导航:首页 > 解决方法 > 丝蛋白的检测方法

丝蛋白的检测方法

发布时间:2022-04-27 04:42:34

Ⅰ 丝蛋白的浓度为15%,取5ml,其丝蛋白质量是多少

丝蛋白的浓度为15%,就是说在100ml的溶液中,有15克丝蛋白。
取其中的5ml,就是100ml的5%。用15乘以5,再除以100就行了。
15×5/100=0.75
5ml中的丝蛋白质量是0.75克。

Ⅱ 1.最坚韧的纤维状蛋白是什么 2.第一个被析出的晶体结构的蛋白质是 3.目前测定蛋白质分子量最精确的方法

1. 个人认为蜘蛛丝蛋白
2. 应该是肌红蛋白 (X射线探知抹香鲸肌红蛋白的三维晶体结构). 而很多网友说的牛胰岛素蛋白结晶是最早可以人工合成的蛋白....汗啊
3. 电喷雾离子化质谱技术 ESI-MS
还算是最精准的方法,不过现在一直在搞新的。。谁知道最先进的啊。。很多新方法还未发表

Ⅲ 蚕丝蛋白水解液怎样制备越详细越好,非常谢谢!

1 材料和方法
1.1 实验材料
1.1.1 原辅材料
蚕丝、葛根、枳枸子、乌梅均购于徐州市场。蔗糖、中性蛋白酶(130000 u/g)、胰蛋白酶(4000 u/g)由实验室提供,木瓜蛋白酶(650000 u/g)由广西海发生物酶制品厂提供。
1.1.2 主要试剂
甲醛试剂、浓硫酸、浓盐酸、氢氧化钠、无水硫酸钠、无水氯化钙、氯水、邻二甲酸氢钾、甲基红、硫酸铜、硼酸、牛肉膏、蛋白胨、琼脂、食盐、731及723阴阳离子交换树脂和混合提示剂:1体积的亚甲基蓝和 2体积的甲基红指示剂的混合物。
1.1.3 主要设备
电热恒温干燥箱、电热恒温培养箱、多功能粉碎机、低速大量离心机、架盘天平、磁力搅拌器、精密pH计、电子天平、数显恒温水浴锅、手提式压力蒸汽灭菌锅、电磁炉。
1.2 实验方法
1.2.1 工艺流程
(1)采用酸解液调配饮料的工艺流程
蚕丝脱胶→酸解→阳离子交换树脂脱酸→丝素氨基酸
中草药→清洗→浸提→粗滤→离心 调配→
香精、VC、蔗糖等
灌装→封口→杀菌→冷却→感官鉴评及卫生检测→成品
(2)采用酶解液调配饮料的工艺流程
蚕丝脱胶→CaCl2溶解丝素→酶解→灭酶→去CaCl2→丝素氨基酸
中草药→清洗→浸提→粗滤→离心→调配→灌装
香精、VC、蔗糖等
→封口→杀菌→冷却→感官鉴评及卫生检测→成品
1.2.2 蚕丝脱胶的方法
将洗净烘干后的蚕丝在Na2CO3溶液(0.4%,0.5%,0.6%)煮沸处理(20min,30min,40min),确定最佳脱胶条件。
1.2.3 丝素酸解的方法
将脱胶后的丝素烘干做单因素实验。先选酸度为3M,固液比1∶50,111℃下酸解15h,测定每小时的氨基酸含量,可得到酸解时间的适宜范围;再选定固液比1∶50,酸解时间在以上确定范围内,110℃下采取1.0M、1.5M、2.0M、2.5M、3.0M、3.5M、4.0M、4.5M、5.0M等不同浓度酸解,可选出适宜的酸浓度范围;最后选定酸浓度与时间在适宜范围内,通过选定不同固液比1∶20、1∶30、1∶40、1∶50、1∶60、1∶70、1∶80,确定最适宜固液比范围。将得到的酸浓度、固液比、酸解时间分别在适范围内选3个水平做3因素3水平的正交实验,由此来找出最佳酸解条件。
1.2.4 丝素在CaCl2中的溶解
配制不同浓度(30%、35%、40%、45%、50%、55%、60%、65%、)的CaCl2溶液,测定丝素在其中的溶解效果,找出溶解丝素的CaCl2最佳浓度。
1.2.5 酶解工艺的研究方法 (1)最佳水解酶选择。使蚕丝蛋白液在3种蛋白酶的最适加酶量、酶解温度、酶解pH值及相同酶解时间下进行酶解,比较3种酶的酶解效果,根据氨基酸得率选出水解效果最好的酶。(2)酶解条件确定。根据以上实验所确定的最佳丝素蛋白酶,分别对底物浓度,pH值、温度确定3个水平做正交实验,以此来确定酶解最佳条件。底物浓度分别为4%、5%、6%,pH值分别为5.0,5.5、6.0,酶解温度分别为50℃、55℃、60℃。
1.2.6 酸解液脱酸
采用732型强酸型阳离子交换树脂对酸解液进行脱酸,待流出液使茚三酮呈紫色反应时,停止上柱,用去离子水洗涤离子交换柱,至流出液近中性,再用0.5M氨水洗脱氨基酸,至不使茚三酮显紫色为止。
1.2.7 中草药汁的提取
将洗净的中草药与纯净水按1∶10的比例在90℃水浴锅中浸提1h,得到虑液,再在残渣中加入8倍量的纯净水于90℃水浴中浸提0.5h,把滤液与残渣液合并后经低速大容量离心机离心后备用。
1.2.8 饮料的调配
设计1个3因素3水平的正交试验来选择饮料的配方。为了对饮料进行评分,需按制品的色泽、香气、滋味和组织状态确定一个评分标准。
1.2.9 饮料杀菌及卫生检测
饮料杀菌:将成品分别在90℃下杀菌15min、20min、25min,然后置于37℃恒温水浴培养箱中观察其稳定性,选择最佳杀菌时间。细菌总数的测定采用平板菌落计数法。
1.3 检测项目及方法
蚕丝中粗蛋白的测定用微量凯氏定氮法。氨基氮含量的测定用甲醛电位法。
1.3.1 丝素酶解液脱酸效果的检验
采用732型强酸型阳离子交换树脂,放入高40cm,Φ15的树脂柱中,待流出液使茚三酮呈紫色,说明树脂已饱和,氨基酸液流出,此时停止上柱,用去离子水洗涤离子交换柱,至流出液近中性,再用0.5M氨水洗脱氨基酸,至不使茚三酮呈色反应,说明氨基酸已脱尽。
1.3.2 阴阳离子交换树脂去离子效果的检测
将用CaCl2溶液溶解后的丝素蛋白液选经过柱高40cm,Φ15的阳离子交换树脂柱去Ca2+,用NaOH溶液检测流出液中有无Ca2+,当无白色沉淀出现时,再经过柱高40cm,Φ15的阴离子交换树脂去除Cl-,用AgNO3检测流出液中有无Cl-,当无白色沉淀出现时停止上柱。
2 结果与讨论
2.1 蚕丝脱胶条件的确定
蚕丝中次要成分主要分布在丝胶蛋白中,为保证丝素氨基酸的质量,必须进行脱胶。丝素不溶于水,而丝胶是水溶性的。尽管丝胶有亲水性,但要在水介质中将它与丝素分离开来需很长时间,且要高温处理,为此采用Na2CO3作分离介质。其中丝胶蛋白脱去率(%)=丝胶液中蛋白质含量(g)×100%丝胶蛋白总量(g)。试验结果如表1。
表1 Na2CO3解脱丝素蛋白正交实验设计方案及结果
处理 时间(min) 浓度(%) 丝胶脱去率(%)
1 1(20) 1(0.4) 48.5
2 1 2(0.5) 35.7
3 1 3(0.6) 59.8
4 2(30) 1 60.3
5 2 2 100
6 2 3 100
7 3(40) 1 73.9
8 3 2 100
9 3 3 100
由表1可以看出,在0.5%NaCO3溶液中中煮沸30min脱胶效好最好。在煮沸时为防止水分蒸分,影响NaCO3浓度,需在容器上加盖子。蚕丝脱胶后即为丝素蛋白,丝胶蛋白存在于水介质中。
2.2 酸解单因子实验
用1g丝素在3M H2SO4,固液比1∶60,110℃下水解。从实验中发现丝素在H2SO4中3h才能完全溶解。测定4~15h的水解情况可知,氨基酸在8~10h含量较高,10h后变化很小,甚至开始减小。
用丝素在固液比1∶60,110℃下酸解8h,比较不同H2SO4浓度与氨基氮含量的关系,结果酸解浓度太低或太高都会影响氨基酸含量,控制在3M~4M较好。
用丝素在3M H2SO4,110℃下酸解8h,测固液比对酸解的影响,由于丝素至少1∶20的固液比才能浸泡,以此为最小固液比。结果固液比在1∶50~1∶70时水解效果最好。
2.3 酸解正交试验
从酸解单因素实验中得知影响酸解的因素主要是酸浓度、固液比、时间,由此选定各因素的3个水平,实验结果如表2。
表2 酸解正交试验结果与分析
所在列 A B C
因素 时间(h) 酸渡度(M) 固液化 氨基酸得率(%)
实验1 1(8) 1(3) 1(1∶50) 69.1
实验2 2(9) 2(3.5) 2(1∶60) 73.2
实验3 3(10) 3(4) 3(1∶70) 71.9
实验4 2 1 2 87.2
实验5 2 2 3 89.1
实验6 2 3 1 86.5
实验7 3 1 3 78.4
实验8 3 2 1 80.3
实验9 3 3 2 79.6
均值1 71.400 78.233 78.633
均值2 87.600 80.867 80.000
均值3 79.433 79.333 79.800
极差 16.200 2.634 1.367
由表2得酸解得率最高组合为A2B2C3,但从表4中得理想组合为A2B2C2,所以再做A2B2C2对照,结果测得丝素氨基酸得率为89.8%,比A2B2C3稍好,所以确定酸解最佳条件为酸浓度为3.5M,固液比1∶60,110℃下酸解9h。
2.4 CaCl2溶解丝素结果
丝素在CaCl2溶液中的溶解特性较为特别,浓度低于35%或高55%时几乎不溶解,如表3,以40%为最佳。
表3 CaCl2浓度与丝素溶解关系
1 2 3 4 5 6 7 8
CaCl2浓度 30% 35% 40% 45% 50% 55% 60% 65%
丝素溶解度 0 14.5% 100% 32.5% 15.5% 0 0 0
2.5 最佳水解酶确定
木瓜蛋白酶pH控制在6.0,温度为50℃,E/S=10%,底物浓度即丝素蛋白浓度为4%,进行酶 解。实验表明:前1h酶解速度增加很快,3h达到0.07mg/ml,以后增加缓慢。胰蛋白酶在pH8.0,温度40℃,E/S=2%,丝素蛋白浓度为4%下进行酶解。7h达到最大值0.053mg/ml。中性蛋白酶在pH7.0,温度50℃,E/S=2%,丝素蛋白浓度为4%下酶解,3h达到0.065mg/ml。由此可知,木瓜蛋白酶水解效果最好。
2.6 木瓜蛋白酶水解丝素蛋白正交实验
做正交试验确定木瓜蛋白酶水解丝素蛋白的最佳条件组合。木瓜蛋白酶最佳酶解条件为pH5.5,温度55℃,底物浓度为5%,加酶量为10%。最终1.001g丝素蛋白可得0.184g氨基酸。从丝素的酸解、酶解比较得出,酸解明显比酶解好。
2.7 饮料调配
饮料的制作应注意风味的调整,影响本饮品风味的主要因素为氨基酸浓度、中草药浓度、糖浓度,因此设计1个3因素3水平的正交试验来优选饮料的配方。如表4。
表4 饮料调配结果与分析
所在列 A B C
因素 氨基酸 中草药 糖浓度(%) 实验结果
浓度(%) 浓度(%)
实验1 1(0.3) 1(2) 1(8) 7.8
实验2 1 2(3) 2(9) 7.4
实验3 1 3(4) 3(10) 7.2
实验4 2(0.4) 1 2 9
实验5 2 2 3 8.5
实验6 2 3 1 8
实验7 3(0.5) 1 3 7.6
实验8 3 2 1 7
实验9 3 3 2 7.5
均值1 7.467 8.133 7.600
均值2 8.500 7.633 7.967
均值3 7.367 7.567 7.767
极差 1.133 0.566 0.367
由表4可得饮品的最佳调配配方:氨基酸浓度为0.4%,中草药汁浓度为2%,糖浓度为9%,再加少量水蜜桃香精及VC即得成品。
2.8 饮品的贮藏稳定性试验
本试验在装罐前、后都进行杀菌,且对中草药汁进行离心,故得到的饮品澄清透明。在装罐后通过不同杀菌时间,观察其稳定性。分别在90℃条件下杀菌15min、20min、25min,冷却后置于37℃恒温培养箱内观察。9d后均无变化,仍是澄清透明的黄褐色溶液。
为了确定最佳杀菌时间,将保藏9d后的成品做细菌检测实验,结果是90℃杀菌25min细菌总数为56个/ml,满足国标要求。
3 产品质量标准
3.1 感官指标
色泽:黄褐色,均匀一致。风味:酸甜可口,有轻微的丝素氨基酸和中草药的苦涩味,无异味。组织形状:汁液透明,无杂质,久置后也无沉淀出现。
3.2 理化指标
酸度:pH3.5~4.0,总菌数≤100个/ml,大肠菌数≤3个/ml,致病菌不得检出。
4 结论
丝素酸解比酶解的氨基酸得率高,酸解得率达89.1%,而酶解只有18.1%。由于酸解比酶解操作简便且水解液色泽、气味均较好,所以在制作饮料时采用酸解液。确定的最佳脱胶条件为0.5%的Na2CO3煮沸处理30min,在此条件下丝胶全部脱除且丝素没有损失。脱胶后丝素经洗涤烘干处理后进行酸解,得到酸解最佳工艺条件为3.5MH2SO4,固液比1∶60,110℃下水解9h,氨基酸得率高达89.8%。将阳离子交换树脂脱酸的氨基酸溶液与中草药进行调配,得到饮料的最佳调配方案为丝素氨基酸浓度0.4%,中草药浓度2%,糖浓度9%,VC浓度0.2%。由此制得澄清透澈、酸甜可口的黄褐色饮品。

Ⅳ 丝蛋白是什么

是丝肽吧,据说含有多种氨基酸,是最接近人类皮肤的,所以亲和力最强

可以修复真皮层,所以对祛皱有奇效

Ⅳ 相宜本草丝蛋白莹润精华霜如何辨别真假

你好 相宜对于部分产品设置了8-10位条形防伪码,对于暂时还没有进行防伪码打印或在防伪码查询网址查不到的产品,只要通过正规渠道购买的肯定是正品,比如官方网站(http://shop.inoherb.com) 或淘宝授权网店(官方授权网店查询网址:http://www.inoherb.com/about/storeNet.aspx)及家乐福、沃尔玛、大润发、欧尚、乐购、屈臣氏等全国大型连锁超市,或可拨打公司服务热线400-889-0208 (周一-周五 8:30-17:30)进行查询,感谢您对相宜本草的支持!

Ⅵ 丝素蛋白的基本功效

蚕丝是天然的蛋白质纤维,其中含有70%左右的丝素,而丝素中蛋白质丰富,含有18种氨基酸.其中亮氨酸可加速细胞的新陈代谢,丝氨酸、苏氨酸可延缓皮肤老化,色氨酸、酪氨酸能吸收紫外线,因此将丝素蛋白的各种优异功能转移到与人类朝夕相处的服用纤维中,对人类皮肤进行呵护,使人类拥有健康的皮肤.符合新世纪人类的绿色消费观念。
同时,在各种服用纤维中加入丝蛋白.可以改善纤维的各种性能,如可一定程度的提高吸湿性.增进染色性和抗静电性,有利于穿着舒适性。
● 丝素蛋白在棉织物防皱整理中的应用随着国内外绿色环保意识的不断增强,无甲醛防皱整理已成为必然发展趋势。已开发的无甲醛整理剂如环氧树脂、双羟乙基砜、多元羧酸以及水溶性聚氨酯等,在应用中取得了一定的成效.但都存在一定的缺点。要选用一种具有防皱性强,强力损伤小,不泛黄.低毒,价廉等综合性能好的防皱整理剂还比较困难。
● 丝素蛋白在毛织物中的应用
把丝素涂层在羊毛纤维表面可形成双组分纤维,产生一种既具有丝织物的手感又具有羊毛纤维天然特性的织物.被溶的蛋白质被涂层在用多官能团的树脂预处理过的羊毛织物表面,再通过使用实验室的轧染机在纤维表面形成丝蛋白的均匀涂层。所有处理后的织物样品同未被处理的织物样品相比,都有柔软感和毛茸感.特别是毛/丝织物。
用浓度为0.5%的丝素丝胶水溶液对有一定染色牢度的实验羊毛白布以1:20的加工浴比,在不同温度下进行一个小时的处理.然后在40cC的流水中洗15分钟,而后自然风干。染色性良好,在纤维鉴别染色上显示出接近丝绸的色相,使用SEM观察,羊毛鳞片表面和羊毛鳞片间有被丝胶和丝素附着的现象,摩擦系数变小,触感有滑爽感、身骨感和厚实感。
将羊毛的机织织物先进行阴离子化预处理,然后浸渍在溶有阳离子树脂的丝素水溶液中,该树脂通过与羊毛的离子键结合使丝素微粒固定在羊毛纤维上。
经过修饰的羊毛纤维表面均匀而牢固的附着上了丝素微粒,使羊毛织物具有丝绸的质感和光泽,并且改善了耐用性:由于丝素附着均匀,织物无染色瑕疵;丝素牢固的吸附在纤维上,重复洗涤不会脱落.耐洗性良好。 蚕丝的美容功效,早在唐代孙思邈《千金要方》、宋代王怀隐《太平圣惠方》、明代李时珍《本草纲目》等医籍中均有记载。由于蚕丝的天然亲肤力十分明显,所以在古代美容术中,早已被广泛应用。受当时技术条件限制,古代是将蚕丝研成细末,调涂于面,令肌肤润泽而白净。
现代研究证实,蚕丝的养颜美肤功能,主要与蚕丝中所含的丝素蛋白有关。丝素蛋白含有18种氨基酸和多种微量元素,与人体皮肤有较强的亲和力,很容易被人体肌肤吸收。现代生化技术和纳米技术的诞生,进一步提高了肌肤对丝素蛋白及其他微量元素的吸收。
据资料显示,韩国女明星容貌之所以如此白皙粉嫩,光滑透亮,缘于丝素蛋白显着的美容功
能增加皮肤角质层的含水量,促进胶原蛋白合成,增强皮肤的张力和弹性,促进色素分解,均匀肤色。经常使用丝素蛋白美容护肤品,可以使皮肤白净、滋润、光泽、富有弹性,对灰黄、黯哑、干纹、松弛的问题皮肤能明显改善。
蚕丝作为一种天然护肤品,由于其功效明显,安全无副作用,因此在美容护肤领域中,拥有巨大的优势与发展空间。 丝素是一种源于蚕丝的天然高分子蛋白质,其含量占蚕丝的70%~80%,含有18种氨基酸,其中的11种为人体必需氨基酸;另一方面,丝素蛋白对人体无毒害作用,安全可靠,具有良好的生物相容性,适于开发成功能性材料 [1] 。因此,随着对其独特氨基酸组成及结晶结构等理化特性研究的深入,国内外对丝素的应用正从传统的纺织领域积极向多领域探索,丝素蛋白在生物医学材料领域的应用也日趋广泛和深入。
1 丝素蛋白在固定化酶和抗体方面的研究与应用
丝素作为固定化载体材料的研究早在上个世纪八十年代就有报道。从最早采用丝素蛋白材料固定葡萄糖氧化酶开始,丝素蛋白材料已被研究用于固定多种酶和抗体。
黄晨等 曾研究过丝素膜固定青霉素酰化酶。他们以丝素蛋白膜和Sephsrose CL4B(交联琼脂糖)为载体固定青霉素酰化酶(PA),详细研究了固定化前后酶性质的变化。结果表明与自由酶相比,固定化酶的热稳定性及pH值稳定性有很大的提高,此外研究发现用丝素蛋白膜为载体比用sepharose为载体制备的固定化酶具有更高的热稳定性,显示了丝素蛋白作固定化酶载体的优越性。丝素膜也可以与其它物质一起形成共混膜来固定各种酶。纪平雄等曾用丝素-壳聚糖合金膜固定超氧化物歧化酶。他们采用富含自由氨基的丝素-壳聚糖合金膜为载体,吸附固定从柞蚕蛹提取分离的超氧化物歧化酶(SOD),研究并确定了固定化的最佳条件,分别为酶浓度38U/ml、pH6.3、温度4℃~8℃、时间15h。制得的固定化酶活力为89.1U/g载体,酶的活力回收达到35.9%。
丝素蛋白固定酶一般采用简单包埋法和共价交联法。朱祥瑞 用丝素蛋白为基质利用这些方法先后研制了丝素固定化糖化酶、丝素固定化过氧化氢酶、丝素固定化果胶酶、丝素固定化α-淀粉酶等,得出固定后的酶对不良环境的抵抗能力较强,有较长的操作半衰期、最适反应pH和最适反应温度范围较广,酶的活力也有所提高。

Ⅶ 丝蛋白有什么作用

丝蛋白人工皮肤是采用组织工程这一高新科技原理、以天然蚕丝蛋白为主要原料研制而成,具有良好的生物相容性,适用于深度烧伤创面的治疗

Ⅷ 蛋白质的检测方法及原理

1
磷酸化检测可以用二级质谱啊,在正离子模式下,经过collision
cell后中性丢失了98dalton(ser和thr)或216dalton(tyr)的肽段就可能是含一个磷酸化位点的磷酸化肽段。
2
基本原理就是设计个t将目的蛋白留在柱子上或沉淀下来。

Ⅸ 蚕丝蛋白的提取工艺

1.蚕种场削口茧及下脚丝一丝素蛋白一水解一过滤提纯一滤液pH测试调整一浓缩一灭菌一成品。
①削口茧、下脚丝去杂脱胶:即把蚕种场制种的削口茧壳内的脱皮或缫丝厂的下脚丝中的杂质剔除,然后在一定浓度的弱碱溶液中煮沸半小时,取出茧丝用水漂洗几次拧干(脱胶)。
②水解:严格控制反应的温度、浴比、时间、溶剂浓度等条件,掌握至多肽的形式终止水解。
③过滤提纯:滤去没有完全水解的固体物质及杂质。
④pH调整:用pH调节剂调整pH在6.5~7.0左右。
⑤浓缩:把pH调整后的水解液上柱在薄膜浓缩器上进行浓缩。
⑥灭菌:(浓缩后的水解蛋白液如在食品上应用用酶制剂继续酶解,控制分子量在300~800左右中止,然后灭菌。)加入微量防腐剂,以防霉菌的滋生。
2.蚕丝蛋白丝素肽产品技术、质量指标
丝素肽又名丝多缩氨酸(SILK Polypeplide),其多肽键的基本结构为其中Rl、R2……R。为氨基酸侧基。丝素肽含有十七种氨基酸,其中人体所需的氨基酸几乎具备,特别是人体皮肤、毛发十分需要的营养氨基酸(甘氨酸、丙氨酸、丝氨酸、酪氨酸)其含量占到氨基酸总量的80%以上,这是其他水解蛋白所不可及的。
2.1技术指标:①外观形状:淡黄色透明液体,无特异气味,易溶于水。②双缩脲反应为阳性,紫外吸收光谱在波长200~240nm处有强吸收峰。③pH值6~7。④比重(d 2。o)1.000~1.050。⑨蛋白质含量:>/14%。⑥氨基酸:共17种,每ml中含87mg以上。⑦灰分:1%以下。⑧重金属汞、砷、铅分别在1ppm以下。⑨细菌总数(个/m1)≤10。⑩粪大肠杆菌、绿脓杆菌、金黄色葡萄球菌均不得检出。
2.2质量指标:丝素肽是由天然蚕丝经特殊工艺提取而成,因此,氨基酸组成与含量是衡量产品质量的重要指标之一;而丝素肽分子量的大小与护肤功效的发挥又有着密切的联系. [编辑本段]丝素蛋白材料改性的研究进展丝素蛋白是一种从蚕丝中提取的蛋白质,具有很好的生物相容性,能制备成膜、凝胶、微胶囊等多种形态的材料,由于它独特的理化性能,目前丝素蛋白材料在生物医学材料领域被广泛的研究,如固定化酶材料、细胞培养基质、药物缓释剂、人工器官等等。为了提高丝素蛋白的性能,使其更好地应用于生物材料领域,近年来,国内外学者通过不同方法对丝素蛋白进行了化学修饰,取得了一些新的研究成果。本文概述了丝素蛋白材料改性在提高丝素蛋白材料的力学性能、热稳定性等理化性质;改变丝素蛋白材料对药物的释放速度;赋予丝素蛋白材料抗血凝性、对细胞生长的调控性等方面的研究报道。 丝素膜是被研究得最早和最深入的丝素材料,它是由丝素溶液干燥而得。经不溶化处理后的丝素膜脆性,是丝素膜的最大缺点。造成不溶化处理后的丝素膜脆性的主要原因是:丝素蛋白质大分子肽链上的肽键—CO—NH—中的C—N的键长为0.132nm,比C—N单键的键长0.147nm要短一点,比C=N双键的键长0.127nm要长些,使肽链具有部分双键的性质,刚性较大,影响了丝素蛋白质大分子主链的柔顺性。在经不溶化处理过程中,丝素蛋白的结构会发生从任意卷曲到β结构的转变。在丝素蛋白发生结构转变后,侧链与侧链间、侧链与主链间以及分子与分子之间可形成大量的氢键结合,产生大量的次级交联点,使丝素蛋白质大分子更难以运动,致使丝素膜的柔软性、伸长和弹性都较差。不少研究通过共混、接枝、交联等方法,以提高和改良丝素膜的力学性能。
1.1共混改性
Freddi等曾报道过丝素蛋白/纤维素共混膜的性能。纤维素的加入可以有效地改变共混膜的力学性能。拉伸断裂强度随着纤维素的含量从20%起呈线性增加,断裂伸长率则在20%~40%间急速增加,而后趋于缓和。含40%纤维素共混膜的柔韧度大约是纯丝素膜的10倍。共混膜柔韧度的提高由多种因素促成,如纤维素的力学性能的影响;共混膜的吸湿性纯丝素膜强,含水率的提高有利于丝素膜的柔韧度提高;相邻丝素蛋白链和纤维素链在无定形区内的相互作用产生的影响等。
李明忠等曾报道过关于丝素/聚氨酯共混膜的力学性能的研究。结果表明,随着聚氨酯所占比例的提高,丝素/聚氨酯共混膜的断裂伸长率明显增大;当聚氨酯所占比例大于40%时,断裂伸长率增长速度明显加快。当共混比例为50∶50时,断裂伸长率从60.2%提高到226.2%。聚氨酯阻止了丝素蛋白质大分子链段间产生过多的氢键结合,降低了丝素的结晶度,增加了可自由伸展链段,加上聚氨酯主链本身具备很好的柔顺性,所以共混膜的柔软性、弹性明显比纯丝素膜好。
最近,美国学者也曾做过这方面的实验。聚乙烯氧化物(PEO)是一种具有很好生物相容性的聚合体。他们在高浓缩的丝素溶液(8%)中加入不同比例的PEO溶液制成共混膜,发现加入2%的PEO可以提高膜的强度,而在其他浓度下膜的强度则降低。这种现象可以用相分离来解释。PEO和丝素蛋白两种聚合体发生相分离,阻止了丝素蛋白相内的相互作用。
当PEO含量达40%时,共混膜的断裂伸长率可从原来的1.9%增加到10.9%,因此,PEO的加入有助于丝素蛋白柔韧性的提高。另外,研究还发现PEO能方便地从共混膜上萃取,因此,很容易控制膜的多孔性和表面粗糙程度。
王朝霞等人研究了丝素/聚乙烯基吡咯烷酮(PVP)共混膜的制备方法和性能。结果表明,PVP与丝素蛋白共混后,可使共混膜增加伸长率、吸湿性以及透气性,改善了丝素创面保护膜的性能和应用效果。共混膜的强度随PVP含量的增加而有所降低。这是因为PVP是完全非晶态结构,其分子呈无规卷曲状,故PVP的加入使共混膜的强度降低。共混膜的伸长率开始随PVP的比例增加而下降,PVP/SF为2∶8时,伸长率较小,只有13%左右。而后伸长率又逐渐提高。PVP/SF为3∶7左右时,伸长率最大,可达18%以上。
关于丝素共混膜的研究还有丝素蛋白/海藻酸钠共混膜[5],丝素/明胶[6]等等,都不同程度地增强了丝素膜的强度和弹性。
1.2化学接枝改性
20世纪80~90年代,开展了较多的对丝素蛋白的接枝改性研究。刘剑洪等曾用四价铈盐作引发剂,引发丝素蛋白纤维接枝紫外吸收剂——2-羟基-4-丙烯酰氧二苯酮(HAOBP),虽然改善了丝素蛋白纤维的紫外稳定性能,且力学性能却大幅度地下降[7]。为了解决这一问题,刘剑洪继续采用“无引发剂聚合”法在丝素蛋白纤维表面接枝HAOBP的可行性。结果发现,这种接枝聚合方法是一种更为有效的改性方法。接枝0.6%HAOBP的丝素蛋白纤维,其热稳定性及紫外稳定性均得到了显着的改善,但力学性能没有下降。
Tsukada等曾研究了甲基丙烯腈接枝丝素纤维后物理性能的改变。结果表明,随着接枝物甲基丙烯腈的加入,丝素纤维的拉伸模量有所降低,这说明了接枝反应使得丝素纤维变得更加柔软且有弹性。
除了家蚕丝的化学接枝外,还有其他蚕丝的接枝共聚。Tsukada等研究了酸酐对柞蚕丝的化学修饰。柞蚕丝经LiSCN预处理后,与酸酐发生酰胺化反应。有意思的是,无论LiSCN预处理还是酰胺化修饰,共聚物的物理性能和热行为几乎没有发生变化,但是预处理后含水率有所增加,而酰胺化修饰后含水率却线性下降。柞蚕丝的这些性能为聚合反应提供较宽的适用范围,使得柞蚕丝很可能成为一种生物材料。
1.3化学交联卢神州等以环氧氯丙烷和聚乙二醇(PEG)为原料,在碱性催化下反应得到聚乙二醇缩水甘油醚(PEGO),作为制备丝素蛋白膜的交联剂。随PEG含量的增加,膜的拉伸断裂强度和杨氏模量减小,断裂伸长率增大、机械性能比纯丝素膜有了明显的提高 。闵思佳等发现用二缩水甘油基乙醚作为交联剂所制备的丝素蛋白质凝胶(CFG)具有良好的强度和柔韧性。根据制作条件可达压缩强度大于100g/mm2,压缩变形率大于60%。另外,材料的力学强度跟丝素水溶液的浓度有关。4%(wt)的丝素蛋白质水溶液的各种凝胶的强度和变形率均小于7%(wt)浓度的各种凝胶。这是因为丝素蛋白质浓度低时,形成的三维网目的结合点稀疏,因此,凝胶强度较低。要得到高强度CFG,除了合适的交联剂等外,还需有合适的丝素水溶液浓度。 闵思佳等曾测试了酰胺化修饰丝素材料对离子型化合物的吸附释放性能的影响。结果表明:经修饰后丝素蛋白质的等电点为pH=6左右,而天然的为pH=4左右;与未修饰相比,经修饰的丝素膜对阳离子化合物的吸附量减少,对阴离子化合物的吸附量增加,而且经修饰的多孔丝素材料对阳离子化合物的释放量增加,对阴离子化合物的释放量则明显降低。因此,认为用羧基酰胺化修饰的方法,可在一定程度上改变丝素材料对离子型化合物的吸收释放性能。
另外,用甲壳素交联丝素蛋白膜可以获得半渗透聚合体网状物,对离子和pH具有很好的敏感性,被期望用作人工肌腱。有人曾用含有磁小体的交联壳聚糖丝素膜作为药物缓释材料来调控5-氟尿嘧啶药物释放情况和磁反应特性。结果表明,交联壳聚糖丝素膜的释放程度和诱捕效率比纯甲壳素微球体要好得多,5-氟的释放程度随着交联剂戊二醛浓度的增加而降低。 异丁烯酰基丙烯酰基磷酸胆碱(MPC)是一种新合成的磷酸胆碱聚合物。在没有抗凝血剂的条件下,也能有效地阻止血凝的发生。把MPC聚合物接枝到丝素蛋白分子链上,可以很好地观察到接枝物的抗血凝性。Furuzono等通过异丁烯酰基丙烯酰基异氰酸酯(MOI)使丝素蛋白和MPC聚合体相互接枝。通过测定血小板在MPC-SF上的粘附能力,与原始丝素SF相比,血小板粘附量有了明显的减少。由此可以得出,经MPC修饰后的丝素材料的抗血凝性有所提高[17]。
此外,硫化丝素也具有很好的抗血凝性。它是通过丝素蛋白与硫酸或氯代硫酸在嘧啶溶液下反应所得。硫化后的丝素能延长血液凝固时间,并且随着硫酸基团的增加,抗血凝性也有了明显的提高。 丝素材料具有良好的生物相容性,可以用来做细胞培养基质。为了增强丝素蛋白材料的功能,如更强的抗菌抑菌性,调控细胞生长速度等,一些研究尝试了化学改性的方法。
5.1丝素/低聚糖接枝物
N-乙炔-壳聚寡糖(NACOS)含有6个以上的单糖单元,具有很强的抗菌性和抗肿瘤性。将其接枝到丝素蛋白上后,并在0.6%壳聚寡糖/丝素接枝物(NACOS-SF)上培养大肠杆菌24h后发现,此接枝物上大肠杆菌的细胞数目并没有明显的增加,这就是低聚寡糖(COS)发挥了作用。因此,NACOS-SF可以起到抗菌抑菌的效果。
最近,Gotoh等报道了关于乳糖/丝素接枝物作为肝细胞粘附支架材料的研究。他们利用氰尿酰氯(CY)把乳糖接枝到丝素蛋白主链上,所得溶液制成膜,在其上培养肝细胞,结果发现细胞粘附能力是纯丝素膜的8倍,与胶原相当;培养2d后,涂有接枝物的肝细胞形成的单层与胶原相比稍显圆滑和集中,更有利于肝细胞的培养。
5.2丝素/聚合体接枝物
为评估材料的亲水性,Gotoh等分别测定了聚乙二醇/丝素接枝物(PEG-SF)和丝素(SF)的水分含量和接触角。结果发现,PEG-SF含水率达380%,而SF只有32%。这也说明了亲水性PEG链接枝到丝素链上后,增加了水分含量,从而提高了丝素材料的亲水性。
亲水性的提高,可以带来其他性能的改变。Gotoh等以PEG-SF作细胞培养基质,与SF对照,比较细胞的生长率。结果显示,随着时间的推移,SF上的培养细胞个数有了明显的增加,而PEG-SF则几乎没有变化。从PEG-SF对细胞的低吸附性和低生长率上可以得出,PEG-SF可以调控细胞粘附的数量和生长速度。
经聚乳酸表面修饰过的丝素蛋白能够提高造骨细胞与修饰后的膜之间的交互作用,促进细胞粘附和增值。
相类似的还有通过对精氨酸化学修饰,来影响对纤维原细胞的附着能力。 丝素蛋白材料具有良好的生物相容性,在生物医用材料领域的应用前景甚广。但是,纯丝素蛋白材料的力学性能等尚未达到实用性的要求,而改性的研究是一种良好的途径。
2014年11月20日,西南大学家蚕基因组生物学国家重点实验室通过敲除Fib-H基因获得空丝腺,蚕宝宝吐出人工合成蚕丝蛋白,人们或许可以穿上人工合成蚕丝做的衣服。

Ⅹ 丝蛋白的介绍

丝蛋白(silk protein) 被列入国家863计划和国家自然科学基金项目的蚕丝蛋白生物医用材料研究工作取得重要突破。由苏州大学材料工程学院李明忠副教授与多名纺织及医学专家研制成功的丝蛋白人工皮肤和强力丝素蛋白膜,通过了由江苏省科技厅组织的专家鉴定。来自全国各地的材料学、烧伤医学、基础医学着名专家对课题组在该领域的研究工作和应用前景给予了高度评价。

阅读全文

与丝蛋白的检测方法相关的资料

热点内容
如何选择设计特殊杂质检查方法 浏览:15
电缆线接线方法视频 浏览:776
湖南烟熏肉食用方法 浏览:311
钓具的连接方法 浏览:133
细胞增生的治疗方法 浏览:832
下列处理方法不正确的是 浏览:166
舒适进入安装方法 浏览:224
用什么方法粘胶最快 浏览:607
无线加湿器的安装步骤及使用方法 浏览:801
欧莱雅洗面乳使用方法 浏览:818
win8怎么设置锁屏图片在哪里设置方法 浏览:939
烂地面地坪施工方法简单 浏览:695
稳压电路计算方法视频 浏览:849
不用安全绳攀岩还有什么方法 浏览:700
作业反应的教学方法 浏览:452
247乘101的简便方法 浏览:107
可存放时间的计算方法 浏览:967
红酒持杯的正确方法 浏览:553
熟板栗怎么快速剥皮的方法 浏览:555
42乘98的简便计算方法 浏览:822