① 高等数学里的积分是为了解决什么生活问题,而产生的
大体上,这是2个科学家分别独立完成的。在他们研究各自的领域物理和几何时,发现以前的计算方法不够用了,于是自己动手研究出了一门伟大的学问——微积分。十七世纪下半叶,在前人工作的基础上,英国大科学家ㄈ牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。
② 定积分的数学思想方法
定积分的数学思想方法是
等分(区间),近似求积(曲边梯形的面积)
求和(所有曲边梯形面积的和含n)
和式取极限(n趋于+∞)
③ 定积分的基本思想
定积分就是求和,当所取的小区域趋于无穷小就是积分了。
④ 定积分思想在生活中的应用有哪些
求解不规则图形面积、物体做功等。
实际生活中许多问题都可以用定积分来解决,例如求解不规则图形面积、物体做功等。本文给出了定积分在经济中以及几何方面的几个简单的应用。定积分在经济中的一个应用工厂定期订购原材料,存入仓库以备生产所用等。
由定积分定义知道,它的本质是连续函数的求和。在解决物理问题中适当地渗透定积分的“分割、近似、求和、取极限”的方法,将物理问题化成求定积分的问题,有助于提高物理问题计算的精确度,以变力做功和液体压力等问题为例,介绍定积分在物理中的应用。
(4)定积分是用来解决问题的思想方法扩展阅读:
定积分的分析:
1、若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式。
2、函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
3、求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。
⑤ 求定积分可以解决生活上的什么实际问题
跑步比赛,终点在你们的东边(向东为正)。设你的速度为5m/s,你在第二秒和第三秒的位置分别为A点和B点。求A相对于B的相对位移。
⑥ 定积分的定义体现了什么哲学思想
定积分正式名称是黎曼积分,是一个数学定义。分划的参数趋于零时的极限,叫做这个函数在这个闭区间上的定积分。
不定积分是一组导数相同的原函数,定积分则是一个数值。求一个函数的原函数,叫做求它的不定积分;求一个函数相应于闭区间的一个带标志点分划的黎曼和关于这个分划的参数趋于零时的极限,叫做这个函数在这个闭区间上的定积分。
⑦ 不定积分的目的是提供思想方法对吗
不对。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(C为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。
⑧ 定积分的基本思想是什么
定积分的基本思想是无限分割。
定积分就是求函数f(X)了浪区间[a,b]中图线下底个面积。即由y=0,x=a,x=b,y=f(X)所围成图形个面积。这个图形称为曲边梯形,特例是曲边三角形。
设函数f(x)在区间[a,b]上连续,将区间[a,b]分成n个子区间[a,x0],(x0,x1],(x1,x2],…,(xi,b],可知各区间的长度依次是:△x1=X0-a,△x2=X1-x0,…,△xi=b-xi。
在每个子区间(xi-1,xi)任取一点ξi(i=1,2,…,n),作和式(见下图),设λ=max{△x1,△x2,…,△xi}(即λ属于最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a,b]的定积分,记为(见下图):
(8)定积分是用来解决问题的思想方法扩展阅读:
1、应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
2、一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。