔开来的。
每个细菌细胞约含5000~50000个核糖体,部分附着在细胞膜内侧,大部分游离于细胞质中。细菌核糖体的沉降系数为70S,由大亚单位(50S)与小亚单位(30S)组成,大亚单位含有23SrRNA,5SrRNA与30多种蛋白质,小亚单位含有16SrRNA与20多种蛋白质。30S的小亚单位对四环素与链霉素很敏感,50S的大亚单位对红霉素与氯霉素很敏感。
细菌核区DNA以外的,可进行自主复制的遗传因子,称为质粒(plasmid)。质粒是裸露的环状双链DNA分子,所含遗传信息量为2~200个基因,能进行自我复制,有时能整合到核DNA中去。质粒DNA在遗传工程研究中很重要,常用作基因重组与基因转移的载体。
胞质颗粒是细胞质中的颗粒,起暂时贮存营养物质的作用,包括多糖、脂类、多磷酸盐等。
(四)其他结构
许多细菌的最外表还覆盖着一层多糖类物质,边界明显的称为荚膜(capsule),如肺炎球菌,边界不明显的称为粘液层(slime layer),如葡萄球菌。荚膜对细菌的生存具有重要意义,细菌不仅可利用荚膜抵御不良环境;保护自身不受白细胞吞噬;而且能有选择地粘附到特定细胞的表面上,表现出对靶细胞的专一攻击能力。例如,伤寒沙门杆菌能专一性地侵犯肠道淋巴组织。细菌荚膜的纤丝还能把细菌分泌的消化酶贮存起来,以备攻击靶细胞之用。
鞭毛是某些细菌的运动器官,由一种称为鞭毛蛋白(flagellin)的弹性蛋白构成,结构上不同于真核生物的鞭毛。细菌可以通过调整鞭毛旋转的方向(顺和逆时针)来改变运动状态。
菌毛是菌体表面极其的蛋白纤细,须用电镜观察。特点是:细、短、直、硬、多,菌毛与细菌运动无关,根据形态、结构和功能,可分为普通菌毛和性菌毛两类。前者与细菌吸附和侵染宿主有关,后者为中空管子,与传递遗传物质有关。
(五)繁殖
细菌一二分裂的方式繁殖,某些细菌处于不利的环境,或耗尽营养时,形成内生孢子,又称芽孢,是对不良环境有强抵抗力的休眠体,由于芽胞在细菌细胞内形成,故常称为内生孢子。
芽孢的生命力非常顽强,有些湖底沉积土中的芽抱杆茵经500-1000年后仍有活力,肉毒梭菌的芽孢在pH 7.0时能耐受100℃煮沸5-9.5小时。芽孢由内及外有以下几部分组成:
1.芽孢原生质(spore protoplast,核心core):含浓缩的原生质。
2.内膜(inner membrane):由原来繁殖型细菌的细胞膜形成,包围芽孢原生质。
3.芽孢壁(spore wall):由繁殖型细菌的肽聚糖组成,包围内膜。发芽后成为细菌的细胞壁。
4.皮质(cortex):是芽孢包膜中最厚的一层,由肽聚糖组成,但结构不同于细胞壁的肽聚糖,交联少,多糖支架中为胞壁酐而不是胞壁酸,四肽侧链由L-Ala组成。
5.外膜(outer membrane):也是由细菌细胞膜形成的。
6.外壳(coat):芽孢壳,质地坚韧致密,由类角蛋白组成(keratinlike protein),含有大量二硫键,具疏水性特征。
7.外壁(exosporium):芽孢外衣,是芽孢的最外层,由脂蛋白及碳水化合物(糖类)组成,结构疏松。
[How]怎样利用细菌
[一]细菌发电
生物学家预言,21世纪将是细菌发电造福人类的时代。说起细菌发电,可以追溯到1910年,英国植物学家利用铂作为电极放进大肠杆菌的培养液里,成功地制造出世界上第一个细菌电池。1984年,美国科学家设计出一种太空飞船使用的细菌电池,其电极的活性物质是宇航员的尿液和活细菌。不过,那时的细菌电池放电效率较低。到了20世纪80年代末,细菌发电才有了重大突破,英国化学家让细菌在电池组里分解分子,以释放电子向阳极运动产生电能。其方法是,在糖液中添加某些诸如染料之类的芳香族化合物作为稀释液,来提高生物系统输送电子的能力。在细菌发电期间,还要往电池里不断地充气,用以搅拌细菌培养液和氧化物质的混和物。据计算,利用这种细菌电池,每100克糖可获得1352930库仑的电能,其效率可达40%,远远高于现在使用的电池的效率,而且还有10%的潜力可挖掘。只要不断地往电池里添入糖就可获得2安培电流,且能持续数月之久。
利用细菌发电原理,还可以建立细菌发电站。在10米见方的立方体盛器里充满细菌培养液,就可建立一个1000千瓦的细菌发电站,每小时的耗糖量为200千克,发电成本是高了一些,但这是一种不会污染环境的"绿色"电站,更何况技术发展后,完全可以用诸如锯末、秸秆、落叶等废有机物的水解物来代替糖液,因此,细菌发电的前景十分诱人。
现在,各发达国家如八仙过海,各显神通:美国设计出一种综合细菌电池,是由电池里的单细胞藻类首先利用太阳光将二氧化碳和水转化为糖,然后再让细菌利用这些糖来发电;日本将两种细菌放入电池的特制糖浆中,让一种细菌吞食糖浆产生醋酸和有机酸,而让另一种细菌将这些酸类转化成氢气,由氢气进入磷酸燃料电池发电;英国则发明出一种以甲醇为电池液,以醇脱氢酶铂金为电极的细菌电池。
而且现在,各种不同的细菌电池相继问世。例如有一种综合细菌电池,先由电池里的单细胞藻类利用日光将二氧化碳和水转化成糖,然后再让细菌利用这些糖来发电。还有一种细菌电池则是将两种细菌放入电池的特制糖浆中,让一种细菌吞食糖浆产生醋酸和有机酸,再让另一种细菌将这些酸类转化成氢气,利用氢气进入磷酸燃料电池发电。
人们还惊奇地发现,细菌还具有捕捉太阳能并把它直接转化成电能的"特异功能"。最近,美国科学家在死海和大盐湖里找到一种嗜盐杆菌,它们含有一种紫色素,在把所接受的大约10%的阳光转化成化学物质时,即可产生电荷。科学家们利用它们制造出一个小型实验性太阳能细菌电池,结果证明是可以用嗜盐性细菌来发电的,用盐代替糖,其成本就大大降低了。由此可见,让细菌为人类供电已不是遥远的设想,而是不久的现实
[二]细菌益肠胃
身体大肠内的细菌靠分解小肠内部的废弃物生活。这些东西由于不可消化,人体系统拒绝处理它们。这些细菌自己装备有一系列的酶和新陈代谢的通道。这样,它们能够继续把遗留的有机化合物进行分解。它们中的大多数的工作都是分解植物中的碳水化合物。大肠内部大部分的细菌是厌氧性的细菌,意思就是它们在没有氧气的状态下生活。它们不是呼出和呼入氧气,而是通过把大分子的碳水化合物分解成为小的脂肪酸分子和二氧化碳来获得能量。这一过程称为“发酵”。
一些脂肪酸通过大肠的肠壁被重新吸收,这会给我们提供额外的能源。剩余的脂肪酸帮助细菌迅速生长。其速度之快可以使它们在每20分钟内繁殖一次。因为它们合成的一些维生素B和维生素K比它们需要的多,所以它们非常慷慨地把多余的维生素供应给它们这个群体中其他的生物,也提供给你——它们的宿主。尽管你不能自己生产这些维生素,但你可以依靠这些对你非常友好的细菌来源源不断供应给你。
科学家们刚刚开始明白这一集体中不同的细菌之间的复杂关系,以及它们同人这个宿主之间的相互作用。这是一个动态的系统,随着宿主在饮食结构和年龄上的变化,这一系统也做出相应的调整。你一出生就开始在体内汇集你所选择的细菌的种类。当你的饮食结构从母乳变为牛奶,又变成不同的固体食物时,你的体内又会有新的细菌来占据主导地位了。
积聚在大肠壁上的细菌是经历过艰难旅程后的幸存者。从口腔开始经过小肠,他们受到消化酶和强酸的袭击。那些在完成旅行后而安然无恙的细菌在到达时会遇到更多的障碍。要想生长,它们必须同已经住在那里的细菌争夺空间和营养。幸运的是,这些“友好的”细菌能够非常熟练地把自己粘贴到大肠壁上任何可利用的地方。这些友好的细菌中的一些可以产生酸和被称为“细菌素”的抗菌化合物。这些细菌素可以帮助抵御那些令人讨厌的细菌的侵袭。
那些友好的细菌能够控制更危险的细菌的数量,增加人们对“前生命期”食物的兴趣。这种食物含有培养菌,酸奶就是其中的一种。在你喝下一瓶酸奶的时候,检查一下标签,看一看哪种细菌将会成为你体内的下一批客人。
7. 革兰氏阳性细菌细胞膜蛋白提取方法
分离细胞膜蛋白的方法:
1 冰上刮下细胞后将细胞溶于有蛋白酶抑制剂的缓冲液A中,于室温与液氮罐中反复冻融2次。
2 5000转4度离心,驱除核及未裂解的细胞。
3 取上清12000转4度离心10分钟取沉淀溶于有蛋白酶抑制剂的缓冲液B中。
4 12000转4度离心10分钟取沉淀溶于有蛋白酶抑制剂的缓冲液C中提取后测蛋白浓度,SDS-PAGE电泳,分装后-20度保存备用。
buffer A : 1mMkcl,5mMNacl,3mM Mgcl2,50mM Hepes,1mM DTT,0.5ug/ml Leupeptin,20uM pmsf(PH=7.4)
buffer B : 1mMkcl,5mMNacl,3mM Mgcl2,50mM Hepes,1mM DTT,0.5ug/ml Leupeptin,20uM pmsf(PH=7.4) 1mM EGTA
buffer C : 0.5ug/ml Leupeptin,20uM pmsf,50mMTris-cl(PH=7.0),
分离细胞膜蛋白的方法:
1)细胞放在冰上,去除上清,用pH7。4的冷磷酸盐缓冲液洗涤单层细胞两次
2)加入1ml2%TritonX溶液冰浴15min
3)刮下单层细胞,4度下10 000g 5min离心
4)溶液37度水浴 10min以分离水相和去污剂相,然后37度下2 000g离心5min
5)收集水相留作分析
6)用500ul冰冷的buffer C溶解去污剂相沉淀,冰浴2min后加温,在按步骤6再次离心
7)按步骤8再次抽提去污剂相,用buffer C将洗涤后的去污剂相稀释到初始体积
8)用等量的buffer A分别稀释水相与去污相,并进行免疫沉淀实验
试剂:
1)2%tritonX114:2%TritonX114、50mmol/L Tris HCl(pH7。5)、蛋白酶抑制剂
2)缓冲液A(含0。5mol/LNaCl的RIPA buffer)
3)buffer C
10mmol/L Tris HCl(pH7.5)
150mmol/L NaCl
5mmol/L EDTA(PH7.5)
分离细胞膜蛋白的方法:
7M urea
2M thiourea
4%chaps
2.5%sb3-10
1000000个细胞,可用此 buffer 1ml。 冰浴匀浆。冰上置30分钟。
4度高速低温离心30min。
取上清-20保存。
分离组织膜蛋白的方法:
1)取组织,加入10ml Buffer A 于冰上充分匀浆。
2)J6-HC离心机800rpm,4℃离心10min后,所得上清液转入超速离心管。
3)100000g,4℃离心1hr。弃去上清,沉淀用适量的 Buffer B重悬,冰上孵育2hr后分装至EP管, Eppendorf台式离心机10000rpm,4℃离心30min。
4)收集所得上清液即为膜组份。
Buffer A:0.32M 蔗糖,5mM Tris-HCl(PH 7.5),120mM KCl,1mM EDTA,1mM EDTA, 0.2mM PMSF, 1ug/ml Leupeptin, 1ug/ml Pepstatin A, 1ug/ml Aprotinin。冰上预冷。
Buffer B:20mM HEPES(PH 7.5),10%甘油,2% Triton X-100, 1mM EDTA, 1mM EDTA, 0.2mM PMSF, 1ug/ml Leupeptin, 1ug/ml Pepstatin A, 1ug/ml Aprotinin。 冰上预冷。
分离组织膜蛋白的方法:
RIPA
1XPBS
1%NP40
0.5去氧胆酸钠
0.1%SDS
以下用时加入
10mg/ml PMSF异丙醇(终浓度10ul/ml)
Aprotinin(30ul/ml)
1000mM Sodium Orthovandate(10ul/ml)
冰冻组织100mg/细胞1000000个,可用RIPA buffer 1ml。 冰浴匀浆。冰上置30分钟。
4度高速离心30min,20000转低温离心最佳。
取上清-20保存。
分离细菌膜蛋白的方法:
① 于20ml 营养肉汤中过夜培养细菌,37℃,200rpm。
② 10000g、20min、4℃离心,去上清。
③ 20ml预冷的Tris-Mg缓冲液重悬,同样条件离心,再重悬于预冷的Tris-Mg缓冲液。
④ 超声波破碎细菌。
⑤ 3000g,10min、室温下离心去除未破碎细菌。小心吸取上清(含有胞质成分和细菌外被成分)。
⑥ 超速离心I:100,000g,60min,4℃,去除上清(胞质成分),收集细菌外被成分。
⑦ 用10ml含2%的SLS的Tris-Mg 缓冲液重悬沉淀物,室温温育20-30min。
⑧ 超速离心II:70,000g,60min,室温沉淀收集外膜蛋白,去除上清(含细胞质膜)。重复⑦、⑧两步。
⑨ 充分吸除上清,并根据沉淀体积大小用0.1-0.2 ml的ddH2O重悬沉淀物。根据公式:蛋白浓度(mg/ml)=1.450 D280-0.740 D260测定外膜蛋白浓度,调节蛋白浓度至40ug/ul,该蛋白质样品-70℃贮存。
试剂
① Tris-Mg 缓冲液
10mM Tris-Cl
5mM MgCl2
pH 7.3,4℃保存
② 2%(w/v)十二烷基肌氨酸钠 (SLS)
如何进行亚细胞结构的分离?
亚细胞构造的离心分离
一)简介:
用简易的差分离心结合各种型式的密度梯度离心可以分离和纯化各种亚细胞器。研究者也可以根据自己的设备情况对实验 参数作一定的改动,也可以更多地利用速率--区带密度梯度离心或等密度离心来简化实验过程和提高分离纯度。
二)实验:
匀浆制备:
鼠肝12克加入0.25M蔗糖与5mM Tris-HCL (PH7.4)共45ml用"概论"中建议的匀浆设备与方法制备成匀浆待用。
鼠肝匀浆的差分分离程序
该实验流程中
沉Ⅰ:细胞核、质膜大片断,重线粒体,少量未破碎细胞及极少量沉Ⅱ→沉Ⅳ的成份
沉Ⅱ:重线粒体、质膜片断,及少量沉Ⅲ→沉Ⅳ成份。
沉Ⅲ:线粒体、溶酶体,高尔基膜,部分粗内质纲及极少量沉Ⅳ成份
沉Ⅳ:所有的细膜质可溶部份。
离心Ⅰ:低速冷凝冻离心机,50ml管。离Ⅱ,离Ⅲ为高速冷冻离心机8×50ml角转头。
离Ⅳ为超速机或高速机8×50ml角转头。
ii)从沉Ⅱ中纯化线粒体:
匀浆保持在200mM甘露醇,50mM蔗糖,1mM EDTA, 10mM Hepes-Naoh (PH7.4)中,全部操作均应使匀浆在冰溶中,产生沉Ⅱ后去除上清表面以及离心管壁部的脂肪(这一点很重要)
加20ml保持液到沉Ⅱ中稀释到30ml,3000g×10分再次离心并重复以上过程二次以上,最后的沉淀保持在10ML保持液中。
iii)从沉Ⅳ中部份纯化光滑微粒体:
保持液为0.25M蔗糖,5mM Tris-Hcl (PH7.4)沉淀中光滑微粒体成松软状态位于紧密状态的粗糙微粒体沉淀之上。
小心地倒掉上清Ⅳ后,在沉Ⅳ中加入2~3ml保持液,轻摇,大部份光滑微粒体(沉ⅣA)将分散到清液中,而沉Ⅳ(B)(粗糙微粒体,紧密沉淀)仍在沉降中,倒出沉Ⅳ(A),余下的沉Ⅳ B加入2~3ml保持液即完成。
iii)从沉Ⅰ中部份纯化质膜:
保持液用 1mM NaHCO3
鼠肝加25ml保持液在研钵中锺击15次,仍用1mMNaCHO3稀释在100ml,搅拌2分钟并用孔径力75μm的尼龙布过滤。然后离心得到Ⅰ加5ml 1mM NaHCO3到沉Ⅰ中再放入匀浆器,慢速往复2~3次。再用1mM NaHCO3稀释到15ml,用甩平转头10ml玻璃锥形管,1200g离心10分钟,不用制动减速到停车,沉淀很明显由三层组成。轻轻摇动或搅动即可使最上层的线粒体溶入上清液。中间层富含质膜,最下层是细胞核。倒去上清加5ml1mM NaHCO3轻摇使中间层进入溶液,注意要尽可能少地扰动最下层核沉淀。将再次倒出的上清液稀释到15ml并重复以上离心过程即可进一步纯化质膜。
iv)从上Ⅲ中分离粗糙和光滑微粒体:
从已经去掉线粒体的上Ⅲ中可以比从沉Ⅳ中更有效地分离粗糙及光滑微粒体,配置溶液
0.6M蔗糖,5mM Tris-HCL, (PH8.0)
15mM CSCL, 1.3M蔗糖,0.25M蔗糖
用角式转头,10~13ml厚壁PC(聚碳酸脂)离心管,先注入3ml 1.3M蔗糖-5mM Tris-HCL再注入1.5ml 0.6M蔗糖-5mM Tris-HCL从而形成了一个在离心管下部的阶梯形密度梯度。在梯度上部注入上Ⅲ直至充满离心管。100000g×90分钟。离心后得到二个主要部份:在0.6M蔗糖界面处或稍下一点是光滑微粒体,沉淀是粗糙微粒体。
要针筒吸出光滑微粒体。沉淀用三倍空积的5mM Tris-HCL(PH8.0)稀释后再次离心160000g×30分,得到粗糙微粒体沉淀,再用2-3ml的0.25M蔗糖与5mM Tris-HCL(PH8.0)稀释即可。
V)从匀浆中纯化细胞核:
配制溶液:0.25M蔗糖在TKM(0.05M Tris-HCL,PH7.5)中及2.3M蔗糖在TKM中,25mM KCL, 5mM Mgcl2
将鼠肝放在研钵中加0.25M蔗糖-TKM,冲研10~15二次,用纱布过滤后加入二倍容积的2.3M-TKM,这样就使蔗糖的浓度为1.62M(该浓度最好用光折射仪检测确认,20℃时折射率约为1.4115, 5℃时,1.4137)。
将此溶液9ml注入PC离心管,在溶液下属注入3~4ml 2.3M蔗糖-TKM。 130000g×30分,5℃,甩平转头。
离心后倒去上清液即为核沉淀。它可以根据研究者需要用合适的缓冲剂稀释。
vi)从沉Ⅰ中纯化细胞核:
取沉Ⅰ,用旋涡混合器分散沉淀并加入等睇容积的60%(W/W)蔗糖--TKM,放入匀浆器上下抽动2~3次,继续加入60%(W/W)蔗糖-TKM直至蔗糖浓度达到56%(W/W),用折射仪检测(5℃折射率1.4356,20℃时,1.4328)。取该溶液9ml移入14ml聚碳酸脂(PC)离心管管下部铺3~4ml60%(W/W)蔗糖液,在甩平转头中120000g 5℃离心30分钟,倒去上清液。余下的核沉淀可用合适的缓冲液稀释。为了消除沉淀中的膜,在制备匀浆时可用0.5% Triton x-100清洗。这种做法既消除了膜,又不影响核的结构。
vii)从沉Ⅰ中纯化质膜
配制溶液:60%(W/W)蔗糖液,37.2%(w/w)蔗糖液均分别加在5mM Tris-HCL(PH8.0)中将已制备好的沉Ⅰ乘余的缓冲液一起用温旋混合器混合后再加入60%(W/W)蔗糖使蔗糖终浓度为48%,并用折射仪检测(5℃,1.4181; 20℃, 1.4158)。取以上溶液6ml注入14ml PC离心管,上铺6ml 37.2%w/w蔗糖液以1m PH7.4缓冲液。在甩平转头中160000g, 5℃,离心3小时。
质膜聚集在37.2%w/w蔗糖液的上部,用注射器吸出,并用三倍容积的5mM Tris-HCL(PH8.0)稀释后再在100000g, 5℃离心40分钟,沉淀即为质膜。
viii)从沉淀Ⅰ中纯化重体粒体
配制溶液:0.25M蔗糖,10mM Hepes-NaOH(PH7.5), 1mM EDTA, 1mM Mgcl2,2.4M蔗糖,将沉Ⅰ用0.25M蔗糖,10mM Hepes-Naoh (PH7.5),1mM Mgcl2稀释到15ml。要尽可能避免动及沉淀最底部的红色部份。将已稀释部份倒出,混匀后加入23ml 2.4M蔗糖,10mMHepes-Na(OH)(PH7.5),1mM Mgcl2。所得到的最终蔗糖浓度力1.0M 。
用光折射仪测定(5℃,1.3827;20℃,1.3812)如需要,进行调节,将此液体倒入一个50ml PC管,上铺8ml 0.25M蔗糖,10mM Hepes-Naoh(PH7.5)在35000g, 5℃离心10分钟,倒去上清液重擦净沾在离心管壁上的物质。沉淀很清楚有二层,须离心管内壁加入10ml 0.25M蔗糖10mM Hepes-Naoh (PH7.5), 1mM EDTA,轻轻晃动并稀释沉淀的上部褐色重线粒体层。
对于其他组织材料的线粒体纯化问题,请参照"Methods in Enzymology)第55卷。
Ⅸ)从沉Ⅲ中纯化溶酶体及粒体:
配制溶液:0.3M,1.1M,2.1M蔗糖分别溶入1mM EDTA与5mM Tris-HCL (PH7.0)在14mlPC管中制备好二个10ml,1.1M,2.1M蔗糖的线性梯度可以用梯度形成仪做成,也可以用不连续梯度(1.1M,1.4M,1.7M,2.1M,每种2.5ml)在5℃静量12~16小时也会形成连续的1.1~2.1M近线性梯度。
在沉Ⅲ中加入10ml,0.3M蔗糖液,轻摇,慢慢地可以看到离心管底部沉积了暗褐色的沉淀(溶酶体)倒去上清,加入4ml 0.3M蔗糖液在匀浆器中磨匀(注意:活塞与器壁要松一些)。取2ml以上匀浆置于线性梯度(1.1M~2.1M蔗糖)之上,轻搅匀浆使其与梯度液之间的界面尽可能减少密度的不连续,在甩平转头中95000g,5℃孙心4小时。
离心后,溶酶体区带形成于1.20~1.26 g/cm3密度之间(在离心管下部)而线粒体则形成于1.17~1.21g/cm3密度之间(在离心管中部。溶酶体区带中密度较高的部份相对较纯。
用光折射仪测定(5℃,1.3827;20℃ 1.3812)如需要进行调节,将此液体例入一个50ml PC管,上铺8ml 0.25M蔗糖,10mM Hepes-NaOH(PH7.5)在35000g,5℃离心10分钟,倒去上清液重擦净沾在离心管壁上的物质。沉淀很清楚有二层,顺离心管内壁加入10ml 0.25M蔗糖10mM Hepes-NaOH (PH7.5) 1mM EDTA,轻轻晃动并稀释沉淀的上部褐色重线粒体层。
对于其他组织材料的线粒体纯化问题,请参照"Methods in Enzymology)第55卷。
Ⅸ)从沉Ⅲ中纯化溶酶体及线粒体:
配制溶液:0.3M,1.1M,2.1M蔗糖分别溶入1Mm edta与5mM Tris-HCL(PH7.0)
在14ml PC管中制备好二个10ml, 1.1M,2.1M蔗糖的线性梯度可以用梯度形成仪做成,也可以用不连续梯度(1.1M,1.4M,1.7M,2.1M,每种2.5ml)在5℃静置12~16小时也会形成连续的1.1~2.1M近线性梯度。
在沉Ⅲ中加入10ml,0.3M蔗糖液,轻摇,慢慢地可以看到离心管底部沉积了暗褐色的沉淀(溶酶体)倒去上清,加入4ml 0.3M蔗糖液在匀浆器中磨匀(注意:活塞与器壁要松一些)。取2ml以上匀浆置于线性梯度(1.1M~2.1M蔗糖)之上,轻搅匀浆使其与梯度液之间的界面尽可能减少密度的不连续,在甩平转头中95000g,5℃离心4小时。
离心后,溶酶体区带形成于1.20~1.26 g/cm3密度之间(在离心管下部)而线粒体则形成于1.17~1.21g/cm3密度之间(在离心管中部。溶酶体区带中密度较高的部份相对较纯。
Ⅹ)从沉Ⅱ及沉Ⅲ中纯化高尔基膜:
配置梯度溶液:38.79,36%,33%,29%(w/w)蔗糖液每种均加入5mM Tris-HCL(PH8.0)
用上清Ⅰ离心,10000g,5℃ 20分钟待到沉Ⅱ+沉Ⅲ
用5ml 0.25M蔗糖,5mM Tris-HCL(PH8.0)稀释沉淀,恒湿搅拌并使溶液的蔗糖浓度上升到43.07%(w/w),用光折射仪检测(5℃,1.1979;20℃,1.1957)
在PC离心管中(13ml)由下往上依次铺设如下层次:
3ml样品(蔗糖浓度43%w/w),4ml 38.7%蔗糖液,2ml 36%蔗糖液,2ml 37%蔗糖液,2ml,29%蔗糖液。在甩平转头中160000g,5℃离心1小时,用注射器收集含有高尔基膜的上部二个区带。
我们也可以用这个方法从全匀浆中来分离纯化高尔基膜,匀浆中蔗糖浓度配到43.7%,然后用以上不连续梯度来分离纯化,但是大于大容量匀浆,直接法是不合适的。
小结:以上典型实验(1)鼠肝匀浆为原料,以差分离心为主,辅以蔗糖的连续或不连续梯度分离各种亚细胞器,方法简单易行,或本也较低。我们也可以用Ficoll,percoll, Metrizamide,Nycodenz,……等等梯度材料来分离纯化亚细胞器。
参考文献:
(i)J. Graham "I solation of subcellular organelles and Membranes" IRL press. 1984
(ii)W.H.Evans "I solation and characterizationof membranes and cell organelles"Oxford University press.
(iii)G.J.Wagner Methods Enzymol, 148,55,1987
(iv)Rickwood. D等Anal, Biochem, 187,318,1990
(v)余兴明"离心技术"设备与方法1993
8. 拟安装生产纯净水的设备,寻求反渗透膜的技术参数及纯净水如何检测(非检测标准,想知道哪里可以检测)
每个地方的卫生部门都可以检测。比如卫生局等。
RO膜的技术参数可参考这里:
1.什么是反渗透?
反渗透是60年代发展起来的一项新的膜分离技术,是依靠反渗透膜在压力下使溶液中的溶剂与溶质进行分离的过程.反渗透的英文全名是“REVERSE OSMOSIS”,缩写为“RO”.
2.反渗透的原理:
首先要了解“渗透”的概念.渗透是一种物理现象.当两种含有不同盐类的水,如用一张半渗透性的薄膜分开就会发现,含盐量少的一边的水分会透过膜渗到含盐量高的水中,而所含的盐分并不渗透,这样,逐渐把两边的含盐浓度融合到均等为止.然而,要完成这一过程需要很长时间,这一过程也称为渗透压力.但如果在含盐量高的水侧,试加一个压力,其结果也可以使上述渗透停止,这时的压力称为渗透压力.如果压力再加大,可以使方向相反方向渗透,而盐分剩下.因此,反渗透除盐原理,就是在有盐分的水中(如原水),施以比自然渗透压力更大的压力,使渗透向相反方向进行,把原水中的水分子压力到膜的另一边,变成洁净的水,从而达到除去水中杂质、盐分的目的.
3.RO反渗透的由来:
1950年美国科学家DR.S.Sourirajan有一回无意发现海鸥在海上飞行时从海面啜起一大口海水,隔了几秒后,吐出一小口的海水,而产生疑问,因为陆地上由肺呼吸的动物是绝对无法饮用高盐份的海水的.经过解剖发现海鸥体内有一层薄膜,该薄膜非常精密,海水经由海鸥吸入体内后加压,再经由压力作用将水分子贯穿渗透过薄膜转化为淡水,而含有杂质及高浓缩盐份的海水则吐出嘴外,此即往后反渗透法的基本理论架构;并在1953年由University of Florida应用于海水淡化去除盐份设备,在1960年经美国联邦政府专案支助美国U.C.L.A大学医学院教授Dr.S.Sidney Lode配合DR.S.Soirirajan博士着手研究反渗透膜,一年约投入四亿美元经费研究,以运用于太空人使用,使太空船不用运载大量的饮用水升空,直到1960年投入研究工作的学者、专家越来越多,使之质与量更加精进,从而解决了人类钦用水中的难题.
4.RO反渗透纯净水机的工作原理:
它是将原水经过精细过滤器、颗粒活性碳过滤器、压缩活性碳过滤器等,再通过泵加压,利用孔径为1/10000μm(相当于大肠杆菌大小的1/6000,病毒的1/300)的反渗透膜(RO膜),使较高浓度的水变为低浓度水,同时将工业污染物、重金属、细菌、病毒等大量混入水中的杂质全部隔离,从而达到饮用规定的理化指标及卫生标准,产出至清至纯的水,是人体及时补充优质水份的最佳选择.由于RO反渗透技术生产的水纯净度是目前人类掌握的一切制水技术中最高的,洁净度几乎达到100%,所以人们称这种产水机器为反渗透纯净水机.
参考资料:饮水知识
9. 给细菌染色的方法都有几种,怎么操作,都用复红染色吗麻烦一一讲来,详细点,本人初学者.
细菌染色分为活菌染色跟死菌染色两种。其中死菌染色分为正染色跟负染色。正染色又包括普通染色与特殊染色两种。普通染色有简单染色法、革兰氏染色法和抗酸染色法;特殊染色分为芽孢染色法、荚膜染色法和细胞壁染色法。一般都只用革兰氏染色法跟抗酸染色法。
革兰氏染色法(Gram's stain)是最常用的细菌染色法。细菌经结晶紫初染染成蓝色。革兰氏染色阳性菌(G+)细胞壁肽聚糖层数多,且肽聚糖为空间网状结构,再经乙醇脱水,网状结构更为致密,染料复合物不易从细胞内漏出,仍为蓝色。而革兰氏染色阴性菌(G-)细胞壁脂类含量多,肽聚糖层数少,且肽聚糖为平面片层结构,易被乙醇溶解,使细胞壁通透性增高,结合的染料复合物容易泄漏,细菌被脱色为无色,再经石炭酸复红稀释液复染成红色。
①将结晶紫染液加于涂膜上,染色(初染)1min。②水洗后加芦戈氏碘液处理(媒染)1min。③水洗后用95%酒精脱色,脱色时频频摇动玻片,直至流下的液体无色为止(约需0.5min)。④水洗后加石炭酸复红稀释液染色(复染)0.5min。⑤水洗,用滤纸轻轻吸干,待标本充分干燥后进行镜检。染色过程中,水洗要用自来水的细流徐徐冲洗,冲洗涂膜的背面,勿使强水流直接冲到涂膜上。
抗酸染色法(acid-fast stain)对分枝杆菌属等一般染色法不易着色的抗酸性细菌染色。要注意:1)涂片要略厚;2)加温染色或延长染色时间,加温时随时补加染色液;3)分枝杆菌呈红色(+),其他细菌和背景为蓝色。
①石碳酸复红加温染色8~10分钟。②3%的盐酸酒精脱色约1~2分钟,脱色是轻摇玻片,直到涂片颜色脱去为止。③水洗后,用碱性美蓝复染1分钟。④再次水洗,印干。
芽孢染色法是专门给细菌芽孢染色的。要注意:1)芽孢染色用的菌种应控制菌龄,使大部分芽孢仍保留在菌体上为宜;2)染色加热过程要及时补充染液,切勿让涂片干涸。
①孔雀绿加热染色5分钟。②水洗。③番红染色2~3分钟。④水洗,干燥。
荚膜染色法是专门给与染料亲和性弱的细菌荚膜染色。由于荚膜很薄,且含水量高(90%以上),易变形,所以制片和染色时一般不用热固定。这个包括黑素负染色法、Leifson染色法跟Tyler染色法。
黑素负染色法:
1.制菌液:在洁净载破片一端加一滴蒸馏水,按无菌操作要求,用接种环取少量斜面试管培养物于蒸馏水中,轻轻混匀。
2.涂片(推片法):取另一块边缘光滑的载玻片,使之一端与菌液接触,然后迅速均匀地将菌液推向玻片的另一端,使菌液涂成一薄层。置空气中自然干燥。注意:勿热固定。
3.复红染色:滴加石炭酸复红染色液覆盖涂布面,染色4~5分钟后,除去多余染液(勿用水洗)。干燥时间不要太长,防荚膜脱水。
4.黑素染色:在玻片一端加一滴1%黑素液,再取一块边缘光滑的裁玻片,当边缘与黑素液接触后,迅速均匀地推向玻片另一端,使成一薄层。置空气中自然干燥。
5. 镜检(油镜):菌体呈红色,背景呈黑色,荚膜无色。
注意事项:滴黑色素要量少;取菌要适量。
Leifson染色法
1.制备涂片同前,自然干燥。
2.滴加Leifson’s染色液覆盖涂布面,染色10分钟,倾去多余染料(勿用水洗)。
3.滴加硼酸钠美蓝染色液,染色5分钟,轻轻用水冲洗,置空气中自然干燥。
4.油镜下镜检,菌体呈蓝色,荚膜呈红色。
Tyler染色法
1.制备涂片同前,自然干燥。
2.滴加结晶紫冰醋酸染色液覆盖涂布面,染色5~7分钟。倾去多余染料(勿用水洗)。
3.用20%CuS04水溶液轻轻冲去染料,用吸水纸印干后,置空气中自然干燥。
4.油镜下检查,菌体呈紫色,荚膜呈浅紫色或浅蓝色。
细胞壁染色法是观察细菌细胞壁时采用的染色法。细菌细胞壁很薄,它与染料结合的能力差,不易着色,在细菌的染色过程中,一般情况染料都是通过细胞壁的渗透、扩散等作用而进入细胞,细胞壁本身并未染色,因此,欲通过染色来观察细胞壁,必须设法使细胞壁能着色,而细胞质则不易着色,常用的方法有单宁酸法和磷钼酸法。单宁酸和磷钼酸都是起媒染作用,它们使细胞壁形成可着色的复合物,而使细胞质不易被着色,经结晶紫或甲基绿染色后,便可在普通光学显微镜下观察到细胞壁。
根据细菌细胞在高渗溶液中或用乙醚蒸气处理后,会产生质壁分离这一现象,经染色后也可在普通光学显微镜下区分细胞壁和细胞质膜。
1.单宁酸法
(1)将培养16—18小时的巨大芽孢杆菌按常法制成涂片。
(2)用5%单宁酸染5分钟后,水洗。
(3)用0.2%结晶紫染3—5分钟,水洗,吹干。用油镜观察,细胞壁呈紫色,细胞质呈淡紫色。
2.磷钼酸法
(1)制备浓厚的涂片,在未干时浸入1%磷钼酸水溶液3—5分钟。
(2)用1%甲基绿水溶液染3—5分钟。
(3)水洗后,吹干,用油镜观察。细胞壁为绿色,细胞质无色。
3.区分细胞壁与细胞质膜
(1)乙醚蒸气法
(a)将巨大芽孢杆菌涂布于盖玻片上,翻转盖玻片使其放在乙醚蒸气瓶的瓶口上蒸3分钟。
(b)取下盖玻片置Bouin氏固定液中30分钟后取出,水洗。
(c)用硫堇染色30秒钟。
(d)水洗,水封,置油镜下观察。
(2)NaCl法
(a)取一滴25%NaCl溶液于洁净的载玻片上。
(b)挑一小环培养6小时的枯草芽孢杆菌,在25%NaCl水滴中涂布均匀,待自然干燥。
(c)滴加0.01%结晶紫于其上,使盖满有菌部分,30秒钟后水洗,干燥,用油镜观察结果。
10. NPN法测细菌外膜渗透性中non溶于乙醇吗
10 uM NPN CK、革兰氏阴性菌CK、buffer、buffer+NPN荧光值都很低,革兰氏阴性菌+NPN、药物+NPN+革兰氏阴性菌荧光值差不多一样高,而革兰氏阳性菌+NPN荧光值也很低,不知道是什么原因了,难道终浓度1%乙醇对革兰氏阴性菌有杀菌、抑菌作用?有报道说5%乙醇能杀菌,谢谢啦