‘壹’ 桩基础的检测方法与验收
一、施工前的质量验收
钢筋、水泥、混凝土配合比验收
二、施工过程中质量验收
(一)沉桩的质量控制及检验
打(沉)桩的质量控制
桩端位于一般土层时,以控制桩端设计标高为主,贯入度作参考。
桩端达到坚硬、硬塑的黏性土等,以贯入度控制为主,桩端标高作参考。
贯入度已达到,桩端标高未达到时,继续锤击3阵,按每阵10击的贯入度不大于设计规定的数值为准。
振动法沉桩,以最后3次振动(加压),每次10 min或 5 min,测出每分钟的平均贯入度,以不大于设计规定的数值为合格。
(二)打(沉)桩验收要求
桩位偏差表
对桩承载力的检验:桩的静荷载试验根数≥总桩数的1%,且≥3根;只有50根时, ≥2根。
桩身质量检验:高、低应变, ≥桩总数的15%,且每个承台不少于1根。
预制桩的检查,钢筋笼的检查。
施工中桩的垂直度、沉桩情况、桩顶完整状况、桩顶质量进行检查。
电焊接柱,抽10%作焊缝探伤检查。
(二)灌注桩质量要求及验收
平面位置和垂直度的要求;桩顶标高至少要比实际标高高出0.5m。
沉渣厚度要求:
试块要求:
桩静载试验的根数要求:
桩身质量的检验及数量要求;
对原材料的检验
三、桩的质量检验
(一)检测内容:
桩基础施工完后,应对基桩的承载力和桩身完整性进行检测与评价
1.桩身完整性 2.桩身缺陷 3.桩的强度(桩的承载力,桩身混凝土强度。
(二)检测方法:
1.破损试验
(1)静载试验 static loading test
在桩顶部逐级施加竖向压力、竖向上拔力或水平推力,观测桩顶部随时间产生的沉降、上拔位移或水平位移,以确定相应的单桩竖向抗压承载力、单桩竖向抗拔承载力或单桩水平承载力的试验方法。
(2)钻芯法 core drilling method
钻机钻取芯样检测桩长、桩身缺陷、桩底沉渣厚度以及桩身混凝土的强度、密实性和连续性,判定桩端岩土性状
(1)桩基小应变检测方法扩展阅读:
1、钻芯检测法:
由于大直钻孔灌注桩的设计荷载一般较大,用静力试桩法有许多困难,所以常用地质钻机在桩身上沿长度方向钻取芯样,通过对芯样的观察和测试确定桩的质量。但这种方法只能反映钻孔范围内的小部分混凝土质量,而且设备庞大、费工费时、价格昂贵,不宜作为大面积检测方法,而只能用于抽样检查,一般抽检总桩量的3~5%,或作为无损检测结果的校核手段。
2、振动检测法:
它是在桩顶用各种方法施加一个激振力,使桩体及至桩土体系产生振动。或在桩内产生应力波,通过对波动及波动参数的种种分析,以推定桩体混凝土质量及总体承载力的一种方法。这类方法主要有四种,分别为敲击法和锤击法、稳态激振机械阻抗法、瞬态激振机械阻抗法、水电效应法。
3、超声脉冲检验法:
该法是在检测混凝土缺陷的基础上发展起来的。其方法是在桩的混凝土灌注前沿桩的长度方向平行预埋若干根检测用管道,作为超声检测和接收换能器的通道。检测时探头分别在两个管子中同步移动,沿不同深度逐点测出横断面上超声脉冲穿过混凝土时的各项参数,并按超声测缺原理分析每个断面上混凝土质量。
4、射线法:
该法是以放射性同位素辐射线在混凝土中的衰减、吸收、散射等现象为基础的一种方法。当射线穿过混凝土时,因混凝土质量不同或因存在缺陷,接收仪所记录的射线强弱发生变化,据此来判断桩的质量
‘贰’ 桩基小应变检测的正常检测频率是多少
1、测试点数依桩径不同、测试信号情况不同而有所不同,一般要求桩径在120cm以上,测试3~4 点。
2、锤击点的选择。锤击点宜选择距传感器 20~30cm 处不必考虑桩径大小。
3、尽量多采集信号。一根桩不少于10 锤,在不同点,不同激振情况下,观测波形的一致性,以保证波形真实且不漏测。
(2)桩基小应变检测方法扩展阅读
低应变动力检测常用在桩基完整性检测中,基本原理:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性。
优势:如设备简单,方法快速,费用低,是普查桩身质量的一种有力手段,最受建设单位和施工单位的欢迎。
小应变的理论基础是一维应力波理论,基本原理是用小锤冲击桩顶,通过粘结在桩顶的传感器接受来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号,获得桩的完整性。
‘叁’ 桩基检测高应变方法
桩基检测高应变的方法:适用于检测基桩的竖向抗压承载力和桩身完整性;监测预制桩打入时的桩身应力和锤击能量传递比,为沉桩工艺参数及桩长选择提供依据。高应变法的主要功能是判定单桩竖向抗压承载力是否满足设计要求。
高应变法在判定桩身水平整合型缝隙、预制桩接头等缺陷时,能够在查明这些“缺陷“是否影响竖向抗压承载力的基础上,合理判定缺陷程度,可作为低应变法的补充验证手段。在某些地区,利用高应变法增加承载力和完整性的抽查频率,已成为一种普遍做法。
高应变检测的原理
高应变检测的基本原理就是往桩顶滞轴向施加一个冲击力,使桩产生足够的贯入度,实测由此产生的桩身质点应力和加速度的响应,通过波动理论分析,判定单桩竖向抗压承载力及桩身完整性的检测方法。
用重锤冲击桩顶,使桩~土之间产生足够的相对位移,以充分激发桩周土阻力和桩端支承力.从桩身运动方向来说,有产生向下运动和向上运动之分。习惯把桩身受压(无论是内力、应力还是应变)看作正的, 把桩身受拉看作是负的;把向下运动(不论是位移、速度还是加速度)看作正的,而把向上的运动看作负的。
以上内容参考:网络-高应变检测
‘肆’ 小应变检测
桩基的小应变不仅能测出桩长
还能测出桩身质量,是否有缩径断桩等问题
50C以内检测不出来,检测出来也可以说服检测者呢!70CM有点大哟,不过只要入岩了,在质量得到保证的情况下可以说服检测者!
‘伍’ 桩基低应变动力检测是什么
桩基低应变动力检测主要以低应变要测量桩身的刚度,然后再根据刚度换算桩身的强度。主要目的还是检测桩身砼强度,再根据桩身砼强度换算桩本身的承载力。
在桩顶面实施低能量的瞬态或稳态激振,使桩在弹性范围内做弹性振动,并由此产生应力波的纵向传播,同时利用波动和振动理论对桩身的完整性做出评价的一种检测方法,主要包括反射波法、机械阻抗法、水电效应法等等,其中反射波法物理意义明确、测试设备轻便简单、检测速度快、成本低,是基桩质量(完整性)普查的良好手段。
低应变是桩身完整性的一种测量方法。三、四类桩就是因为桩身有缺陷而被判定为这一类的桩。缩径、扩径、夹泥、离析等等是对桩身缺陷位置原因的书面称呼。
‘陆’ 桩基低应变检测数量有没有具体规范规定
要求承台抽检桩数不得少于1根。
当采用低应变法抽检桩身完整性所发现的Ⅲ、Ⅳ类桩之和大于抽检桩数的20%时,宜采用低应变法在未检桩中继续扩大抽检。
柱下三桩或三桩以下的承台抽检桩数不得少于1根;设计等级为甲级,或地质条件复杂、成桩质量可靠性较低的灌注桩,抽检数量不应少于总桩数的30%,且不得少于20根;其他桩基工程的抽检数量不应少于总桩数的20%,且不得少于10根。
(6)桩基小应变检测方法扩展阅读:
桩基低应变检测的相关要求:
1、核查检测报告有无桩身波速取值、桩身完整性描述、缺陷位置及桩身完整性类别、无时域信号时段所对应的桩身长度标尺、指数或线性放大的范围及倍数或幅频信号曲线分析的频率范围、桩底或桩身缺陷对应的相邻谐振峰间的频差等基本信息。
2、当施工质量有疑问的桩、设计方认为重要的桩、局部地质条件出现异常的桩、施工工艺不同的桩数量较多,或为了全面了解整个工程基桩的桩身完整性情况时,应适量增加抽检数量。
3、桩身完整性抽样检测,检测桩身缺陷及其位置,判定桩身完整性类别,检测方法应采用低应变法。低应变法试验应由具有相应检测资质的单位承担。
‘柒’ 什么是桩检验的大应变和小应变
桩检验的大应变和小应变是:
1、大应变检测是用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法,可用于断桩检测,为建筑业构造物下部结构桩基类质量检测术语。
2、小应变检测,也称为低应变动力检测,它是相对对大应变动力检测而言的。
低应变检测是从事岩土工程检测、结构检测、工程物探、工程测绘、房屋质量检测、室内环境质量检测、环境化学检测、环境工程、安全评价、水务设计与建设行业、水利水电行业、铁路、公路交通行业、化工、市政等行业岩土工程、地质灾害、环境保护相关的技术服务、咨询、开发工作,以及与上述业务相关的延伸业务。
(7)桩基小应变检测方法扩展阅读:
小应变有其方法本身的局限性:
1、对于多缺陷桩,应力波在桩中产生多次反射和透射,对实测波形的判断非常复杂且不准确,第二、第三缺陷的判断会有较大误差,一般不判断第三个缺陷。
2、不能定量计算桩底沉渣厚度。对端承桩的嵌岩效果只能做定性判断。因嵌岩有时出现较强的负向反射波,会严重影响桩底反射波和桩底沉渣的判断。
3、只能对桩身质量作定性描述,不能作定量分析,不能识别纵向裂缝,能反映水平裂缝和接缝,但程度很难掌握,易误判为严重缺陷。
4、桩身渐变扩径后的相对缩径易误判为缩径,渐变缩径或离析且范围较大时,缺陷反射波形不明显。
5、不能提供桩身混凝土强度。
参考资料
网络-小应变检测
网络-大应变检测
‘捌’ 桩基小应变检测
基桩小应变检测(也叫低应变动测法)是使用小橡胶锤敲击桩顶,通过粘接在桩顶的传感器接收来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号、频率信号,从而获得桩的完整性。
该方法检测简便,且检测速度较快,但如何获取好的波形,如何较好地分析桩身完整性是检测工作的关键。
(8)桩基小应变检测方法扩展阅读:
注意事项:
1、桩及桩基施工时所要用的其他材料如焊条,水泥,砂石等的的验收。包括质量合格的证明材料和现场验收的记录。通常只要有桩的质量合格证,生产厂家的生产许可证和检验报告。
2、桩施工过程中的记录,包括放线记录、打桩记录。
3、桩完成后的位置复核。
4、桩完成后的检测:包括静载和小应变。
5、如果施工过程中有失误,还应该有改正的申请、设计变更等方面的资料。
‘玖’ 低应变法检测基桩完整性是
低应变法是普查基桩的完整性,判定桩身缺陷程度和位置的一种常用方法。
低应变法是判断桩质量的重要途径之一,能大致检测桩身的完整程度,但是不能准确、全面地反映缺陷的真实情况。因此,对低应变动测曲线的判定应结合具体的工程条件,例如:工程地质情况、桩型、施工情况等因素。
低应变法是检测桩身完整性的有效方法之一,虽简便、快捷,但也存在一定的局限性,主要有:土阻力的干扰、波阻抗缓慢渐变、浅部缺陷难以辨别、难以识别多缺陷桩(波的透射能力限制)等。
影响因素:
1、脉冲发生器的影响:混凝土的材质和混凝土的强度不同,产生的应力波也不相同。同时,不同的脉冲对检测对象的灵敏度也不相同。
2、桩头的处理:桩头处理的好坏直接影响到测试信号的质量。桩头的处理应按照检测的要求,保证桩顶表面干净、干燥无积水;另外,在脉冲发生的部位和脉冲接收的部位也应该按要求处理平整,否则可能造成测量信号的失真。
3、传感器的安装、脉冲发生力度的掌握以及耦合剂的选用:传感器是检测桩身完整性最基本的器件,其质量的好坏直接影响到检测结果的准确性,通常选用的是频响应宽,对联线要求低的内装式加速度传感器(ICP),该传感器能很好的在恶劣工况下工作。为了获得真实的波信号,传感器安装在桩径2/3处的平整坚实的部位。
同时,传感器的安装应与脉冲发生点保持一定的距离,减轻过大负面反冲对浅部缺陷的掩盖。理论上传感器越轻、越贴紧桩面,与桩面的接触刚度越大,信号传递特性越好,釆集的信号也越接近桩面的振动情况。
‘拾’ 桩基低应变法检测实测信号复杂,应采用什么方法验证
一、定义
根据建筑基桩检测技术规范 JGJ106-2003
第2.1.6条,低应变:采用低能量瞬态或稳态激励方式在桩顶激励,实测桩顶速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判断的检测方法。
第2.1.7条,高应变:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。
高大钊版的《土力学与地基基础》关于大小应变的定义
大应变:指激励能量足以使桩土之间发生相对位移,使桩产生永久贯入度的动测法
小应变:指在激励能量较小,只能激发桩土体系(甚至只有局部)的某种弹性变形,而不能使桩土之间产生相对位移的动测法。
桩达到极限承载力时,即为桩周土达到塑性破坏。唯有大应变才能使桩产生一定的塑性沉降(贯入度),所测的土阻力才是土的极限阻力;小应变只能测得桩土体系的某些弹性特征值,而土的弹性变形与其强度之间并没有确定的关系。因此从理论上讲,小应变不能提供确切的单桩极限承载力,只能用于检验桩身质量。
二、何种桩需要检测
建筑基桩检测技术规范 JGJ106-2003第3.3.3条,单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:
1 施工质量有疑问的桩;
2 设计方认为重要的桩;
3 局部地质条件出现异常的桩;
4 施工工艺不同的桩;
5 承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;
6 除上述规定外,同类型桩宜均匀随机分布。
解释:对于基桩的检测包括单桩承载力及桩身完整性两个部分,这两个部分要求检测的数量不同。
三、低应变与高应变适用范围
低应变:适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。低应变法的理论基础以一维线弹性杆件模型为依据。因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。本方法对桩身缺陷程度只做定性判定,尽管利用实测曲线拟合法分析能给出定量的结果,但由于桩的尺寸效应、测试系统的幅频相频响应、高频波的弥散、滤波等造成的实测波形畸变,以及桩侧土阻尼、土阻力和桩身阻尼的耦合影响,曲线拟合法还不能达到精确定量的程度。对于桩身不同类型的缺陷,低应变测试信号中主要反映出桩身阻抗减小的信息,缺陷性质往往较难区分。例如,混凝土灌注桩出现的缩颈与局部松散、夹泥、空洞等,只凭测试信号就很难区分。因此,对缺陷类型进行判定,应结合地质、施工情况综合分析,或采取钻芯、声波透射等其他方法。
高应变:适用于检测基桩的竖向抗压承载力和桩身完整性;监测预制桩打入时的桩身应力和锤击能量传递比,为沉桩工艺参数及桩长选择提供依据。高应变法的主要功能是判定单桩竖向抗压承载力是否满足设计要求。这里所说的承载力是指在桩身强度满足桩身结构承载力的前提下,得到的桩周岩土对桩的抗力(静阻力)。所以要得到极限承载力,应使桩侧和桩端岩土阻力充分发挥,否则不能得到承载力的极限值,只能得到承载力检测值。与低应变法检测的快捷、廉价相比,高应变法检测桩身完整性虽然是附带性的,但由于其激励能量和检测有效深度大的优点,特别在判定桩身水平整合型缝隙、预制桩接头等缺陷时,能够在查明这些“缺陷”是否影响竖向抗压承载力的基础上,合理判定缺陷程度。当然,带有普查性的完整性检测,采用低应变法更为恰当。高应变检测技术是从打入式预制桩发展起来的,试打桩和打桩监控属于其特有的功能,是静载试验无法做到的。