导航:首页 > 解决方法 > 热学量的检测方法

热学量的检测方法

发布时间:2022-04-19 11:56:19

⑴ 实验上可以直接测量的热力学量有哪些

什么叫热工性能测试

为了确定热工过程有关参数量值为目的的一组操作。

热工参数通常是指温度、压力(差压)、流量、物位(液位及料位)、化学成分(包括烟气成分)以及热力设备必须检测的机械量。测试主要包括以下内容:

1、工艺系统的运行参数;

2、主、辅设备的运行状态和运行参数;

3、电动、气动、液动阀门及挡板的状态;

4、仪表与控制用电源、气源、液压动力源等的供给状态和运行参数。

(2)热学量的检测方法扩展阅读

热工性能测量方法就是实现被测量与标准量比较的方法。

测量方法的分类(按测量结果产生的方式分):

(1)直接测量法:使被测量直接与选用的标准量进行比较,或者预先标定好了的测量仪表进行测量,从而直接求得被测量数值的测量方法。

(2)间接测量法:通过直接测量与被测量有某种确定函数关系的其它各个变量,然后将所测得的数值代入函数关系进行计算,从而求得被测量数值的方法。

⑶ 一般热学实验的测量精度高吗为什么

热学一般讨论的是能不能做,有没有符合理论计算结果的缺势,
至于精度太差了,我大学一个成功都没有。

⑷ 石油产品的热值测试仪的检测方法

在控制条件下,用氧弹量热仪燃烧已称重的样品来确定热值。其是通过观察经过适当的热化学和热传递修正过的燃烧前、中、后的温度计算得出来的。同时可使用既等温又绝热的量热计外罩。

⑸ 与力学相比,热学研究对象,研究的方法有哪些主要区分

1、研究对象不一样。力学研究的是少体问题,主要集中于单体和两体问题。热学研究的是多粒子系统的统计热力学性质。

2、研究理论不一样。经典力学基于牛顿运动学方程,研究物体的动力学演化过程,量子力学基于薛定谔方程,研究微观粒子的动力学演化过程,相对论量子力学基于迪拉克方程,研究具有相对论效应粒子的动力学演化过程;热力学主要手段是统计的方法,得到的是多粒子的体系的平均性质。

3、作用不一样。力学可以弄清楚两个原子之间的相互作用,可以区分不同种类的原子,而热学研究的是整个原子系统的平均性质,难以区分是哪类原子,因为统计不可能具体到某个原子,是集体行为,所以研究对象和研究方法有很大差别。

(5)热学量的检测方法扩展阅读:

力学主要理论

1、物体运动三定律。

2、达朗贝尔原理。

3、分析力学理论。

4、连续介质力学理论。

5、弹性固体力学基本理论。

6、粘性流体力学基本理论。

如何测定液体样品的燃烧热

燃烧热就是一MOL物质完全燃烧产生稳定氧化物放出的热量。一般用氧弹热量计测定有机物燃烧热的方法。

有机物的燃烧热△cHm是指1摩尔的有机物在P时完全燃烧所放出的热量,通常称燃烧热.燃烧产物指定该化合物中C变为CO2 (g),H 变为H2O(l),S变为SO2 (g),N变为N2 (g),Cl变为HCl(aq),金属都成为游离状态.

燃烧热的测定,除了有其实际应用价值外,还可用来求算化合物的生成热,化学反应的反应热和键能等.

量热方法是热力学的一个基本实验方法.热量有 Qp 和 Qv 之 分.用氧弹热量计测得的是恒容燃烧热Qv;从手册上查到的燃烧热数值都是在298.15K,10 1.325kPa条件下,即标准摩尔燃烧焓,属于恒压燃烧热Qp.由热力学第一定律可知,Qv=△U;Qp=△H.若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在 以下关系:
△H=△U+△(PV) Qp=Qv+△nRT
式中,△n为反 应前后反应物和生成物中气体的物质的量之差;R为气体常数;T为反应的热力学温度.

在本实验中,设有mg物质在氧弹中燃烧,可使Wg水及量热器本身由T1升高到T2 , 令Cm代表量热器的热容,Qv为该有机物的恒容摩尔燃烧热,则:
|Qv|=(Cm+W)(T2 - T1)·M / m
式中,M为该有机物的摩尔质量.
该有机物的燃烧热则为:?
△cHm =△rHm=Qp=Qv+△nRT
= -M (Cm+W)(T2 - T1)/ m+△nRT
由上式,我们可先用已知燃烧热值的苯甲酸,求出量热体系的总热容 量(Cm+W)后,再用相同方法对其它物质进行测定,测出温升△T=T2 - T1,代入上式,即可 求得其燃烧热.

⑺ 液体和气体的燃烧热怎么测定

燃烧热就是一mol物质完全燃烧产生稳定氧化物放出的热量。一般用氧弹热量计测定有机物燃烧热的方法。
有机物的燃烧热△chm是指1摩尔的有机物在p时完全燃烧所放出的热量,通常称燃烧热.燃烧产物指定该化合物中c变为co2
(g),h
变为h2o(l),s变为so2
(g),n变为n2
(g),cl变为hcl(aq),金属都成为游离状态.
燃烧热的测定,除了有其实际应用价值外,还可用来求算化合物的生成热,化学反应的反应热和键能等.
量热方法是热力学的一个基本实验方法.热量有
qp

qv

分.用氧弹热量计测得的是恒容燃烧热qv;从手册上查到的燃烧热数值都是在298.15k,10
1.325kpa条件下,即标准摩尔燃烧焓,属于恒压燃烧热qp.由热力学第一定律可知,qv=△u;qp=△h.若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在
以下关系:
△h=△u+△(pv)
qp=qv+△nrt
式中,△n为反
应前后反应物和生成物中气体的物质的量之差;r为气体常数;t为反应的热力学温度.
在本实验中,设有mg物质在氧弹中燃烧,可使wg水及量热器本身由t1升高到t2
,
令cm代表量热器的热容,qv为该有机物的恒容摩尔燃烧热,则:
|qv|=(cm+w)(t2
-
t1)·m
/
m
式中,m为该有机物的摩尔质量.
该有机物的燃烧热则为:?
△chm
=△rhm=qp=qv+△nrt
=
-m
(cm+w)(t2
-
t1)/
m+△nrt
由上式,我们可先用已知燃烧热值的苯甲酸,求出量热体系的总热容
量(cm+w)后,再用相同方法对其它物质进行测定,测出温升△t=t2
-
t1,代入上式,即可
求得其燃烧热.

⑻ 如何测定液体燃烧热

有机物的燃烧焓△cHm是指1摩尔的有机物在P时完全燃烧所放出的热量,通常称燃烧热.燃烧产物指定该化合物中C变为CO2 (g),H 变为H2O(l),S变为SO2 (g),N变为N2 (g),Cl变为HCl(aq),金属都成为游离状态.
燃烧热的测定,除了有其实际应用价值外,还可用来求算化合物的生成热,
化学
反应的 反应热和键能等.?
量热方法是热力学的一个基本实验方法.热量有 Qp 和 Qv 之 分.用氧弹热量计测得的是恒容燃烧热Qv;从手册上查到的燃烧热数值都是在298.15K,10 1.325kPa条件下,即标准摩尔燃烧焓,属于恒压燃烧热Qp.由热力学第一定律可知,Qv=△U;Qp=△H.若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在 以下关系:
△H=△U+△(PV) Qp=Qv+△nRT
式中,△n为反 应前后反应物和生成物中气体的物质的量之差;R为气体常数;T为反应的热力学温度.
在本实验中,设有mg物质在氧弹中燃烧,可使Wg水及量热器本身由T1升高到T2 , 令Cm代表量热器的热容,Qv为该有机物的恒容摩尔燃烧热,则:
|Qv|=(Cm+W)(T2 - T1)·M / m
式中,M为该有机物的摩尔质量.
该有机物的燃烧热则为:?
△cHm =△rHm=Qp=Qv+△nRT
= -M (Cm+W)(T2 - T1)/ m+△nRT
由上式,我们可先用已知燃烧热值的苯甲酸,求出量热体系的总热容 量(Cm+W)后,再用相同方法对其它物质进行测定,测出温升△T=T2 - T1,代入上式,即可 求得其燃烧热.
3 仪器 试剂
GR3500型氧弹热量计 1套 直尺 1把 精密电子温差测量仪 1台 剪刀 1把氧气钢瓶 1个 万用电表 1个氧气减压阀 1个 台秤 1台压片机 1台 引燃专用丝
容量瓶(1000mL,500mL)各 1个 苯甲酸(分析纯)
萘(分析纯)
4 实验步骤
测定热量计的水当量(即总热容量)
① 压片
用台秤预称取0.9g~1.1g的苯甲酸,在压片机上压成圆片.样片压得太紧,点火时不易全部燃烧;压得太松,样品容易脱落.将压片制成的样品放在干净的滤纸上,小心除掉有污染和易脱落部分,然后在分析天平上精确称量.
装氧弹
a 截取20 cm的镍铬燃烧丝,在直径约3mm的玻璃棒上,将其中段绕成螺旋形5圈~6圈.
b 将氧弹盖取下放在专用的弹头座上,用滤纸擦净电极及不锈钢坩埚.先放好坩埚,然后用镊子将样品放在坩埚正中央.将准备好的燃烧丝两端固定在电极上,并将螺旋部分紧贴在样品的上表面,然后小心旋紧氧弹盖.用万用表检查两电极间的电阻值,一般不应大于20Ω.
充氧气
充气前先用扳手轻轻拧紧氧弹上的放气阀.
第二,用手拧掉氧弹上的充气阀螺丝,将氧气钢瓶上的充气管螺丝拧入充气阀,用扳 手轻轻拧紧.检查氧气钢瓶上的减压阀,使其处于关闭状态,再打开氧气钢瓶上的总开关. 然后轻轻拧紧减压阀螺杆(拧紧即是打开减压阀),使氧气缓慢进入氧弹内.待减压阀上的减压表压力指到1.8MPa~2.0MPa之间时停止,使氧弹和钢瓶之间的气路断开.这时再从氧弹上取下充气螺丝,并将原来氧弹上的充气阀螺丝拧回原处.充气完毕关闭氧气钢瓶总开关,并 拧松压阀螺杆.
安装热量计:热量计包括外筒,搅拌马达,内筒和控制台等.
先放好内筒,调整好搅拌,注意不要碰壁.将氧弹放在内筒正中央,接好点火插 头,加入3000mL自来水.插入精密电子温差测量仪上的测温探头,注意既不要和氧弹接触,又不要和内筒壁接触,使导线从盖孔中出来,安装完毕.再次用万用表检查电路是否畅通.
数据测量:打开搅拌,稳定后打开精密电子温差测量仪,监视内筒温度. 待温度基本稳定后开始记录数据,整个数据记录分为三个阶段:
a 初期:这是样品燃烧以前的阶段.在这一阶段观测和记录周围环境和量热体系在试验开始温度下的热交换关系.每隔1分钟读取温度1次,共读取6次.
b 主期:从点火开始至传热平衡称为主期.
在读取初期最末1次数值的同时,旋转点火旋钮即进入主期.此时每0 .5min读取温度1次,直到温度不再上升而开始下降的第1次温度为止.
c 末期:这一阶段的目的与初期相同,是观察在试验后期的热交换关系.此阶段仍是每0.5min读取温度1次,直至温度停止下降为止(约共读取10次).
停止观测温度后,从热量计中取出氧弹,缓缓旋开放气阀,在5min左右放尽气体,拧开并取下氧弹盖,氧弹中如有烟黑 或未燃尽的试样残余,试验失败,应重做.实验结束,用干布将氧弹内外表面和弹盖擦净,最好用热风将弹盖及零件吹干或风干.
萘的燃烧热的测定:称取0.8g~1g 萘,用同样的方法进行测定.
5 数据处理
(1) 用雷诺法校正温差.具体方法为:将燃烧前后观察所得的一系列水温和时间关系作图,得一曲线,如图Ⅱ-1-1所示.
图Ⅱ-1-1 雷诺温度校正图 图Ⅱ- 1-2 绝热良好情况下的雷诺校正图
图中H点意味着燃烧开始,热传入介质;D点为观察到的最高温度值;从相当于室温的J点作水平线交曲线与I,过I点作垂线ab,再将FH线和GD线延长并交ab线于A,C两点,其间的温度差值即为经过校正的△T.图中Ⅱ-1-1A A′为开始燃烧到温度上升至室温这一段时间△t1内,由环境辐射和搅拌引进的能量所造成的升温,故应予扣除.CC′为由室温升到最高点D这一段时间△t2内,热量计向环境的热漏造成的温度降低,计算时必须考虑在内,故可认为,AC两点的差值较客观地表示了样品燃烧引起的升温数值.
在某些情况下,热量计的绝热性能良好,热漏很小,而搅拌器功率较大,不断引进的能量使得曲线不出现极高温度点,如图Ⅱ-1-2.校正方法相似.
用公式法校正温差:
①量结果按下列公式计算:
K=(Q·a+gb) / 〔(T-T.)+△t〕
式中 K——量热体系的热容量;
Q——苯甲酸的热值( J·g-1);
a——苯甲酸的重量(g);
g——燃烧丝的热值(J·g-1);
b——实际消耗的引火丝重量(g );
T——直接观测到的主期的最终温度;
T0——直接观测到的主期的最初温度;
t——热量计热交换校正值.
② 热量计热交换校正值△t,用奔特公式计算:
△t=m(v+v1) / 2+v1r
式中: v——初期温度变率;
v1——末期温度变率;
m——在主期中每0.5min温度上升不小于0.3℃的间隔数,第一间隔不管温度升高多少度都计入m中;
r:在主期每半分钟温度上升小于0.3℃的间隔数;
③记录及计算示例:
室 温 :22.3℃;
外筒温度:22.5℃;
内筒温度:21.8℃;
苯甲酸热值:26465J·g-1
6 注意事项
(1) 试样在氧弹中燃烧产生的压力可达14MPa. 因此在使用后应将氧弹内部擦干净,以免引起弹壁腐蚀,减少其强度.
(2) 氧弹,量热容器,搅拌器在使用完毕后,应用干布擦去水迹,保持表面清洁干燥.
(3) 氧气遇油脂会爆炸.因此氧气减压器,氧弹以及氧气通过的各个部件,各连接部分不允许有油污,更不允许使用润滑油.如发现油垢,应用乙醚或其它有机溶剂清洗干净.
坩埚在每次使用后,必须清洗和除去碳化物,并用纱布清除粘着的污点.
7.思考题
(1) 固体样品为什么要压成片状 如何测定液体样品的燃烧热
(2) 根据误差分析,指出本实验的最大测量误差所在.
(3) 如何用萘的燃烧热数据来计算萘的标准生成热

⑼ 高低温试验怎么测试

高低温试验箱验收试验方法

高低温试验箱验收试验方法:

1
、主要测试仪器与装置:

1.1
风速仪:感应量应不低于
0.05m/s
的风速仪

1.2
温度计:
采用铂电阻、
热电偶或其他类似温度传感器组成的并满足下列要求的测温系统:
传感器时间常数:
20S~40S
;测温系统的扩展不确定度(
K=2

:不大于
0.4


1.3
表面温度计:采用铂电阻或其他类似传感器组成并满足下列要求的测量系统:传感器时
间常数:
20S~40S
;测温系统的扩展不确定度(
K=2

:不大于
1.0


2
、测试条件

2.1
测试在空载条件下进行

2.2
进行降温速率试验时,环境温度应当不高于
25
℃,冷动力温度应不高于
30


3
、温度测试方法

3.1
测试点的位置及数量

3.1.1
在试验箱工作室内容定出上、中、下三个水平测试面,简称上、中、下层,上层与工
作室顶面的距离是工作室高度的
1/10

中层通过工作室几何中心,
下层在最低层样品架上方
10mm
处。

3.1.2
测试点位于三个测试面上,中心测试点位于工作室几何中心,其余测试点到工作室壁
的距离为各自边长的
1/10

但对工作室容积不大于
1
立方米的试验箱,
该距离不小于
50mm
3.1.3
测试点的数量与工作室容积大小的关系为:
工作室容积不大于
2
立方米时,
测试点为
9
个;工作室容积大于
2
立方米时,测试点为
15
个;
当工作室容积大于
50
立方米时,
温度测
试点的数量可以适当增加

4
、测试程序

4.1
在试验箱温度可调范围内,选取最高标称温度和最低标称温度

4.2
使唤试验箱按先低温后高温的程序运行,在工作空间中心点的温度达到测试温度并稳定
2H
,在
30
分钟内第
1
分钟测试所有测试点的温度
1
次,共测
30


5
、数据处理和试验结果

5.1
对测得的温度数据,按测试仪表的修正值进行修正

5.2
剔除可疑数据

5.3
对在温度恒定阶段测得的数据计算每点
30
次测得值的平均温度

5.4
计算温度梯度:温度平均值最大值减去温度平均值最小值

5.5
计算温度波动度、温度偏差

5.6
试验箱控制仪表的设定值与中心测试值之差应满足容许偏差要求。

6
、工作室内壁与工作空间的温度差的测试方法

6.1
测试点布放位置及数量

6.1.1
在工作空间内何中心布放一个温度传感器,在工作室六面内壁几何中心各布放一个表
面温度传感器

6.1.2
若工作室内壁中心有引线孔或其他装置,则测试点与孔壁或其他装置的距离应不小于
100mm
6.2
测试程序

6.2.1
在试验箱温度可调范围内,选用最高标称温度和最低标称温度为测试温度

6.2.2
在工作用空间几何中心点的温度第一次达到测试温度并稳定
2H

每隔
2
分钟测试所有
测试点的温度值一次,共测
5


6.3
试验结果的计算与评定

6.3.1
将测试的温度值按测试仪表的修正值修正

6.3.2
分别计算各测试点温度的算术平均值

6.3.3
计算出工作室仙壁与工作室热力学温度之差的百分比

7
、升、降温速率测试方法

7.1
测试点为工作空间几何中心点

7.2
测试程序

7.2.1
在试验箱温度可调范围内,选取最低标称温度为最低规定温度,最高标称温度为最高规定温度

7.2.2
开启冷源,使试验箱由室温降到最低规定温度,稳定2H,调至最高规定温度,检测试验箱温度从温度范围的10%升到90%的时间;使试验箱在最高规定温度下,稳定2H,再调至最低规定温度,检测试验箱温度从温度范围的90%降到10%的时间。

7.2.3
在升温或降温过程每1分钟记录温度值1次

⑽ 正确测量水温的方法

测量水温的方法:

1、手拿温度计的上端。

2、将温度计下端浸入水中,不能碰到容器的底和壁。

3、视线与温度计液面持平。

4、在液面不在上升或下降时读数。

5、读数时温度计不能离开被测的水。

(10)热学量的检测方法扩展阅读

温度测量

一、温度测量是用测温仪器对物体的温度作定量的测量。

温物理量的测度测量实际上是对该物体的某一量,该物理量应该在一定温度范围内随物体温度的变化而作单调的较显着的变化。据物理定律,由该物理量的数值来显示被测物体的温度。

使用测温仪表对物体的温度进行定量的测量,测量温度时,总是选择一种在一定温度范围内随温度变化的物理量作为温度的标志,根据所依据的物理定律,由该物理量的数值显示被测物体的温度

目前,温度测量的方法已达数十种之多。根据温度测量所依据的物理定律和所选择作为温度标志的物理量,测量方法可以归纳成下列几类。

膨胀测温法采用几何量(体积、长度)作为温度的标志。最常见的是利用液体的体积变化来指示温度的玻璃液体温度计。还有双金属温度计和定压气体温度计等。

玻璃液体温度计这种温度计由温泡、玻璃毛细管和刻度标尺等组成。从结构上可分三种:棒式温度计的标尺直接刻在厚壁毛细管上:内标式温度计的标尺封在玻璃套管中;外标式温度计的标尺则固定在玻璃毛细管之外。温泡和毛细管中装有某种液体。最常用的液体为汞、酒精和甲苯等。温度变化时毛细管内液面直接指示出温度。

精密温度计几乎都采用汞作测温媒质。玻璃汞温度计的测量范围为-30~600°C;用汞铊合金代替汞,测温下限可延伸到-60°C;某些有机液体的测温下限可低达-150°C。这类温度计的主要缺点是:测温范围较小;玻璃有热滞现象(玻璃膨胀后不易恢复原状);露出液柱要进行温度修正等。

双金属温度计把两种线膨胀系数不同的金属组合在一起,一端固定,当温度变化时,因两种金属的伸长率不同,另一端产生位移,带动指针偏转以指示温度。工业用双金属温度计由测温杆(包括感温元件和保护管)和表盘(包括指针、刻度盘和玻璃护面)组成。测温范围为-80~600°C。它适用于工业上精度要求不高时的温度测量。

定压气体温度计对一定质量的气体保持其压强不变,采用体积作为温度的标志。它只用于测量热力学温度(见热力学温标),很少用于实际的温度测量。

压力测温法采用压强作为温度的标志。属于这一类的温度计有工业用压力表式温度计、定容式气体温度计和低温下的蒸气压温度计三种。

压力表式温度计其密闭系统由温泡、连接毛细管和压力计弹簧组成,在密闭系统中充有某种媒质。当温泡受热时,其中所增加的压力由毛细管传到压力计弹簧。弹簧的弹性形变使指针偏转以指示温度。

二、温泡中的工作媒质有三种:气体、蒸气和液体。

1、气体媒质温度计如用氮气作媒质,最高可测到500~550°C;用氢气作媒质,最低可测到-120°C。

2、蒸气媒质温度计常用某些低沸点的液体如氯乙烷、氯甲烷、乙醚作媒质。温泡的一部分容积中放这种液体,其余部分中充满它们的饱和蒸气。

3、液体媒质一般用水银。

这类温度计适用于工业上测量精度要求不高的温度测量。

定容气体温度计保持一定质量某种气体的体积不变,用其压强变化来指示温度。这种温度计通常由温泡、连接毛细管、隔离室和精密压力计等组成。它是测量热力学温度的主要手段。1968年国际实用温标的大多数定义固定点的指定值都是根据这种温度计的测定结果来确定的。它在温标的建立和研究中起着重要的作用,而很少用于一般测量。

蒸气压温度计用于低温测量。它是根据化学纯物质的饱和蒸气压与温度有确定关系的原理来测定温度的一种温度计。它由温泡、连接毛细管和精密气压计等组成,工作媒质有氧、氮、氖、氢和氦。充氧的温度计使用范围为54.361~94K,氮为63~84K,氖为24.6~40K,氢为13.81~30K,氦为0.2~5.2K。蒸气压温度计的测温精度高,装置较为复杂,但比气体温度计简单,在测温学实验中常用作标准温度计。

电学测温法采用某些随温度变化的电学量作为温度的标志。属于这一类的温度计主要有热电偶温度计、电阻温度计和半导体热敏电阻温度计。

热电偶温度计是一种在工业上使用极广泛的测温仪器。热电偶由两种不同材料的金属丝组成。两种丝材的一端焊接在一起,形成工作端,置于被测温度处;另一端称为自由端,与测量仪表相连,形成一个封闭回路。当工作端与自由端的温度不同时,回路中就会出现热电动势(见温差电现象)。

当自由端温度固定时(如 0°C),热电偶产生的电动势就由工作端的温度决定。热电偶的种类有数十种之多。有的热电偶能测高达 3000°C的高温,有的热电偶能测量接近绝对零度的低温。电阻温度计根据导体电阻随温度的变化规律来测量温度。最常用的电阻温度计都采用金属丝绕制成的感温元件。主要有铂电阻温度计和铜电阻温度计。低温下还使用铑铁、碳和锗电阻温度计。

精密铂电阻温度计目前是测量准确度最高的温度计,最高准确度可达万分之一摄氏度。在-273.34~630.74°C范围内,它是复现国际实用温标的基准温度计。中国还广泛使用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型温度计。

半导体热敏电阻温度计利用半导体器件的电阻随温度变化的规律来测定温度,其灵敏度很高。主要用于低精度测量。

磁学测温法根据顺磁物质的磁化率与温度的关系(见顺磁性)来测量温度。磁温度计主要用于低温范围,在超低温(小于1K)测量中,是一种重要的测温手段。

声学测温法采用声速作为温度标志,根据理想气体中声速的二次方与开尔文温度成正比的原理来测量温度。通常用声干涉仪来测量声速。这种仪表称为声学温度计。主要用于低温下热力学温度的测定。频率测温法采用频率作为温度标志,根据某些物体的固有频率随温度变化的原理来测量温度。这种温度计叫频率温度计。

在各种物理量的测量中,频率(时间)的测量准确度最高(相对误差可小到1×10),近些年来频率温度计受到人们的重视,发展很快。石英晶体温度计的分辨率可小到万分之一摄氏度或更小,还可以数字化,故得到广泛使用。此外,核磁四极共振温度计也是以频率作为温度标志的温度计。

参考资料来源:网络-温度测量

阅读全文

与热学量的检测方法相关的资料

热点内容
实训课程的教学方法是什么 浏览:519
苯甲醇乙醚鉴别方法 浏览:76
苹果手机微信视频声音小解决方法 浏览:694
控制箱的连接方法 浏览:69
用什么简单的方法可以去痘 浏览:783
快速去除甲醛的小方法你知道几个 浏览:798
自行车架尺寸测量方法 浏览:118
石磨子的制作方法视频 浏览:146
行善修心的正确方法 浏览:400
薯仔炖鸡汤的正确方法和步骤 浏览:272
北京电流检测方法 浏览:481
手机u盘保护方法 浏览:113
数字搭配有哪些方法 浏览:666
约一场球的正确方法 浏览:187
在家中洗衣服的方法如何 浏览:293
28天锻炼腹肌最快的方法 浏览:202
简单练翘臀方法视频 浏览:760
心理诊断评估常用的方法有哪些 浏览:844
什么方法能让手机不黑屏 浏览:723
电脑开机慢的处理方法视频 浏览:724