Ⅰ 小学四年级鸡兔同笼解题方法
题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)
‘ 方法三:最酷的金鸡独立法 ’
分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
‘ 方法四:最逗的吹哨法 ’
分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。(惊现跑男中包贝尔的抬脚法有木有!)
‘ 方法五:最常用的假设法 ’
分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
‘ 方法六:最常用的假设法 ’
分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
Ⅱ 小学四年级数学的鸡兔同笼应用题怎么作
抬腿法:
方法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
方法二
假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。
方法三
可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-7。
(2)解决四年级鸡兔同笼的方法扩展阅读:
相关公式:
公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
公式2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
公式3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
公式4:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
公式5:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
公式6 :4×+2(总数-x)=总脚数 (x=兔,总数-x=鸡数,用于方程)
Ⅲ 解决鸡兔同笼问题可以采取哪些方法
鸡兔同笼公式
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
=兔的只数
总只数-兔的只数=鸡的只数
解法3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?
分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
Ⅳ 鸡兔同笼的解决方法
仅限于鸡兔同笼的方法
总腿数除以二,减去头的数量,是兔的数量。
字母表示:
设总腿数为a,头的数量为b,兔的数量为c。
a÷2-b=c
Ⅳ 鸡兔同笼的解法(四年级小学水平)
假设法和设元列方程的方法较常见常见
而且个中不同设法还有很多种不同的变化
现在来说说图解法和公式法
英国数学教育家贝克浩斯(Backhousl)在研究“问题解决”时首先提到的是中国古算题,其中包括鸡兔同笼问题、100个和尚买100个馒头问题等。解这些问题需要想象,解者在其情景中有明确的且力所能及的目的,但缺少现成的方法达到此目的,因此常常作为夜航船中或纳凉赏月时的一种试智比知式考问的备办学问,一代一代传下来,还传到世界各地,鸡兔问题传到日本叫龟鹤问题。明代作家张岱曾说:“天下学问,惟夜航船中最难对付”。又到纳凉的季节,老公公们要用这些问题来试试儿孙辈的学问怎样?有位小朋友听了老公公提出的问题,觉得难度不大,便满怀信心地对老公公说:慢点,让我打开灯,拿纸和笔。老公公讲不用笔就不可以算吗?这一下,许多小朋友都被难住了。显然老公公解这些难题的技巧肯定不同凡响,那么老公公是怎样解这些问题的呢?我们先举个例子说说。
一、鸡兔同笼问题
例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?
解法2 图形法
图形见
http://forum.cnool.net/topic_show.jsp?id=3441350&thesisid=407&flag=topic1
从图中看ACDF的面积=4×50=200(只脚), 比实际多出 GHEF的面积=200-140=60(只脚), AB=GH=60÷2=30(只鸡), BC=AC-AB=50-30=20(只兔)
解法2比解法1高级,算理是一样的。这里答案是图上算出的,显然这两种解法都要用纸和笔。不用纸和笔肯定是用口诀或易记的公式,这是老公公的传家宝。
解法3 公式法
老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50-20=)30(只)。这个故事实际上老公公用了如下的公式。
脚数和÷2-头数和=兔子数。
小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。老公公又出了
(1)30个头,80只脚……。(兔10,鸡20)。
(2)100只脚,40个头……。(兔10,鸡30)。
(3)80个头,200只脚……。(兔20,鸡60)
小孙子们个个都愉快地答出来了。
这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢?我们中华文化博大精深,这两种可能性都是有的。这个公式是碰巧做对还是符合算理的呢?这是十分重要的。数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是补行的手续而已。”现在我们就来补行这个手续。
2鸡头=鸡脚。
4兔头=兔脚。
得:兔脚+鸡脚=2鸡头+4兔头
=2(鸡头+2兔头)。
这就证明了老公公归纳的公式。
说到鸡兔同笼问题,常常大家精神就紧张起来,以为是难题来了。现在掌握了规律其实不难,所以凡事都应去摸索规律,照规律办事。
鸡兔同笼问题在民间是当故事讲的,有没有实际价值呢?
或者解答思路是这样的:
假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。
《孙子算经》上的解法很巧妙,它是按公式:兔数 足数-头数来算的,具体计算是这样的:兔数 (只),鸡数=头数-免数=35-12=23,并且书中还给出了公式的来历:把足数除以2以后,每只鸡只剩下一足,每只兔剩下两足了,减去头数,就相当于每只鸡兔再减去一只,鸡足减完了,剩下的每只兔只有一足了,此时所剩足数恰好等于兔子头数.
鸡兔同笼的公式:
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
=兔的只数
总只数-兔的只数=鸡的只数
Ⅵ 解决鸡兔同笼问题可以采取哪些方法
,有四种方法可以解决:1、二年级的方法:列表法。题目里说鸡兔共8只,兔为0只,算出脚的数量。如果不对再设鸡为7只,兔为1只,算出脚的数量,以此类推,很烦耶~I don’t like it2、四年级的方法:假设法。这个是大多数童鞋的钟爱。可以先假设笼子里全部都是鸡,算出脚数,肯定比实际数量少一些,为什么呢?因为有些rabbit被咱误以为是鸡,少了两条脚,把那些与实际数量相差的数去除以(4-2),也就是兔比鸡多的脚数,算出来的就是兔的只数;如果假设全都是兔,算出来的就是鸡。所以我们总结出了一句话:假鸡得兔,假兔得鸡。只要记住这句话,写答的时候就不会写错了!3、五年级的方法:方程。设兔为x只,则鸡为(8-x)只。列出方程后,解一下就好了!4、x年级的方法:假设法Ⅱ(古人的方法)。先设鸡抬起一只脚,兔抬起一只脚,就还剩26÷2=13(只)。笼子里只要有一只兔,脚的数量就比头数多1,就多了13-8=5(只),是兔的只数,那么鸡就是8-5=3(只)。如果自己算出的答案不确定,还可以检验一下:5×4+3×2=20+6=26(只),与题目中的脚数相同,那么这个答案就是正确的了!
Ⅶ 解决鸡兔同笼的方法
下面介绍几种解决鸡兔同笼的方法,
1.列表法
所以,笼子里有2只鸡和6只兔。
缺点:不适合数量多的情况。
2.画图法
(1)用“O”表示鸡头,用“丨”表示鸡脚,画出8只鸡如图:
这样一共只有16只脚,少了28-16=12只脚,由于将一只兔看作1只鸡,给每只兔少算了2只脚,这样12只脚就少算了12÷2=6只兔,再其中6只“鸡”,每只添上两只脚,就成了“免”,如下图:
所以笼子里有2只鸡和6只兔。
(2)用圆圈表示兔头,用竖线表示兔脚,画出8只兔,如下图:
这样一共有32只脚,多了32-28=4只脚,由于将一只鸡看作一只兔,给每只鸡多都算了两只脚,这样两只鸡就多算了2×2=4只脚,再给其中的两只“兔”每只砍掉2只脚,就成了“鸡”
如下图:
所以笼子里只有2只鸡和6只兔。
3、砍足法
假如砍去每只鸡,每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”,这样鸡和兔脚的总数就由28只变成了14只,如果笼子里有一只兔子,则脚的总数就是比头的总数多1,因此脚的总只数14与总头数8的差就是兔子的只数,就是14-8=6只,则鸡的只数就是8-6=2只。
所以笼子里有2只鸡和6只兔
4.假设法
(1)假设笼子里都是鸡,那么脚的总只数就会比实际少,而少算的脚的只数就是少算的兔子的脚只数,每只兔子少算4-2只脚,少算的脚只数里有几个2,就有几只兔子。
A、如果笼子里都是鸡,那么就有8×2=16只脚,这样就少算了28-16=12只脚。
B、一只兔比一只鸡多2只脚,也就是有12÷2=6只兔。
C、所以笼子里有2只鸡和6只兔。
公式:假设全是鸡,则兔的只数=(总足数-2×总头数)÷(4-2)鸡的只数=总头数-兔的只数。
(2)假设笼子里的都是兔,那么脚的总只数就会比实际多,而多算的脚只数就是多算的鸡的脚只数,每只鸡多算4-2只脚,多算的脚只数里有几个2,就有几只鸡。
A、如果笼子里都是兔,那么就会有8×4=32只脚,这样就多算了32-28=4只脚
B、一只兔比一只鸡多2只脚,也就是有4÷2=2只鸡。
C、所以笼子里有2只鸡和6只兔。
公式:假设全是兔,则鸡的只数=(4×总头数-总足数)÷(4-2)兔的只数=总头球-鸡的只数注意事项:这种方法的关键是要保证其中一个量(总头球)不变。
这种方法比较常见,对于复杂的鸡兔同笼问题一样适用。
还有一些问题,如乘船(车)的问题,买票的问题(成人票、儿童票)等等,也可以按照解决鸡兔同笼问题的方法来解决,它们可以看作是变形的鸡兔同笼的问题。
当然,鸡兔同笼这道题还可以用列一元一次方程、二元一次方程等方法来解决,通过这道题我们重点是要培养孩子的解题兴趣和数学思维。数学思维的培养需要一个长期的训练过程,要有意识的配合教学内容进行。九算数学持之以恒培养孩子的数学兴趣和爱好,让孩子成绩提高水到渠成。
Ⅷ 解决鸡兔同笼问题的窍门。
假设法:假设全部是鸡(或者全部是兔)
然后用头的数量×脚(如鸡有两只脚就×2)
得出了上面的结果后,用上面的结果-实际的脚数量(如果上面的结果比实际的脚数量要多,就用上面的结果-实际的脚数量。但是如果上面的结果比实际的脚数量少,就要用实际的脚数量-上面的结果)再÷4(兔的脚数)-2(鸡的脚数)=结果(注:如果假设全部是鸡,得出的是兔子的数量,相反,如果假设全部是兔子,得出的就是鸡的数量)
看了上面的方法,我们来一个实际例子:
鸡兔在同一笼内,鸡兔头共有35个,脚110只。问笼内鸡兔各多少只?
解:假设全部是鸡
35×2=70(脚)
(110-70)÷(4-2)
=40÷2
=20(只)。。。。。。兔子
35-20=15(只)。。。。。。鸡
听懂了吗?
Ⅸ 鸡兔同笼解决问题的方法。
用方程组求解,设鸡x,设兔y,然后用鸡兔的总只数和总脚数列方程组。