导航:首页 > 解决方法 > 铸铜件内部缺陷检测方法

铸铜件内部缺陷检测方法

发布时间:2022-04-25 07:06:24

① 磁粉探伤仪可以检查铜合金铸件的缺陷吗

铝合金压铸件主要缺陷特征、形成原因及

防止、补救方法

缺陷名称
缺陷特征及发现方法
形成原因
防止办法及补救措施

1、化学成份不合格
主要合金元素或杂质含量与技术要求不符,在对试样作化学分析或光谱分析时发现。
1、配料计算不正确,元素烧损量考虑太少,配料计算有误等;2、原材料、回炉料的成分不准确或未作分析就投入使用;

3、配料时称量不准;

4、加料中出现问题,少加或多加及遗漏料等;

5、材料保管混乱,产生混料;

6、熔炼操作未按工艺操作,温度过高或熔炼时间过长,幸免于难烧损严重;

7、化学分析不准确。
1、对氧化烧损严重的金属,在配料中应按技术标准的上限或经验烧损值上限配料计算;配料后并经过较核;

2、检查称重和化学分析、光谱分析是否正确;

3、定期校准衡器,不准确的禁用;

4、配料所需原料分开标注存放,按顺序排列使用;

5、加强原材料保管,标识清晰,存放有序;

6、合金液禁止过热或熔炼时间过长;

7、使用前经炉前分析,分析不合格应立即调整成分,补加炉料或冲淡;

8、熔炼沉渣及二级以上废料经重新精炼后掺加使用,比例不宜过高;

9、注意废料或使用过程中,有砂粒、石灰、油漆混入。

2、气孔
铸件表面或内部出现的大或小的孔洞,形状比较规则;有分散的和比较集中的两类;在对铸件作X光透视或机械加工后可发现。
1、炉料带水气,使熔炉内水蒸气浓度增加;

2、熔炉大、中修后未烘干或烘干不透;

3、合金液过热,氧化吸气严重;

4、熔炉、浇包工具氧等未烘干;

5、脱模剂中喷涂过重或含发气量大;

6、模具排气能力差;

7、煤、煤气及油中的含水量超标。
1、严禁把带有水气的炉料装入炉中,装炉前要在炉边烘干;

2、炉子、坩埚及工具未烘干禁止使用;

3、注意铝液过热问题,停机时间要把炉调至保温状态;

4、精炼剂、除渣剂等未烘干禁止使用,使用时禁止对合金液激烈搅拌;

5、严格控制钙的含量;

6、选用挥发性气体量小的脱模剂,并注意配比和喷涂量要低;

7、未经干燥的氯气等气体和未经烘干的氯盐等固体不得使用。

3、涡流孔
铸件内部的细小孔洞或合金液流汇处的大孔洞。在机械加工或X光透视时可现。
1、合金液导入型腔的方向不正确,冲刷型腔壁或型芯,产生涡流,包住了空气;

2、压射速度太快,由浇料口卷入了气体;

3、内浇口过薄,合金液运动速度太大,产生喷射、飞溅现象,过早的堵住了排气槽;

4、模具的排气槽位置不对,或出口截面太小,使模具的排气能力差,型腔的气垫反压大;

5、模具内型腔位置太深,而排气槽位置不当或太少;

6、冲头与压室间的间隙太小,冲头返回太快时形成真空,回抽尚未冷凝的合金液形成气孔;或冲头返回太快;

7、压室容量大而浇注的合金液量太少。
1、改变合金液注入型腔的方向或位置,使合金液先进入型腔的深高部位或底层宽大部位,将其部位的型腔空气压入排气槽中,在合金液充满型腔之前,不能堵住排气槽;

2、调试压射速度和快压位置,在能充实的前提下,尽可能缩短二速距离;

3、在保证不产生飞溅、喷射并能充满型腔的情况下,加大内浇口的进口厚度;

4、加强型腔的排气能力:(1)安放排气槽的位置应考虑不会被先进入的合金液所堵死;(2)增设溢流槽,注意溢流槽与工件件衔接处不宜过厚,否则过早堵住而周边产生气孔;(3)采用镶拼块结构,把分型面设计成曲折分型面,解决深度型腔排气难的问题;(4)加大排气槽后端截面积,一般前端厚0.05-0.2mm,后端可加厚至0.4mm.

5、根据铸件各部位受热和排气情况,适当喷涂涂料,喷完后吹干积水,忌水未干合模;

6、扩大冲头与压室之间的间隙在0.1mm左右,并适当延长保压时间;

7、调高立式压铸机下冲头的位置,或增加太坏室内压注的合金液量。

4、缩孔和缩松
铸件上呈暗灰色、形状不规则的孔洞;集中的大孔洞叫缩孔,分散的蜂窝状组织不致密的小孔洞叫缩松。在机械加工前或后作外观检查或作X光透视中发现。
1、合金在冷凝过程中铸件内部没有得到合金液的补缩而造成的气孔;

2、合金液的浇注温度太高;

3、压射比压太小;

4、铸件设计结构不合理,有厚薄截面变化太剧烈的厚大转接部位或凸耳、凸台等。
1、改善铸件结构,尽可能避免厚薄截面变化太剧烈的厚大转接部位或凸耳、凸台等,如果不避免,则可采有空心结构或镶块设计,并加大其位置的冷却。

2、在保证铸件不产生冷隔、欠铸的前提下,可适当降低合金液的浇注温度;

3、适当提高增压压力,增加压实作用;

4、在合金液中添加0.15~0.2%的金属钛等晶粒细化剂,减轻合金的缩孔形成倾向;

5、改用体收缩率、线收缩率小的合金品种,或对合金液进行调整,降低其收缩率或对合金进行变质处理。

6、加大内浇截面积,保证铸件在压力下凝固,防止内浇过早凝固影响压力传递。

5、外收缩

(凹陷)
铸件表面、厚大平面、内侧转角处、缩孔附近出现的凹陷,有的直接看到,有的表面附有一层薄铝,揭除此层后与寻常凹陷相同。
1、合金的收缩性太大;

2、铸件设计结构不合理,有厚薄悬殊截面积转接的肥大部位;

3、内浇口截面积太小或铝液流向太乱;

4、压射比压小;

5、模具排气能力差,使型腔的也垫反压大,空气被压缩在型壁与铸件之间。

1、改用收缩性小的合金,或对其进行变质处理,细化其晶粒,降低其收缩性;

2、改进铸件的设计结构,尽量避免厚薄悬殊截面的两壁转接的厚大部位。如不可避免,可改成空心结构或镶块结构;

3、适当加大内浇口截面积;

4、适当提高压射比压;

5、提高模具的排气能力:

(1)增开排气槽;

(2)增设溢流槽等。

6、在缩陷处安装冷却装置,并加大其位置脱模剂的喷涂量。

6、裂纹
铸件表面出现线状或波浪状开裂,裂口多呈暗灰色,在外力的作用下,裂口加宽,在喷砂前后或机械加工前后,荧光检查中均可发现。
1、合金本身收缩性大,准固相温度范围宽或共晶体量少或在准固相温度范围内强度和韧性差;

2、合金的化学成分出现偏差:(1)铝硅系、铝铜系合金中含锌量或含铜量过高;(2)铝镁系合金中含镁量过高或介于3.5-5.5之间时;(3)合金中的铁、钠含量过高;(4)铝铜系、铝镁系中的硅含量过低;(5)有害杂质元素含量过高,使合金塑性下降;

3、工件结构设计不合理,有厚薄悬殊的剧烈转接部位、肥大凸台、凸耳、以及圆形或框形结构中有直线加强筋等;

4、合金中混入了低熔点合金;

5、模具设计结构不合理,内浇口位置不当,冲刷型腔壁或型芯,造成局部过热或阻碍合金液的收缩;

6、浇注后开型的时间太晚;

7、模具温度太低。
1、选用或改用收缩性小、准固相温度范围窄或结晶时形成共晶体量多,或高温强度高的合金品种;

2、调整合金成分,使其达到规定的范围内

(1)降低铝硅系、铝铜系合金中的锌、铜含量;

(2)添加铝锭,冲淡合金中镁的含量;(3)严格控制钠的含量,铝硅系合金中钠含量应控制在0.01~0.014%左右.

(4)往合金中添加铝硅合金,提高硅的含量;

(5)严格控制合金中有害杂质的含量在技术标准的规定的范围内;

3、改进铸件的设计结构,尽量避免厚薄悬殊的剧烈转接部位、肥大凸台、凸耳、以及圆形或框形结构中有直线加强筋等。如不可避免,则可改为空心结构或镶块结构;

4、改进模具设计结构,正确的设计内浇口的位置和方向,避免冲刷型腔壁和型芯,产生局部过热或阻碍铸件的收缩而产生的裂纹和变形;

5、严格控制低熔点金属的含量;

6、注意在合适地时间内开型;

7、适当提高模具和型芯的工作温度,减慢合金液的冷却速度。

8、适当降低浇注温度;

9、调整型芯和顶针,保障铸件平行、均匀推出;

10、加大过度位置的铸造圆角和脱模斜度。

7、变形或跷曲
铸件的形状和尺寸发生了变化,超过了图纸的公差范围。在机械加工前后对铸件作外观检查、测量或划线中发现
1、铸件的设计结构不合理,使铸件各部分收缩不均匀;

2、铸件在收缩冷却过程中受到阻力;

3、浇注后到开型的时间太短,冷却太快;

4、压铸时顶出过程中顶偏了铸件;

5、合金本身的收缩率大,准固相温度范围宽,高温强度差。
1、在可能和必要的情况下,改进铸件的设计结构,如改变截面厚度,避免厚度悬殊的转接部位和不合理的凸台、凸耳、加强筋等,尽量把肥大部位设计成空心结构或镶拼结构;

2、改进模具设计结构,消除阻碍铸件收缩的不合理结构;

3、延长留模时间,防止铸件因激冷而变形;

4、经常检查模具的活动部分,防止因模具原因(如卡死、变形等)而导致产品变形;

5、根据铸件的结构形状的复杂程度,如变形很难排除,则可考虑改用收缩性小高温强度高的合金或调整合金成份(如铝硅合金中硅含量提到15%以上,铸件收缩率变的很低;

6、在热处理装炉或装箱过程中,严禁将复杂的压铸件堆压。尽量避免机械加工造成内应力不平衡而变形;

7、合理增加顶针数量,安排顶针位置,确保顶出平衡;

8、改变浇排系统,如厚大深腔位置加冷却水等,达到热量平衡分布;

9、当变形量不大,可采用机械或手工的方法矫正。

8、渣孔

在铸件表面和内部有形状不规则的明孔或暗孔,表面不光滑,孔内全部或部分为熔渣所充填,在机模加工前后对铸件作外观检查和X光透视时可发现。
1、炉料本身已氧化或粘有杂物;

2、熔剂成分不纯;

3、涂料喷涂太厚;

4、精炼除渣不到位,含氧化夹渣过多;

5、金属液压铸温度过低,流动性差,硅以游离状态存在成为夹渣;

6、铝硅合金中硅含量超过11.5时,且铜、铁含量同样超高,硅会以游离状态析出,形成夹渣;

7、熔炉设计不合理或温控不佳,导致表面金属液氧化严重;

8、舀料时把浮渣一起舀入;

9、涂料或冲头颗粒中石墨含量太多或石墨损坏脱落。
1、严禁使用已氧化未经吹砂和带有油和水的炉料;

2、选用或按工艺严格配制熔剂;

3、选用较好的涂料,配比合理;

4、选用好的除渣剂和精炼剂,合理使用;

5、适当提高合金液浇注温度,防止硅以游离状态存在;

6、以高镁铝合金,可加入0.01%的铍以减少氧化.

7、铜、铁含量较高时,适当控制硅的含量不超过10%,并适当提高合金液温度;

8、金属液在坩埚中停留时间过长(铸锭资料中有介绍),应重新精炼合金液;

9、注意防止损坏的石墨坩埚掉入金属液中;

10、选用较好的冲头颗粒;

11、使用涂料前,应将涂料充分搅拌均匀,使石墨成悬浮状态而不结坨;

12、舀取合金液时,应先清除液面上的熔渣。

9、冷隔
表面为铸件表面未融合,基体被分开成狭窄的表面光滑的缝隙。有穿透的和不穿透的两种,此缝隙在外力作用下有继续发展的趋势,作外观检查即可发现。
1、合金液浇注温度太低;

2、合金的化学成份不合格,使合金的流动性降低;

3、压射速度太慢;

4、导入型腔的内浇口太多;

5、合金液在型腔中流路太长,型腔狭窄,冷却太快;

6、模具排气能力太差,型腔内气垫反压大,使液流受阻不能融合。
1、提高合金液的浇注温度和模具温度,提高合金液流动性(如变质细化处理);

2、控制配料成份,配好后检测其流动性;

3、适当提高压射速度和比压;

4、适当增大内浇口截面积并减少内浇口数量,减少合金液的相互碰撞;

5、提高模具的排气能力,合理安排排气槽的位置和数量,降低型腔内气垫的反压力;

6、充分精炼合金液,减少 合金液的氧化程度,从而提高其流动性;防止合金液过热。

7、改进浇注系统,防止流路过长;

8、调换为流动性好的合金品种。

10、欠铸
铸件轮廓不清晰,尺寸不够,形状不完整;在外观检查中即可发现,多为尖角或圆角或薄壁处未填满,棱角为圆角或薄壁处缺一块等形式;
1、合金液浇注温度太低;

2、模具工作温度太低,合金冷却过快;

3、内浇口截面积过大,充填速度太小;

4、压力或速度太小;

5、模具的排气能力差,型腔内气垫反压过大;

6、压射速度太大,使合金液直冲短平面铸件对壁(未经过型腔底部流动)而折回后再充型。形成的欠铸或冷隔。
1、适当提高合金液的浇注温度;

2、适当提高模具的工作温度,确保在合金液温度的1/3左右浮动;

3、适当减少内浇口截面积;

4、增大压力和压射速度;

5、增设排气槽,合理设定排气槽的位置和数量;

6、压铸短平面或有直角的铸件时,应适当适当降低压射速度,并采用尽可能大的内浇口截面积;

7、检查压射冲头的行程或浇注量是否足够;

8、充分精炼合金液,减少合金液的氧化程度,从而提高其流动性;防止合金液过热。

9、减少脱模剂用量,注意清理型腔。

11、粘模
铸件被粘在模具上虽未粘住,但表面被撕破皮;在铸件顶出时或顶出后对工件作外观检查可以发现。
1、合金液浇注温度太高;

2、模温太高;

3、脱模剂效果差或喷涂量少或不均匀;

4、模具表面有锈疤或不光滑倒扣的位置;

5、模具材料不适合或热处理方法不当,没在达到应有的硬度;

6、浇注系统设计不合理,特别是导入合金液的内浇口位置不当,使合金液总是冲刷某处型腔壁或型芯,造成局部过热而粘模;

7、模具开设多个内浇口,相互撞击,导致局部过热粘模;

8、铝合金中铁含量太少(低于0.6%),引起粘模;

9、合金液成份不均匀,出现严重偏析。

10、铸造圆角和脱模斜度太小;

1、适当降低合金液的浇注温度和模具温度;

2、更换脱模剂,调整喷涂位置和喷涂量;

3、对模具进行抛光,对已氮化过的模具,抛光要慎重,防止破坏掉表面的氮化层,形成越抛越粘的情况;

4、检查模具的硬度值,采取重新热处理氮化或更换模具材料;

5、改进浇注系统设计结构,避免合金液持续冲刷型腔壁或型芯;

(1)适当增大内浇口的截面积;

(2)改变内浇口的位置和导入方向,使导入处于宽大厚实位置;

(3)尽量采取底注法开放式浇注系统。

6、加大内浇口截面积,取消多个浇口现象;

7、适当降低压射速度,缩短二速行程。

8、检查铁含量,如太低,可以铝铁中间合金补充;

9、加大模具冷却,对过热位置加大喷涂,并在模具上设置冷却系统;

10、防止混入低熔点金属;

11、除镁锌等个别金属,不可将纯金属加入铝液中,会形成严重偏析。

12、加大铸造圆角和脱模斜度。

12、铸件尺寸超差
铸件尺寸大于或小于图纸要求的公差。从测量中可发现。
1、设计模具时收缩率取值不准确或计算有误;

2、模具制造不精确,误差大;

3、铸件的设计结构不合理,如因钢性不够而产生跷曲等;

4、铸件图上的公差要求超过了压铸所有达到的标准;

5、合金液浇注温度和模具工作温度过高或过低;
1、根据铸件结构形状和合金特性,认真选取其在模具不同位置的收缩率,修正模具的尺寸;

2、严格按图纸设计加工和验收模具;

3、改进铸件的设计结构,增大刚性不足处的尺寸或改变其结构形状,增大钢性;

4、从压铸工艺上采取措施,如采用加强筋、加长留模时间等;

5、检查顶出位置是否倾斜;

6、根据试压情况,调整模温和铝温。

7、调整合金液,降低其收缩量。

铸件在垂直于模具分型面方向上的尺寸变大:

1、粘附于模具分型面上的金属或非金属物未清理干净;

2、模具某处松动,使模具倾斜而产生间隙;

3、模具分型面上有压伤;

4、锁模时增压不够或铸件在分型面上的投影面积超过压铸机的规格,压铸时动定模分开。

组成型芯的部分尺寸

不合格:

1、型芯安装不正确,不稳定;

2、合金液进入型芯后,型芯产生移动;

3、由于模具过热,活动型芯在导向孔内被咬住;

4、弯曲异形处和深孔处未填满;

5、开模时间太短或太长,影响收缩大小。
1、压铸前应仔细检查模具分型面,防止有粘附物;

2、检查模具各处是否有松动,模具固定位置是否有偏斜,在四侧面和各个角落检查分型面是否有间隙。

3、修复模具的突起部位;

4、根据产品投影面积核算压铸机与工件是否相匹配;

5、适当降低压射速度。

1、通过定模或动模板固定型芯,型芯上如有突台,刚可用底板固定。活动型芯用闭锁固定,型芯的长度应严格按照与其直径的比例来计算,确保其刚性,防止压铸时被液体金属冲弯冲变形;

2、防止模具过热,清理和修复型芯被啃坏的部位;

3、选用合适的配合方式和精度,设计活动型芯与滑槽的活动配合;

4、压铸时做好模具的冷却;

5、摸萦出合适的开模时间。/

13、夹杂
铸件上出现硬度比基体大的质点或坨状物,使切削刀具磨损;在铸件机械加工或吹砂后的X光透视可见。
合金中混入了或析出了比基体金属硬的金属或非金属化合物。
1、严格遵守工艺规程,尽量少搅拌合金液,减少氧化;

2、在搅拌、舀取和少注合金液等操作中,注意不让表面的氧化皮卷入;

3、合金中含有Ti\Mn\Sb\Fe等密度大的金属时,要注意防止其偏析成为夹杂;

4、使用高铝质的或氮化硅与碳化硅混合物耐火材料作炉衬时,要防止在高温下剥落混入合金液中;

5、用干燥过的精炼剂对合金液进行充分的精炼。

14、流纹(痕)
铸件表面局部下陷的纹路,用手摸可感知。在外力作用下无发展趋势,在喷砂后可发现。
1、内浇口截面积太小;

2、型腔内气垫反压大;

3、涂料喷涂不均匀或太厚;

4、模温低,合金液流入后受到激冷。
1、适当加大内浇口截面积或调整位置;

2、提高型腔的排气能力,加大排气槽或增大溢流槽,或改变排气槽的位置;

3、控制脱模剂的喷涂比例和数量;

4、适当降低压射速度;

5、适当提高模温。

15、网状花纹
因模具的龟裂而在铸件表面复印出的龟甲皮痕迹,并随模具龟裂发展而发展;在外观检查时即可发现。
1、模具材料不合适或热处理工艺未达到要求;

2、模具的工作温度过高;

3、合金液的浇注温度过高;

4、形成模具型腔的某个零件的截面太薄使其高温强度差;

5、合金液与模具温差过大;一般是合金液温度的1/3左右;

6、模具表面出现细微龟裂时未及时打磨,任其发展。
1、选用耐热冲击性能力好的、热处理后硬度高的热作模具钢来制造模具的型腔部分;并配套采用符合此材料的热处理工艺;

2、适当降低浇注温度;

3、压铸前要先对模具进行预热;

4、为使模温均匀,可采取以下方式:

(1)模具过热位置设置冷却系统;

(2)模具较低位置,可增设溢流槽;

5、压铸中,每隔一定时间,刷油或涂料润滑整个模具,使模温均匀。

6、定期检修模具,发现有网状纹络及时打磨掉。

16、拉伤
铸件在出模方向受到阻碍,造成表面拉伤,起始端宽而深,出端渐小至消失。
1、模具设计或模具加工不正确;

(1)、型芯或模具有负斜度;(2)没有脱模斜度或斜度太小;

2、型芯和模具型腔壁上有压伤;

3、模具上粘附有合金;

4、脱模剂效果差或喷涂太少或不均匀;

5、铸件在顶出时倾斜。

1、如铸件上的拉伤为常定位置,则应检查模具,分析原因,予以修复;

2、保障不同位置的脱模斜度;

3、修复模具压伤位置;

4、更换或加大脱模剂用量;

5、化验合金中铁的含量,如低于0.6%,则应添加;

6、适当缩短开模时

7、因模具局部过热造成的拉伤属粘模拉伤,查看粘模的解决办法。

间。

17、飞边
铸件沿分分型面位置出现层状薄片,由压铸件向外延伸,飞边很薄,一般在0.1mm左右。目测可以发现。
1、压铸机锁模力不够,造成胀型;

2、分型面存在异物、镶块滑块磨损、模具刚性不足等,造成闭合不严;

3、模温及合金液温度过高;

4、压射速度过快或压射比压过大;
1、合算工件投影面积,选用合适的机台;

2、及时清理分型面;

3、适当降低压射速度和压射比压;

4、注意快速与增压速度之间的配合,避开压力峰值;

5、适当降低合金注温度和模温;

6、省模。

18、冲蚀
主要是内浇口附近部位出现的麻点,严重的有突起。目测可以发现。
1、内浇口截面积太小,冲击力过大;

2、内浇口位置或进料方式设置不合理,造成金属液直接冲击对面型腔;

3、金属液乱流,长时间冲刷同一部位;
1、适当降低压铸模具温度和压射速度;

2、修复冲蚀部位,并加强冷却;

3、改变内浇口进料位置,尽可能使金属液冲击宽大部位;

4、内浇口加宽加厚,降低其冲击力;

5、确保进料方向、铸造圆角及转折出合理性。

② 铸件内部缺陷采用什么检测方法检测比较精准

对于铸件内部缺陷检测而言,任何一种方法都不能与X射线无损检测相比。
由于其迥异的横断面铸造结构,及复杂的几何形状,X射线检测成为保证铸件质量的最佳选择。
【道青科技】很高兴为您解答。

③ 金属表面缺陷检测方法有哪些

1、轮廓测量仪

轮廓测量仪采用均布的4只二维激光测量传感器测量轧材截面,4只传感器包容轧材整个截面,真正做到无盲区测量。其应用范围可以是任何截面形状的轮廓,如圆形、方形、螺纹钢、六角形、轨梁、T型、H型和其他长材产品。测量软件系统根据各传感器的测量数据拟合截面形状,可在软件界面直观显示轧材的截面形状及关键尺寸。应用于轧钢、有色金属等的在线表面缺陷监测。

2、漏磁检测

漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。

3、红外线检测

红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。

4、超声波探伤检测

超声波检测是利用声脉在缺陷处发生特性变化的原理来检测。声波在工件内的反射状况就会显示在荧光屏上,根据反射波的时间及形状来判断工件内部缺陷及材料性质的方法。超声波探伤技术多应用于金属管道内部的缺陷检测。

5、光学机器视觉智能检测

光学机器视觉智能检测的基本原理是:一定的光源照在待测金属表面上,利用高速CCD摄像机获得连铸板坯表面图像,通过图像处理提取图像特征向量,通过分类器对表面缺陷进行检测与分类。

这5种方法均可检测轧钢及金属表面的缺陷尺寸,轮廓测量仪更是可在线无损检测轧材表面缺陷的设备,检测精度高,对轧材的材质、温度等都无要求,可以说是在线金属缺陷检测的重要帮手。

④ 铸件裂纹的检测方法有多少种分别用在什么范围

我们使用的是 铸件内部探伤,主要看有没有缺陷 气泡等。
我们用超声波

如何判断铸钢件缺陷问题,怎样焊补

铸件内部有质量问题一般通过无损检测出缺陷位置和大小。
焊补的话,首先要去除缺陷,通过打磨或者机加工的方法。然后根据铸件的材质确定是否预热和选择何种焊材。焊接完成后,再做无损检测。

⑥ 对锻铸件进行超声波无损检测时,各可以检测的缺陷类型有哪些

随着最近几年科学技术的飞速发展,航天航空业、压力容器行业等的发展也较为迅速,对铸件的质量要求也越来越高,因此对铸件的缺陷检测是工业生产中最重要的环节。目前为止,对于铸件缺陷检测技术的研究也有了较大进步,其中超声检测、 射线检测和射线层析摄影法检测是铸件缺陷检测中最为重要且使用范围最广的三种方法,本文就这三种方法的使用情况做了相关的介绍。
铸件之所以被工业生产广泛应用,是因为铸造的成本低廉、可以一次形成、尤其适用于大型复杂件的制造,其中航空航天制造、压力容器制造中有很多的零部件都是采用铸造的方法生产。但铸件很容易因为操作过程的失误产生不易发现的缺陷,因此必须在生产早期将铸件缺陷及时检查出来。进行铸件缺陷的无损检测可以提高生产效率,节约产品生产成本,提高产品质量。铸件无损检测中使用最广、研究最多的要数超声波探伤法、射线透照法、射线层析摄影法。对这三种方法的国内外研究现状分析如下:
超声波检测法
超声波探伤是利用材料本身或内部缺陷的声学性质对超声波传播的影响,非破坏性地探测材料内部和表面的缺陷(如裂纹、气泡、夹渣等)的大小、形状和分布状况以及测定材料性质。利用超声波进行探伤不仅成本很低,而且对人体没有害处;更重要的是超声波的灵敏度和穿透性都很好,并能够快速的进行检测从而提高工作效率。在进行超声波检测时,铸件的缺陷通过超声波以缺陷波的形式反射到荧光屏上,其中缺陷波的波形和波幅都与缺钱的形状有关,因此可以根据缺陷波来了解铸件的缺陷情况。
超声波检测方法又分为两种,分别是声程衍射时间法(TOFD)和声振分析法(AR)。
TOFD是由南斯拉夫的Ines Dukic 以及Predrag Dukic提出的。它的的优点是:优良的可靠性和检测的可重复性;结果的易见性和易存储性,使之能够快速进行比较;对铸件缺陷扩展的趋势能够进行监控。它的局限性是:被检测的铸件其形状构成会影响检测的完整性,例如铸件的螺纹孔会导致螺纹孔附近的区域被覆盖从而降低了检测的完整性;密集的缩孔会导致信号产生重叠进而得到错误的尺寸。因此除了以上两点的局限性以外,声程衍射时间法是铸件缺陷检测中一个重要的工具。
声振分析可以在一个广阔的频率范围内进行快速有效的检测,是一种新的无损检测方法,由Herlin等人发明。通过共振频率可以算出不同材料的声学参数,然后这些声学参数可以匹配成不同的质量特征,这些质量特征与铸件的尺寸、材料以及几何构造等有着很大的联系。它的特点是:可以使用计算机辅助检测;可检测铸件的整体,不用进行取样或者局部检测;不用考虑化学或环境问题,其检测过程是一个干燥的环境等。
X射线检测法
X射线检测法是将射线穿过被检测铸件,通过X射线的衰减来进行铸件缺陷的检测。X射线检测法的发展过程共有三个阶段,分别是获取低劣的微光图像、电离放射线荧光屏成像、高分辨率清晰的数字图象。通过射线检测法可以检测出铸件的缺陷并提供相应的缺陷照片。X射线检测法主要用于检查铸件或机器的部件是否存在裂纹、孔洞和夹杂等缺陷。在对于X射线图象处理中,Herbert提出了非线性灰度值变换以及线性黑点校正等图像处理的方法,该方法将图象分割技术归为图像像素问题,并提供了几种选取空洞所使用的局部特征选择方法,它们分别包括线性及非线性的滤波运算、局部缺陷模板、将图象相减、直角与旋转局部特征结合等各种不同的局部特征选择方法。
目前X射线检测法已用于特殊的缺陷检测法中。 德国的C.Lehr等人使用摄像机模型的立体射线实时成像系统对铸件内部缺陷进行三维分析,通过使用两幅不同方向的X射线图象可以知道铸件缺陷位置以及大小。;美国的研究者发明了一种用于距离图象并通过CAD成像的三维检测系统,这是一种在铸件缺陷检测的自动化视觉检测系统被运用的技术,在这种检测系统的各个阶段都可以使用计算机进行辅助设计。该项技术能够用在对平面、锥面、柱面以及球面等各种几何表面进行检测,并且能够对这些平面的尺寸公差、普通铸件各平面的凹陷、浇铸不足等各类缺陷进行检测。
X射线层析射影法
射线层析摄影法是从射线照相技术发展而来,将照相时的圆锥状X射线束通过特定装置转换为线状或面状扫描束,接着将其穿过被测铸件的某一个断面并得到断面图像。通过获得的断面图像可以知道被测铸件的结构及性能的众多信息,进而可以检测其是否存在缺陷。
在四个影响X射线断层照片的参数(空间分辨率、密度分辨率、噪声、人为产物)中前三个参数是相互关联的,只能取其中一个最佳值。这种新的检测技术主要是用在诸如复杂结构、多层容器等超声波方法不能检测的特殊构件检测中,其在进行缺陷和裂纹的定位与检测的同时能够对超声波等不能提供横断面图像的检测方法进行校正。目前为止已出现三维层析摄影法,它可以检测任何复杂的铸件,可通过一次扫描形成一个三维物体,最多可以分析1000个切片。

根据以上的相关描述,可以知道超声检测、射线透射检测以及射线层析摄影法所具有的不同的特点,以及各自的使用范围。因此在实际中应该根据铸件的几何特征、材料等来选取各自适合的检测缺陷的方法。由于现代工业的高速发展,使得对于铸件缺陷的检测方法在铸件缺陷方面的检测水平越来越高。在未来对于铸件缺陷检测的方法研究中,应该着重研究如何获得高质量、清晰的射线图像,并且学会利用计算机进行自动化检测以提高铸件缺陷检测的效率。同时也将多种不同的检测方法综合使用,以获得最佳的检测结果。

⑦ 铸件内部缺陷怎么检测

对于内部缺陷,常用的无损检测方法是射线检测和超声检测。其中射线检测效果最好,它能够得到反映内部缺陷种类、形状、大小和分布情况的直观图像,但对于大厚度的大型铸件,超声检测是很有效的,可以比较精确地测出内部缺陷的位置、当量大小和分布情况。
1)射线检测(微焦点XRAY)
射线检测,一般用X射线或γ射线作为射线源,因此需要产生射线的设备和其他附属设施,当工件置于射线场照射时,射线的辐射强度就会受到铸件内部缺陷的影响。穿过铸件射出的辐射强度随着缺陷大小、性质的不同而有局部的变化,形成缺陷的射线图像,通过射线胶片予以显像记录,或者通过荧光屏予以实时检测观察,或者通过辐射计数仪检测。其中通过射线胶片显像记录的方法是最常用的方法,也就是通常所说的射线照相检测,射线照相所反映出来的缺陷图像是直观的,缺陷形状、大小、数量、平面位置和分布范围都能呈现出来,只是缺陷深度一般不能反映出来,需要采取特殊措施和计算才能确定。国际铸业出现应用射线计算机层析照相方法,由于设备比较昂贵,使用成本高,无法普及,但这种新技术代表了高清晰度射线检测技术未来发展的方向。此外,使用近似点源的微焦点X射线系统实际上也可消除较大焦点设备产生的模糊边缘,使图像轮廓清晰。使用数字图像系统可提高图像的信噪比,进一步提高图像清晰度。
2)超声检测
超声检测也可用于检查内部缺陷,它是利用具有高频声能的声束在铸件内部的传播中,碰到内部表面或缺陷时产生反射而发现缺陷。反射声能的大小是内表面或缺陷的指向性和性质以及这种反射体的声阻抗的函数,因此可以应用各种缺陷或内表面反射的声能来检测缺陷的存在位置、壁厚或者表面下缺陷的深度。超声检测作为一种应用比较广泛的无损检测手段,其主要优势表现在:检测灵敏度高,可以探测细小的裂纹;具有大的穿透能力,可以探测厚截面铸件。其主要局限性在于:对于轮廓尺寸复杂和指向性不好的断开性缺陷的反射波形解释困难;对于不合意的内部结构,例如晶粒大小、组织结构、多孔性、夹杂含量或细小的分散析出物等,同样妨碍波形解释;另外,检测时需要参考标准试块。

⑧ 有什么无损检测之类的仪器能检测出约300mm长,200mm宽的铜铸件内部缺陷,要求能快速检测出其缺

LB-MFD500是一款便携式、数字式超声波探伤仪,它能够快速便捷、无损伤、精
确地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估和诊断。
既可以用于实验室,也可以用于工程现场。本仪器能够广泛地应用在制造业、钢
铁冶金业、金属加工业、化工业等需要缺陷检测和质量控制的领域,也广泛应用
于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。

⑨ 铸铜件常见缺陷有哪些要如何防止

能不能补焊不是标准说了算,只要客户同意都能补焊的,关键是你们家的焊接技术怎么样,处理不当缺陷会越焊越大(尤其是化学成分偏析产生的裂纹),甚至报废。

⑩ 用什么设备可以检测铸造产品中的缺陷

铸件缺陷检验用设备:表面缺陷(如裂纹)使用磁场探伤方法(即MT检测);内部缺陷(如缩松、缩孔)使用超声波探伤方法(即UT检测)。

阅读全文

与铸铜件内部缺陷检测方法相关的资料

热点内容
联想电脑打开麦克风在哪里设置方法 浏览:969
如何测量水温传感器方法 浏览:440
桥梁钢腹板的安装方法 浏览:743
中式棉袄制作方法图片 浏览:71
五菱p1171故障码解决方法 浏览:866
男士修护膏使用方法 浏览:554
电脑图标修改方法 浏览:609
湿气怎么用科学的方法解释 浏览:545
910除以26的简便计算方法 浏览:813
吹东契奇最简单的方法 浏览:712
对肾脏有好处的食用方法 浏览:106
电脑四线程内存设置方法 浏览:520
数字电路通常用哪三种方法分析 浏览:27
实训课程的教学方法是什么 浏览:533
苯甲醇乙醚鉴别方法 浏览:90
苹果手机微信视频声音小解决方法 浏览:708
控制箱的连接方法 浏览:83
用什么简单的方法可以去痘 浏览:797
快速去除甲醛的小方法你知道几个 浏览:811
自行车架尺寸测量方法 浏览:132