2. 重金属离子有哪些检测方法
地表水环境质量标准(GB3838)中有多种重金属的多种检测方法标准。
3. 重金属检查法有哪些各适用于什么药物中的重金属检查
1、硫代乙酰胺法
在pH为3.5的醋酸盐溶液中,以硫代乙酰胺为显色剂。适用于大多数在水或乙醇中溶解,并在酸性下稳定的药物。
2、炽灼残渣法
取炽灼残渣项下的遗留残渣,按硫代乙酰胺法操作。适用于在水或乙醇中难溶,或能与重金属离子形成配位化合物的有机药物。
3、硫化钠法
在碱性下,以硫化钠为显色剂。适用于难溶于稀酸但能溶于碱性水溶液的药物。
4、微孔滤膜法
按硫代乙酰胺法操作,生成的硫化物富集于微孔滤膜上,比较色斑深浅。适用于重金属限量低的药物。
注意事项
1、在酸性溶液中检查重金属,以硫代乙酰胺产生硫化氢作为显色剂,如用硫化钠试液,容易分解析出硫,引起浑浊而影响比色。在碱性溶液中,则用硫化钠试剂作为显色剂。
2、标准铅取样量在20μg左右时,适用目视观察,如小于10μg,则显色太浅,如高达30μg时,则显色太深,不利用观察与区别。
3、微量高铁离子的存在影响重金属检查,可加维生素C还原成亚铁离子消除干扰。
4、若药物本身影响重金属的检查,可加人掩蔽剂。
5、为了消除试剂可能夹杂的重金属,例如使用盐酸超过lml,氨试液超过2ml,以及用硫酸或硝酸有机破坏,或加入其他试剂时,除另有规定外,对照溶液应取同样量试药在坩埚或瓷吼中蒸干后,依法检查。
以上内容参考 网络--重金属检查法
4. 检测各种重金属的方法
重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属)。约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。
例如,汞中毒的临床表现有:全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。
重金属中毒会使体内的蛋白质凝固,这个你可以从高三的化学书看到。如果轻微中毒就大量喝牛奶。牛奶中的蛋白质会和重金属反应。这样不会损伤到你自身的身体机能。喝了以后还必须马上就医。
对于测定方法,请登录中国文献网cnki去查询相关资料,如果查不到请加我为好友,我帮你查
5. 重金属检测方法有哪些
食品中重金属元素限量的检测方法有光度法、比浊法、斑点比较法、色谱法、光谱法、电化学分析法、中子活化分析等.有关国家标准均详细规定了食品中重金属元素的含量测定方法.以下列出的是食品中的铅、镉、汞和砷的国家标准检测方法.
(1)食品中铅的常用检测方法有:石墨炉原子吸收光谱法,其检出限为5微克/千克;火焰原子吸收光谱法,检出限为0.1毫克/千克;单扫描极谱法,检出限为0.085毫克/千克;二硫腙光度法,检出限为0.25毫克/千克;氢化物原子荧光光谱法,检出限为5微克/千克.
(2)食品中镉的常用检测方法有:石墨炉原子吸收光谱法,其检出限为0.1微克/千克;火焰原子吸收光谱法,检出限为5微克/千克;光度法,检出限为50微克/千克;原子荧光法,检出限为1.2微克/千克.
(3)食品中总汞的常用检测方法有:原子荧光光谱分析法,检出限为0.15微克/千克;冷原子吸收光谱法,检出限为0.4微克/千克(压力消解法)或10微克/千克(其它消解法);二硫腙光度法,检出限为25微克/千克.甲基汞的分析常常先用酸提取巯基棉吸附分离,然后用气相色谱法或冷原子吸收光谱法进行测定.
(4)食品中总砷的常用检测方法有:氢化物原子荧光光谱法,检出限为0.01毫克/千克;银盐法,检出限为0.2毫克/千克;砷斑法,检出限为0.25毫克/千克;硼氢化物还原光度法,检出限为0.05毫克/千克.
6. 重金属检查法有哪些
1常规分析:滴定等(常量分析时常用)。
2光谱类分析:紫外分光光度计(比如测六价铬)、原子吸收分光光度计(可测大部分金属)、ICP-OES(大部分金属和非金属)、原子荧光、X荧光等。
3一些专用测试仪,比如测汞仪等
7. 玩具重金属的检测方法有哪些
重金属的概念 :重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属)。约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,且所有重金属超过一定浓度都对人体有毒。
有关限制玩具及儿童护理用品的邻苯二甲酸盐含量的欧盟第2005/84/EC号指令,于2007年1月16日生效,所有欧盟成员国已于2007年7月16日前将该指令转化为本国法例,2008年1月16日开始实行各自的有关法例。根据指令规定,儿童护理用品是指任何有助儿童睡眠、放松、保持卫生,以及喂哺儿童或让儿童吸吮的产品,当中包括各种形状及类型奶嘴。欧洲标准化委员会于1994年12月13日批准了新的《对某些元素转移的要求》(EN71-3:1994)玩具安全标准,并要求EN71-3:1988标准于1995年6月废除,后又于2000年3月11日批准了EN71-3:1994+A1:2000标准(即2000版),并规定此标准最迟在2000年10月开始实施,其它相关的标准同时作废。
检测的目的:从环境污染方面,重金属是指汞、镉、铅以及“类金属”——-砷等生物毒性显着的重金属。对人体毒害最大的有4种:铅、汞、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。
8. 重金属的检测方法
重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属)。约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。
例如,汞中毒的临床表现有:全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。
重金属中毒会使体内的蛋白质凝固,这个你可以从高三的化学书看到。如果轻微中毒就大量喝牛奶。牛奶中的蛋白质会和重金属反应。这样不会损伤到你自身的身体机能。喝了以后还必须马上就医。
对于测定方法,请登录中国文献网CNKI去查询相关资料,如果查不到请加我为好友,我帮你查
9. 重金属检测方法
重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)对国内用户而言,仪器成本高。阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品。
1原子吸收光谱法(AAS)
原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。这种方法根据被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。AAS法检出限低,灵敏度高,精度好,分析速度快,应用范围广(可测元素达70多个),仪器较简单,操作方便等。火焰原子吸收法的检出限可达到10的负9次方级(10ug/L),石墨炉原子吸收法的检出限可达到10ug/L,甚至更低。原子吸收光谱法的不足之处是多元素同时测定尚有困难。
原子吸收分析过程如下:1、将样品制成溶液(空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。
现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。现在已研制出气相色谱一原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领域。
2原子荧光法(AFS)
原子荧光光谱法是通过待测元素的原子蒸气在特定频率辐射能激发下所产生的荧光发射强度来测定待测元素含量的一种分析方法。原子荧光光谱法虽是一种发射光谱法,但它和原子吸收光谱法密切相关,兼有原子发射和原子吸收两种分析方法的优点,又克服了两种方法的不足。原子荧光光谱具有发射谱线简单,灵敏度高于原子吸收光谱法,线性范围较宽干扰少的特点,能够进行多元素同时测定。原子荧光光谱法的检出限比原子吸收法要低,谱线清洗干扰少,灵敏度较高,线性范围大,但是测定的金属种类有限。
原子荧光光谱仪可用于分析汞、砷、锑、铋、硒、碲、铅、锡、锗、镉锌等11种元素。现已广泛用环境监测、医药、地质、农业、饮用水等领域。
现已研制出可对多元素同时测定的原子荧光光谱仪,它以多个高强度空心阴极灯为光源,以具有很高温度的电感耦合等离子体(ICP)作为原子化器,可使多种元素同时实现原子化。多元素分析系统以ICP原子化器为中心,在周围安装多个检测单元,与空心阴极灯一一成直角应,产生的荧光用光电倍增管检测。光电转换后的电信号经放大后,由计算机处理就获得各元素分析结果。
3紫外-可见分光光度法(UV)
其检测原理是:重金属与显色剂一通常为有机化合物,可与重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比。在特定波长下,比色检测。
分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即显色”,然后测定。虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用广泛的测试手段。显色剂分为无机显色剂和有机显色剂,而以有机显色剂使用较多。大多数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物。显色反应的选择性和灵敏度都较高。有些有色螯合物易溶于有机溶剂,可进行萃取浸提后比色检测。近年来形成多元配合物的显色体系受到关注。多元配合物的指三个或三个以上组分形成的配合物。利用多元配合物的形成可提高分光光度测定的灵敏度,改善分析特性。显色剂在前处理萃取和检测比色方面的选择和使用是近年来分光光度法的重要研究课题。
4 X射线荧光光谱法(XRF)
X射线荧光光谱法是利用样品对x射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的一种方法。它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单,光谱干扰少,试样形态多样性及测定时的非破坏性等特点。它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6。与分离、富集等手段相结合,可达10-8。测量的元素范围包括周期表中从F-U的所有元素。多道分析仪,在几分钟之内可同时测定20多种元素的含量。x射线荧光法不仅可以分析块状样品,还可对多层镀膜的各层镀膜分别进行成分和膜厚的分析。
当试样受到x射线,高能粒子束,紫外光等照射时,由于高能粒子或光子与试样原子碰撞,将原子内层电子逐出形成空穴,使原子处于激发态,这种激发态离子寿命很短,当外层电子向内层空穴跃迁时,多余的能量即以x射线的形式放出,并在外层产生新的空穴和产生新的x射线发射,这样便产生一系列的特征x射线。
特征x射线是各种元素固有的,它与元素的原子系数有关。所以只要测出了特征x射线的波长λ,就可以求出产生该波长的元素。即可做定性分析。在样品组成均匀,表面光滑平整,元素间无相互激发的条件下,当用x射线(一次x射线)做激发原照射试样,使试样中元素产生特征x射线(荧光x射线)时,若元素和实验条件一样,荧光x射线强度与分析元素含量之间存在线性关系。根据谱线的强度可以进行定量分析。