导航:首页 > 解决方法 > 十字相乘法简单记忆方法

十字相乘法简单记忆方法

发布时间:2022-03-02 05:57:10

㈠ 十字相乘诀窍

呃,说实话真的没有的,唯一的方法:
(x+a)(x+b)=x²+(a+b)x+ab.
可以把其中的因式分解开来,然后相加减运算。

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

㈡ 十字相乘法的口诀是什么

十字相乘法的口诀是: 竖分常数交叉验, 横写因式不能乱。

1、口诀第一句:竖分常数交叉验, 这里包含了三个步骤,

1) 竖分二次项和常数项, 即把二次项和常数项的系数竖向写出来,

2) 交叉相乘, 和相加, 即斜向相乘然后相加,得出一次项系数,

3) 检验确定, 检验一次项系数是否正确。

2、口诀第二句:横写因式不能乱

即把因式横向写,而不是交叉写, 这里不能搞乱。

(2)十字相乘法简单记忆方法扩展阅读

十字相乘法是因式分解中12种方法之一, 除此之外的方法还有:

1、分组分解法

2、拆添项法

3、配方法

4、因式定理(公式法)

5、换元法

6、主元法

7、特殊值法

8、待定系数法

9、双十字相乘法

10、二次多项式

11、提公因式法

参考资料: 网络-十字相乘法

㈢ 十字相乘法巧记是什么

1、十字相乘法的方法口诀:


十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。


2、十字相乘法的用处:


(1)用十字相乘法来分解因式。


(2)用十字相乘法来解一元二次方程。

乘法的计算法则:

数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐。

凡是被乘数的各位数遇到7、8、9时,其方法为:

是9:本位减补数-次,下位加补数一次。

被乘数是8:本位减补数一次,下位加补数二次。

是7:本位减补数一次,下位加补数三次。

例如:987x879=867573(879的补数是121)算序:被乘数个位7的本位减121,下位加363得98-6153。被乘数-+位8的本位减121,下位加242得9-76473。被乘数百位9的本位减121,下位加121得867573(积)。

㈣ 十字相乘法是说什么,怎样更简单。

十字相乘法是用于解二元一次方程的方法之一,相对于公式法而言十字相乘法更为简单,但是也并非所有的二元一次方程都适用于十字相乘法。

㈤ 十字相乘法口诀

​十字相乘法顺口溜:头尾分解,交叉相乘,求和凑中,观察试验。十字相乘法是因式分解常用的方法之一。

如何简单学习十字相乘法

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m�0�5+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m�0�5+4m-12=(m-2)(m+6)
例2把5x�0�5+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x�0�5+6x-8=(x+2)(5x-4)
例3解方程x�0�5-8x+15=0
分析:把x�0�5-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x�0�5-5x-25=0
分析:把6x�0�5-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x�0�5-67xy+18y�0�5分解因式
分析:把14x�0�5-67xy+18y�0�5看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y�0�5可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x�0�5-67xy+18y�0�5= (2x-9y)(7x-2y)
例6 把10x�0�5-27xy-28y�0�5-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x�0�5-27xy-28y�0�5-x+25y-3
=10x�0�5-(27y+1)x -(28y�0�5-25y+3) 4y -3
7y ╳ -1
=10x�0�5-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y�0�5-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x�0�5-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x�0�5-27xy-28y�0�5-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x�0�5-27xy-28y�0�5用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x�0�5- 3ax + 2a�0�5–ab -b�0�5=0
分析:2a�0�5–ab-b�0�5可以用十字相乘法进行因式分解
解:x�0�5- 3ax + 2a�0�5–ab -b�0�5=0
x�0�5- 3ax +(2a�0�5–ab - b�0�5)=0
x�0�5- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

㈦ 十字相乘法如何比较简单

十字分解法能把二次三项式分解因式。要务必注意各项系数的符号,以及写在十字交叉线四个部分的项。方法是:交叉相乘,水平书写。
公式:x2+(a+b)x+ab=(x+a)(x+b)
十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算来进行因式分解。
记住方法,多试几次,效果很好的,练习多了就习惯了
如果我的答案解答了你的问题,请采纳我的回答哦

㈧ 请问十字相乘法的口诀是什么。口诀!

顺口溜

竖分常数交叉验,

横写因式不能乱。

步骤注释

①竖分二次项与常数项

②交叉相乘,积相加

③检验确定,横写因式

㈨ 十字相乘法的技巧

将二次项系数、常数项分别分解因数,再看各组4个因数交叉乘积的代数和能否凑成一次项系数。

㈩ 十字相乘法快速学习的方法

十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1a2,把常数项c分解成两个因数c1,c2的积c1c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

阅读全文

与十字相乘法简单记忆方法相关的资料

热点内容
竞争的定价方法常用在哪里 浏览:564
百度云隐藏空间文件夹在哪里设置方法 浏览:566
快速开硬椰子方法 浏览:600
心理学的研究方法归纳法 浏览:998
小学生课后锻炼方法 浏览:407
幼树刻芽正确方法 浏览:272
台式机电源检测方法 浏览:695
如何泡清酒的方法 浏览:72
欧巴撩妹正确方法 浏览:627
一周岁宝宝咳嗽最简单方法 浏览:567
院线真假鉴别方法 浏览:784
轮船链的安装方法 浏览:107
尖锐疣治疗好的方法 浏览:258
神奇方法治疗皮肤病 浏览:544
快速阅读的方法论 浏览:446
解决人生困难的四个方法 浏览:427
graves眼病治疗方法 浏览:947
盐吃得少如何补救方法 浏览:136
医院创新教学方法 浏览:480
人老脚先老的锻炼方法 浏览:798