㈠ 注塑成型常见产品缺陷的原因和解决方法,背的口诀
不花精力怎么可以学好一门技术呢?这个是没有什么口诀的,要多看书,多实践,理解注塑的原理。
㈡ 注塑产品常见问题
ASA树脂也称AAS树脂,是由丙烯腈(A)、苯乙烯(S)和丙烯酸酯(A)组成的三元接枝共聚物,与ABS相比,由于引入不含双键的丙烯酸酯橡胶取代了丁二烯橡胶,因而耐候性有了本质的改善,比ABS高出10倍左右,其他力学性能、加工性能、电绝缘性,耐化学品性与ABS相似。此外,ASA着色性良好,由于树脂本身耐候性优异,可以染成各种鲜艳颜色而不易褪色。用ASA树脂加工的制品,不用喷漆涂装、电镀等表面防护,可直接在户外使用,在日光下暴晒9~15个月,冲击强度和伸长率几乎没有下降,颜色也几乎没有变化。
物化性能
三元共聚物ASA可以用拥有专利权的专利反应工艺,或接枝工艺来生产。在反应法中,ASA是通过在苯乙烯和丙烯睛(SAN)的聚合反应过程中接技一种丙烯酸酯弹性体而制得,弹性体细粉末均匀地分散入并接校在SAN分子链上。
ASA杰出的耐候性来自于丙烯酸酯弹性体。对许多塑料而言,在日光辐射特别是在光谱的紫外线一端辐射与大气中氧气共同作用下,会发生脆化和变黄。ASA部件发生这种变化所需的时间比其它塑料长得多。
ASA部件即使在低温下也具有很高的光滑度,很好的化学稳定性和耐热性能,以及很高的冲击强度。ASA在1.82MPa的压力下,标准热变形温度为180—220°F;抗张强度为27.6~48.3MPa;断裂伸长率为 25—40%;弯曲模量1516~1723MPa;带切口的悬臂梁式冲击强度为9.0一11.0英尺•磅/英寸。
ASA能耐下列物质的作用:饱和烃、低芳烃汽油和润滑油、植物油与动物油、水、盐的水溶液、稀酸和稀碱。然而,它容易受浓无机酸、芳烃、氯代烃、酯。醚、酮和某些醇类的侵蚀。ASA比ABS有更好的抗环境应力断裂性能。ASA材料的阻燃级别是UL94—HB。
1、橡胶相玻璃化温度(Tg)对ASA冲击强度的影响 根据共聚合的橡胶相种类的不同,ASA的同系物有ABS、AES(乙烯-丙烯共聚橡胶作为橡胶主链)。研究表明,低Tg的橡胶相对SAN具有更好的冲击效果,几种橡胶相的Tg如下: 因此,在相同的橡胶含量下,常温冲击强度的顺序为ABS>AES>ASA,在耐低温冲击方面,也是ABS最优,AES其次,ASA较差。
2、橡胶接枝率对ASA性能的影响 ASA树脂的增韧机理主要是通过诱发银纹而吸收冲击能量,影响银纹产生的关键因素在SAN与橡胶相的界面结合力,界面结合力弱,产生的银纹就少,只能得到低的冲击强度。这就是为什么用丁腈橡胶与SAN掺混而制得ABS与用接枝了SAN的丁苯橡胶与SAN掺混而制得ABS相比,接枝了SAN而掺混的ABS冲击强度远远高于直接掺混而制得ABS的原因。因为接枝后,SAN树脂与橡胶界面粘结力增大,但接枝率超过一定程度,冲击强度不再提高,反而有下降趋势,这是因为随着橡胶主干接枝率的提高,橡胶弹性可能下降,而降低了橡胶由熵变而产生的效应。另外,接枝率上升,树脂流动性下降,因此,考虑到ASA树脂力学性能与加工性能的均衡性,应控制合适的接枝率。 SAN的种类、分子量对ASA性能的影响 提高掺混的SAN的分子量,ASA树脂的冲击强度提高,流动性下降;选用丙烯腈含量高的SAN掺混,树脂的拉伸强度、冲击强度、熔体强度得以提高,流动性下降,耐化学品性提高。因此,改变与接枝的ASA粉掺混的SAN的种类、牌号,可以生产具有不同物性的产品,使牌号多样化。
3、橡胶含量对ASA性能的影响 一般说来,掺混的SAN品种固定时,提高橡胶含量,拉伸强度、弯曲强度、热变形温度、MI下降,而冲击强度、拉伸断裂伸长率提高。因此,通过调节橡胶含量,可以制备通用型和高冲型ASA树脂。
4、ASA树脂的耐老化性能 能使ASA中SAN树脂相老化的光波波长是250~290nm,该波段在日光中含量较少,通过添加合适的紫外线吸收剂、光稳定剂和炭黑等紫外线屏敝剂,可以对SAN起到很好的防护作用。对于橡胶相,太阳光中波长小于700nm的光波都是有足够的能量对丁二烯起光氧化作用,但只有小于300nm的光波对丙烯酸酯起光氧化作用。紫外线吸收剂对光波的吸收具有选择性,一般可有效吸收270~400nm的光波。所以对于ABS,只有加入炭黑、钛白粉等屏敝剂才能对树脂起到明显的防护作用,紫外线吸收剂起到的防护作用有限。对于ASA,加入适量的光稳定剂和紫外线吸收剂、颜料,就可以起到很好的防护作用。 ASA树脂的共混改性 ASA树脂具有优异的耐气候性,良好加工性能,耐化学药品性,均衡的力学性能。但通用ASA树脂也存在热变形温度低,耐寒性差等缺点,限制了ASA在某些领域的应用。因此,有必要将ASA进行共混改性,以拓展其应用领域。 ASA树脂耐热改性 通用ASA树脂的热变形温度与通用ABS相似,约80~85℃,(1.82MPa,6.4mm,未退火)。一般说来,选用高丙烯腈含量、高分子量的SAN掺混,减少丙烯酸酯橡胶,可以提高HDT,但提高的幅度不大。通过引入空间位阻大、刚性高的单体,可以制备耐热ASA树脂,已工业化的方法主要有以下几种: 1)用α-甲基苯乙烯全部或部分替代苯乙烯单体共聚合,可以制备耐热ASA树脂。但用该法制备的ASA树脂的HDT提高的程度有限。由于α-SMAN的Tg为140~150℃,所以最高热变形温度可提高至110~115℃,但流动性下降,颜色发黄,光泽变差,制品发脆。 2)用SMA作为耐热组分与ASA共混,可以制备耐热ASA,但耐热温度提高也有限。 3)引入N-苯基马来酰亚胺(NPMI)单体共聚,既保持了平面五元环结构,又增加了侧链的极性与空间位阻,可以赋予ASA树脂更高的热变形温度与热稳度性,如将NPMI与PS共聚,共聚物的Tg可高达195℃,再将共聚物与ASA掺混,可赋予ASA较高的HDT。根据共聚物不同的掺混比例,可制备不同耐热等级的ASA树脂,甚至可开发HDT高达120℃以上的极超耐热ASA树脂,该方法是目前提高ASA树脂耐热性的最好方法之一。目前,锦湖日丽用NPMI法,已开发系列商品化耐热ASA牌号。 4)将PC与ASA共混,制备ASA/PC合金,也可以制备耐热ASA。 ASA/AES共混合金 由于ASA的橡胶相Tg为-45℃,所以ASA树脂耐低温冲击强度不高,将ASA与AES共混,既保持了树脂耐候性,又提高了树脂的耐寒性,可满足低温使用的场合。 ASA/PC合金 ASA树脂与PC 具有一定的相容性,将ASA与PC共混,可以大大提高ASA的冲击强度,热变形温度,同时,保持了树脂优异的耐候性、光泽度,应用于汽车、商用机器设备、消费电子产品。添加相容剂,改善ASA树脂与PC树脂界面的结合,有利于提高合金性能,ASA/PC合金的性能特点主要表现在以下几个方面: 1)力学性能:ASA/PC合金的弯曲强度、弯曲模量、拉伸强度与PC相当,薄壁冲击强度高于ASA,与PC相当。在厚制品应力开裂、低温冲击、缺口敏感性方面优于PC,在抗冲击强度方面显示出良好的协同效应,特别适合于制作结构制品。高的力学强度还有利于制品的薄壁设计,使制品轻量化。 2)耐温性能:ASA/PC合金的热变形温度介于ASA和PC之间,呈现一定的线性关系。 3)流变性能和加工性能:ASA/PC合金的熔体指数比PC高,可成型大型薄壁制件,升高温度和压力都可以提高ASA/PC的MI,升温比提高压力更有效。 4)耐候性:ASA/PC的耐候性优于ABS/PC,不经涂装可直接应用于室外制品,既使用于室内制品,良好的耐候性意味着长期使用,也能保持着色制品鲜艳如初的色彩。选用合适的阻燃剂,可生产阻燃耐候的ASA/PC树脂。 ASA/PBT合金 ASA与PBT不相容,必须添加合适的相容剂,才能制备具有良好性能的ASA/PBT合金,一般选用与PBT具有一定相容性的ASA同系物作为相容剂,如PMMA、MBS、SMA等。ASA与PBT共混,可以大大改善ASA的加工流动性,进一步提高ASA树脂耐化学品性,耐刮伤性,同时改善了PBT的尺寸稳定性,耐候性优秀,冲击强度高,特别适用生产大型薄壁制品,如汽车保险杠、防擦条、商用机器壳体、手提电脑外壳等。
注塑工艺
ASA 注塑成型参考工艺
项目 单位 ASA801 ASA7045
干燥温度 ℃ 75~85 85~95
干燥时间 h 3~4 3~4
注塑温度 喷嘴 ℃ 200~220 220~240
一段 ℃ 200~230 220~250
二段 ℃ 200~230 220~250
三段 ℃ 180~210 200~230
模具温度 ℃ 40~80 60~90
注塑压力 一级压力 MPa 80~120 80~120
二级压力 MPa 60~90 60~90
三级压力 MPa 40~60 40~60
背压 MPa 1~4 1~5
二次加工
ASA树脂可以用大多数传统方法进行加工。这些方法包括型材及片材挤塑和共挤塑、注塑、结构泡沫模塑和挤压吹塑。挤塑片材可以热成型。
吹塑应在有槽的、有冷却和热绝缘的加料段的挤压机中进行。螺杆应有略深的螺纹,以减少摩擦热。使用带有蓄料器的挤压机效果最好。
要把ASA树脂切片进行预干燥。要在加工之前,用一个空气循环炉在185°F下把切片预干燥4—6小时。ASA部件可以用热旋转焊接技术;在某些场合,超声焊接也是可能的。ASA部件还可以用2一丁酮、二氯乙烯或环己烷进行溶剂焊接。不用进行表面预处理,部件就很容易接受并保持印刷和涂漆。也可能用传统方法进行真空镀金属。
应用范围
ASA杰出的耐候性使它在下述领域内十分有用:建筑领域、用作水槽、排水管及管件、标志牌、邮筒、轻便家用护墙板、花盆、百叶窗框装饰。
休闲娱乐:户外家具、挡风板、游泳池泵及过滤器外壳、温泉、水池用台阶及小船。
汽车和运输:外侧视镜壳体、托架。保险杆封皮、装饰。
常见问题
溢料飞边、气泡、缩痕、熔接痕、烧焦及黑纹、银丝及斑纹、表面划痕、表面雾状及花纹、烧焦变色及杂质、烧黑、光泽不良、龟裂泛白、颜色不均、脆弱、分层剥离、翘曲变形、脱模不良、模具严重腐蚀。
㈢ 注塑产品缺陷
改性塑料注塑成型的日常生产中,很有可能会产生一些问题,较为常见的缺陷主要包括暗斑、光泽差异以及表面起皱(也被称作为橘皮),一般来说这些缺陷的问题经常发生在浇口附近,那么今天我们就从模具以及成型工艺方面来对缺陷产生的原因进行分析。
光泽差异
对于注塑塑料制品来说,在有纹理的制品表面,其光泽的不同是最为明显的。即使模具的表面十分均匀,不规则的光泽也可能出现在制品上。也就是说,制品某些部位的模具表面效果没有很好地得以重现。
随着熔体离开浇口的距离逐渐增加,熔体的注射压力逐渐降低。如果制品的浇口远端不能被充满,那么该处的压力就是最低的,从而使模具表面的纹理不能被正确地复制到制品表面上。因此,在模腔压力最大的区域(从浇口开始的流体路径的一半)是最少出现光泽差异的区域。
要改变这种状况,可以提高熔体和模具温度或者提高压力,同时增加保压时间也能够减少光泽差异的产生。
塑料制品的良好设计也能够减少光泽差异出现的几率。例如,制品壁厚的剧烈变化能够造成熔体的不规则流动,从而造成模具表面纹理难以被复制到制品表面。因此,设计均匀的壁厚能够减少这种状况的发生,而过大的壁厚或过大的肋筋会增加光泽差异产生的几率。另外,熔体不充分的排气也是造成此缺陷的一个原因。
暗斑
暗斑出现在浇口附近,就像昏暗的日晕。在生产高粘度、低流动性材料的塑料制品时,如PC、PMMA或者ABS时尤为明显。在冷却的表面层树脂被中心流动的树脂带走时,制品表面就可能出现这种可见的缺陷。
人们通常认定这种缺陷频繁发生在充模和保压阶段。事实上,暗斑出现在浇口附近,通常发生在注射周期的开始阶段。试验表明,表层滑移的发生实际上要归因于注射速度,更确切地说是熔体流前端的流动速度。
浇口周围的暗斑以及在尖锐的转角形成后出现的暗斑,是由于初始注射速度太高,冷却的表面被内部的流体带动发生移位而产生的。逐渐增加注射速度并分步注射能够客服此缺陷。
即使当熔体进入模具时的注射速度是恒定的,它的流动速度也会发生变化。在进入模具浇口区域时,熔体流速很高,但是进入模腔以后即充模阶段,熔体流速开始下降。熔体流前端流速的这种变化会带来制品表面缺陷。
减小注射速度是解决这个问题的一种方法。为了降低浇口处熔体流前端的速度,可以将注射分成几个步骤进行,并逐渐增加注射速度,其目的是在整个充模阶段获得均一的熔体流速。
低熔体温度是塑料制品产生暗斑的另一个原因。提高机筒温度、提高螺杆背压能够减少这种现象发生的几率。另外,模具的温度过低也会产生表面缺陷,所以提高模具温度是克服制品表面缺陷的另一个可行的办法。
模具设计缺陷也会在浇口附近产生暗斑。浇口处尖锐的转角能够通过改变半径来避免,在设计时要留心浇口的位置和直径,看看浇口的设计是否合适。
暗斑不但会发生在浇口位置,而且也经常会在塑料制品尖锐的转角形成后出现。例如,制品的尖锐转角表面一般非常光滑,但是在其后面就非常灰暗且粗糙。这也是由于过高的流速和注射速度致使冷却表面层被内部流体取代发生滑动而造成的。
再次推荐采用分步注射并逐渐增加注射速度。最佳的方法是允许熔体只是在流过锐角边缘后其速度才开始增加。
在远离浇口的区域,制品发生角度的尖锐变化也会造成这种缺陷。因此设计制品时要在那些区域使用更为平滑的圆角过渡。
橘皮
“橘皮”或者表面起皱缺陷一般发生在用高粘度材料成型厚壁制品时的流道末端。在注射过程中,若熔体流动速度过低,塑料制品表面会迅速固化。随着流动阻力的加大,熔体前端流将会变得不均匀,致使先固化的外层材料不能与型腔壁充分接触,从而产生了皱褶。
这些皱褶经过固化和保压后就会变成不可消除的缺陷。对于该缺陷,解决的方法是提高熔体温度并且提高注射速度。
希望以上内容可以帮到你,谢谢。
㈣ 注塑成型各种缺陷及解决方法
改性塑料注塑成型的日常生产中,很有可能会产生一些问题,较为常见的缺陷主要包括暗斑、光泽差异以及表面起皱(也被称作为橘皮),一般来说这些缺陷的问题经常发生在浇口附近,那么今天我们就从模具以及成型工艺方面来对缺陷产生的原因进行分析。
光泽差异
对于注塑塑料制品来说,在有纹理的制品表面,其光泽的不同是最为明显的。即使模具的表面十分均匀,不规则的光泽也可能出现在制品上。也就是说,制品某些部位的模具表面效果没有很好地得以重现。
随着熔体离开浇口的距离逐渐增加,熔体的注射压力逐渐降低。如果制品的浇口远端不能被充满,那么该处的压力就是最低的,从而使模具表面的纹理不能被正确地复制到制品表面上。因此,在模腔压力最大的区域(从浇口开始的流体路径的一半)是最少出现光泽差异的区域。
要改变这种状况,可以提高熔体和模具温度或者提高压力,同时增加保压时间也能够减少光泽差异的产生。
塑料制品的良好设计也能够减少光泽差异出现的几率。例如,制品壁厚的剧烈变化能够造成熔体的不规则流动,从而造成模具表面纹理难以被复制到制品表面。因此,设计均匀的壁厚能够减少这种状况的发生,而过大的壁厚或过大的肋筋会增加光泽差异产生的几率。另外,熔体不充分的排气也是造成此缺陷的一个原因。
暗斑
暗斑出现在浇口附近,就像昏暗的日晕。在生产高粘度、低流动性材料的塑料制品时,如PC、PMMA或者ABS时尤为明显。在冷却的表面层树脂被中心流动的树脂带走时,制品表面就可能出现这种可见的缺陷。
人们通常认定这种缺陷频繁发生在充模和保压阶段。事实上,暗斑出现在浇口附近,通常发生在注射周期的开始阶段。试验表明,表层滑移的发生实际上要归因于注射速度,更确切地说是熔体流前端的流动速度。
浇口周围的暗斑以及在尖锐的转角形成后出现的暗斑,是由于初始注射速度太高,冷却的表面被内部的流体带动发生移位而产生的。逐渐增加注射速度并分步注射能够客服此缺陷。
即使当熔体进入模具时的注射速度是恒定的,它的流动速度也会发生变化。在进入模具浇口区域时,熔体流速很高,但是进入模腔以后即充模阶段,熔体流速开始下降。熔体流前端流速的这种变化会带来制品表面缺陷。
减小注射速度是解决这个问题的一种方法。为了降低浇口处熔体流前端的速度,可以将注射分成几个步骤进行,并逐渐增加注射速度,其目的是在整个充模阶段获得均一的熔体流速。
低熔体温度是塑料制品产生暗斑的另一个原因。提高机筒温度、提高螺杆背压能够减少这种现象发生的几率。另外,模具的温度过低也会产生表面缺陷,所以提高模具温度是克服制品表面缺陷的另一个可行的办法。
模具设计缺陷也会在浇口附近产生暗斑。浇口处尖锐的转角能够通过改变半径来避免,在设计时要留心浇口的位置和直径,看看浇口的设计是否合适。
暗斑不但会发生在浇口位置,而且也经常会在塑料制品尖锐的转角形成后出现。例如,制品的尖锐转角表面一般非常光滑,但是在其后面就非常灰暗且粗糙。这也是由于过高的流速和注射速度致使冷却表面层被内部流体取代发生滑动而造成的。
再次推荐采用分步注射并逐渐增加注射速度。最佳的方法是允许熔体只是在流过锐角边缘后其速度才开始增加。
在远离浇口的区域,制品发生角度的尖锐变化也会造成这种缺陷。因此设计制品时要在那些区域使用更为平滑的圆角过渡。
橘皮
“橘皮”或者表面起皱缺陷一般发生在用高粘度材料成型厚壁制品时的流道末端。在注射过程中,若熔体流动速度过低,塑料制品表面会迅速固化。随着流动阻力的加大,熔体前端流将会变得不均匀,致使先固化的外层材料不能与型腔壁充分接触,从而产生了皱褶。
这些皱褶经过固化和保压后就会变成不可消除的缺陷。对于该缺陷,解决的方法是提高熔体温度并且提高注射速度。
㈤ 注塑产品缺陷判定标准
《产品质量法》第46条这样定义“缺陷”:缺陷是指产品存在危及人身、他人财产安全的不合理的危险;产品有保障人体健康和人身、财产安全的国家标准、行业标准的,是指不符合该标准。因此,产品是否存在缺陷按这样的顺序判断:有标准,看是否符合;虽符合标准,再看是否存在有不合理的危险;无标准,看是否存在有不合理的危险。判断是否符合标准,可以通过对比或者技术鉴定方法证明;判断产品是否存在不合理的危险,可以通过技术鉴定方法证明,也可以通过判断有无合理使用产品推定是否存在缺陷:如果在合理使用的情况下,又无其他外部原因的,产品却造成了损害,那就说明:要么产品制造或者设计有问题,存在制造缺陷或者设计缺陷;要么该危险虽然是合理使用产品的必然产物,但因生产者、销售者未进行充分的说明与警示而存在警示缺陷。不管是制造缺陷、设计缺陷还是警示缺陷,都是产品存在缺陷,应当承担侵权责任。这里提醒大家的是:使用超过质量保证期也就是安全使用年限的产品,造成损害的,不构成产品侵权责任,因此,超过质量保证期的产品不要继续使用。法律依据:《中华人民共和国产品质量法》第四十六条本法所称缺陷,是指产品存在危及人身、他人财产安全的不合理的危险;产品有保障人体健康和人身、财产安全的国家标准、行业标准的,是指不符合该标准。
㈥ 注塑常见问题及解决办法
注塑生产时,会遇到浮纤问题,露纤就是玻璃纤维露在产品表面,比较粗糙,外观上比较难以接受,产生的可能原因分析:在添加这类填充物的时候,一般是采用物理混合方法, 所以只是玻纤均匀分散在塑料中间,但在塑料融化后,这个混合物会出现不同程度的分离(视添加的比例和玻纤的长短而定,还有原料的温度也有一定程度的影响)
那玻纤为什么会外露呢?
在射胶的时候,料的流动虽不同于液体的流动方式(液体是牛顿流动,塑胶是非牛顿流动),但有一种说法比较有意思也比较通俗易懂。大家应该看过河流里面,在 河流里有一些树枝等杂物,经常会在沿岸边有一些这类依附河岸而停留。因为在河岸边水的流速因为阻力而变慢,这个就和充填时的表皮层有类似了。所以这些树枝在注塑中,就是玻纤外露,也就是浮纤了。
这是因为玻纤相对于塑料的流动要差很多,而塑料在模具中的流动是喷泉式流动(喷泉效应),从中间往两边翻动的方式流动,所以流动性最好的肯定是跑到最前面,流动性不好的就会停留在模具表面(做PP等原料时结合线和最后部位颜色不同也同此理,只是在最前端一般是蜡质,和色粉分离了特别是加色母最明显,因为 色母一般是用PE做载体),还有做防火料模具表面吸附防火剂也是这个原因。
一般采用如下方法可以降低浮纤的比例:
1.增加充填速度
在增加速度之后,玻纤和塑料虽然存在流速不同,但相对于高速射胶而言,这个相对速度差的比例就小了,就像河流在激流地段永远不会有树枝留下一样的道理。
2.升高模具温度
这个作用是最大的,增高模具温度,就是为了减少玻纤和模具接触阻力,让玻纤和塑料的速度差尽量变小。并且让塑料流动时的中间熔融层尽量厚,让两边的表皮层尽量薄,这样就好像光滑的河岸无法留住树枝一样的道理。RHCM就是利用这个原理来做到外观无浮纤的。
3.降低螺杆计量段的温度,减少溶胶量
这是让塑料盒玻纤分离的可能性尽量降低,一般来讲对于浮纤影响最小,在实际操作中效果不大。但是,这个可以很好的解决烧焦。这是因为增加玻纤后,玻纤的体积相对于塑料要大很多,所以很容易堵住排气通道,所以在最后很难排气,并且玻纤在高压高氧气体环境中是很容易燃烧的!
㈦ 注塑产品有缺料要写原因及措施
注塑产品产品缺料可能原因有:
1、注塑速度不足;
2、塑料短缺,比如说改性PP料短缺;
3、螺杆在行程结束处没留下螺杆垫料;
4、运行时间的变化;
5、射料缸温度太低;
6、注塑压力不足;
7、射嘴部分被封。
人们对塑料制品的外观和使用性能要求越来越高,翘曲变形程度作为评定产品质量的重要指标之一也越来越多地受到模具设计者的关注与重视。模具设计者希望在设计阶段预测出塑料件可能产生翘曲的原因,以便加以优化设计,从而提高注塑生产的效率和质量,缩短模具设计周期,降低成本。
注塑产品特点:
1)生产注塑制品需要的模具少。
2)所需的劳动力相对较低。
3)注塑制品的生产效率高。 4)注塑成型时对原料的浪费很少。
5)设计、制造和试模的周期很长,投产较慢。
6)启动投资大,故不适合小批量塑件的生产。
7)成型制品的质量受多种因素限制,因此对技术要求较高,掌握的难度较大。
以上内容参考:网络-注塑制品
㈧ 注塑产品缺陷机理及解决方案100例 怎么样
全部案例来源自实践,值得一读
㈨ 注塑产品凹痕什么原因造成,怎么解决
塑件凹陷的主要表现是:塑件表面不平整,向内产生浅坑或陷窝。原因主要会聚中于以下三点:
生产缺陷缺陷产生的原因及其排除方法
塑件在冷却过程中,由于外层紧靠型腔的地方先行冷却固化,而其内部后冷却固化,在塑件固化过程中,内外的收缩不一致,导致塑件外层发生塑性变形,即外层内陷形成凹陷。就宏观上讲,凹陷多发生在塑件壁厚最厚的地方或壁厚急剧改变的地方,其具体分析如下。模具缺陷有可能会出现在注塑模具结构上
1、若模具的浇口及流道截面积过小,充模阻力便会增大,易于产生凹陷,对此,应扩大相应位置的截面积。
2、若浇注系统流道中有”瓶颈“,使某一部位的熔体流动不畅,影响压力传递,对此,应适当扩大流道截面积、特别不能存在”瓶颈“部位。
3、若模具密封不好,使得型腔内的压力不均衡且压力偏低,导致产生凹陷,对此,应仔细检查模具的密封性能、影响模具密封性能的因素很多,如模具加工、过度磨损、导向不良、分型面有异物等,在?明情况后分别处理。
4、若模具的排气不良,会影响熔体的充模情况,导致产生补缩和凹陷,对此,务必使排气系统工作良好,可从设计和使用上进行检查。
5、若浇口的位置不对称,熔体进入各型腔的速度不同,使各型腔中的塑件冷却不均衡而产生凹陷,对此,应把浇口尽量设置在对称处。
6、厚壁塑件是最容易产生凹陷的,为减少凹陷的出现,浇口形式的选择较为关键,如翼式浇口对消除凹陷的效果就非常好。
7、若模具冷却不均衡或冷却不足,很易产生凹陷,对此,必须重视冷却系统的设计和制造,对于易产生凹陷的部位应强化冷却措施。
工艺缺陷重要因素是注塑工艺
1、若熔体温度太高,塑件冷却不足,容易引起塑件凹陷,对此,应降低熔体温度。
2、若模具温度太高,易引起塑件出现凹陷,对此,应适当加大冷却水量或降低冷却水温度。
3、若注射时间和保压时间太短,熔体充模不充分,易出现凹陷。对此,应适当延长注射时间和保压时间。
4、若注射压力太低,会降低充模速度而出现凹陷,对此,应适当提高注射压力。