‘壹’ 小学数学解决问题方法大全的介绍
小学数学解决问题方法大全是宁波出版社出版的一本图书,作者是陆昌然
‘贰’ 小学数学解决问题的四个步骤
解决问题三步骤的实施
(一)阅读与理解
1.找信息
找信息是解决问题的第一步。在低年级多是以图画、表格、对话等方式呈现问题。随着年级升高,逐渐增加纯文字问题的量。在实际教学中,对于中低年级而言,最有效的途径是知道学生学会看图,从图中收集必要的信息。教师要注意三种情况,一是题中的信息比较分散,应指导学生多次看图,将能知道的信息尽量找到;二是题中信息比较隐蔽时,容易忽略,这是要引导学生仔细看图,三是信息的数量较多,要引导学生根据问题收集有关信息。
2.提问题
提出问题比解决问题更重要。只有认识到信息之间的联系,才能提出一个合理的数学问题。教师有意识给学生提供机会,为学生营造大胆提出问题的气氛 ,引导学生学会提出问题,鼓励学生提出问题。
3.示意图
示意图让文字有了图形的辅助,有助于体现教师教学的直观性,同时能够帮助学生更好地理解和接受所学的知识。指导学生示意图,能从根本上培养和增强学生解题能力和自主学习的能力。授人以鱼不如授人以渔,学会解题方法才能从根本上学会如何做题,学会画示意图才能使学生在今后的学习中,能进行自主学习探究,找出解决问题的方法。
(二)分析与解答
1.数量关系
心理学先入为主原则,第一次学习建立起来的“模型”表象,不仅会给学生留下深刻的印象,而且还具有导向作用。在一至四年级的除法“应用题”中,都是被除数大于除数,加之教材编排题型过于单一,缺少对比呈现。如果老师教学时缺少分析“数量关系”,或者有些老师为了追求成绩,直接告诉学生:“记住你就用大数除以小数!”以至于到了五年级形成习惯。所以,“应用题”教学一定要加强“数量关系”的分析。
数量关系就是学生在运用运算意义和基本数量关系解决生产、生活中实际问题的基础上,对周围生活中的一些数量关系积累了一些感性的认识,教师可以适当地引导他们再抽象概括一些具体的数量关系式,大家习惯上称这种数量关系为“常见的数量关系”。例如:单价与数量、总价之间的关系,工作效率与工作时间、工作总量之间的关系,速度与时间、路程的关系,等等。
2.列式计算
列式计算是解决问题最重要的步骤,找信息,提问题,以及画示意图都是为了列出式子,算出答案。下了如此多的功夫就为了这一步骤,所以要求学生细心谨慎,不要看错数据。记错数。
3.回顾与反思
回顾和反思学习过程,总结学习方法,积累教学活动经验,感悟数学思想方法。在回顾中感受成功,增强学习自信心,养成反思习惯。在教学中,我们要重视回顾和反思。其实回顾与反思属于检查。检查在列式中有没有写错加减乘除,检查式子中有没有看错数据,写错数据,检查有没有计算错误,比如低年级的满十就进一,不够减就退一,乘法口诀有没有出错,高年级的小数点有没有点错,或者分数的约分是否约完整等等。
总的来说,正因为小学数学解决问题的教学是《新课程标准》中规定的课程目标之一,在小学数学中占有非常重要的地位,是教学中的最难点之一。所以就解决问题中的阅读与理解、分析与解答和回顾与反思进行浅谈,希望对小学数学解决问题的解决方法起到作用。
‘叁’ 分析小学数学解决问题的方法有哪些
教师应根据教学的实际,让学生把所学知识和周围的生活环境相联系,帮助他们在形成知识、技能的同时,感受数学应用范围的广泛。 2.收集应用事例,加深学生对数学应用的理解与体会 随着科学技术的飞速发展,数学的发展涉及的领域越来越广泛。数字化的家电系列,宇航工程、临床医学、市场的调查与预测、气象学……无处不体现数学的广泛应用。让学生搜集这些信息,既可以帮助学生了解数学的发展,体会数学的价值,激发学生学好数学的勇气与信心,更可以帮助学生领悟数学知识的应用过程。例如:在统计的初步认识教学中,学生搜集了自家几个月用水的情况,通过收集、描述、分析数据(人口的多少、老人和孩子等诸多因素)的过程,得出了自家用水是否合理的判断,并做出今后用水情况的决策。既渗透了环保教育,又使学生感受到数学知识的应用。 3.引导学生从日常生活中寻找数学问题: 罗杰斯认为:“倘若要使学生全身心地投入学习活动,那就必须让学生面对他们个人有意义的或有关的问题。但我们的教育正在力图把学生与生活所有的现实隔绝开来,这种隔绝对意义学习构成一种障碍。然而我们希望让学生成为一个自由的和负责的个体的话,就得让他们直接面对各种现实问题。” 日常生活中有大量的数学问题,结合数学内容选择一些简单的问题加以分析、解决,这对从小培养学生的数学应用意识和数学观念尤为重要,同时也促进学生进一步理解所学的内容。 如在三年级学生认识长方形的周长之后,我是这样做的:让三四个学生为一组,量一量教室内门框、窗框、镜框等长方形的长与宽,
并设计一下做这些物品需多少材料。最好再给每种不同的材料标上单价,让他们计算一下,选择怎样的材料,用什么方案,可以既经济实惠,又满足需要。 4.指导学生从数学内部寻找数学问题: 数学内部充满着各种问题,虽然通过前人的多年努力,已经解决了很多问题,但是学生学习作为再次创造的过程,仍有一个不断探究、解决新问题的过程。在数学内部,学生接触最多的问题是解答习题,而解答习题是解决问题的一种特殊形式。教师可以从问题的角度出发,指导学生对问题正确加以理解,明确已知的条件和要达到的目标,作出合理的假设,寻求通向目标的可能途径,确定最优的解决方案。要使学生从中养成习惯,形成技能,并迁移到其他方面,使他们拥有问题解决的意识,提高思维水平。 例如:计算12345+23456.这是一道多位数的加法,学生计算后,教师可以改变题目的形式,出题“CROSS+ROADS=DANGER,已知O=2,S=3,求其他字母各代表几(不同的字母代表不同的数字)”。这显然为学生创设了一个问题解决的情景。因为解答用字母来表示两个加数的加法,对他们来说是一个没有遇到过的问题,而且解此题时学生不仅要具有加法知识,还须具备假设和推理能力。 5.引导学生联系生活实际解决数学问题: 小学生经过课堂学习能够解决一些简单的实际问题,但是这些实际问题已经经过数学处理,各种条件与问题都比较明显,然而实际生活中的问题并非如此容易,因此要多联系生活实际,从学生遇到的疑惑、矛盾入手,引出新知识的实际问题或情境。
‘肆’ 小学解决问题数学方法有哪些
手脑并用是提高创新意识的有效方法。学生的实际动手能力是衡量人才的重要重要指标,是从小学会学习、学会生活的重要内容。在教学中,可以引导学生利用实际操作这项活动来帮助学生掌握知识,具有创造性、开拓性。符合国家关于活动课开设的目的和意义。有利于数学教学的辅助过程,有利于创新能力的培养。在教学活动中,教师要注重提供各种机会让学生参与活动,使学生在参与过程中掌握方法,促进思维的发展。教学中,经常设置一些悬念性的问题,鼓励学生探索,唤起学生创新意识,改变教师的主体。学生的创新潜能得到挖掘,逐步形成创新能力。
优化教学模式,深化创新意识培养:传统意义上教学的几个重要的环节一般是:导入新课—新授—巩固练习—布置作业。经过多年的改进,形式虽然有变化,但实质却没有什么改动。其实,课堂不必套用这个模式,对小学来说,一本正经的像对成人那样传授知识,未免太呆板了些。活动教学、游戏教学、发现教学、探究教学、数学建模教学、竞赛教学,根据不同的教学内容,都是可以采取的。比如:导入这一环节,完全可以用昀新的教学词汇—创设情境来表示和演绎,情境是教师和学生共同面对的,它必然会起到导入的作用,但更重要的是面对着一个问题,借以引起学生的兴趣,激发学生的求知欲望,培养寻求解决问题的不同方法的意识。再比如:新授这一环节,完全可以改成探索与讨论,而巩固环节可以换成实践与反思等等,这些改变并不是换换词语那样简单,更重要的是教学观念的改变与教学方式的更新,通过这些改变增强学生的主动性,从而更好的提高学生创新意识。
3
小学数学方法二
动手操作的策略:例如:教学四年级下册第五单元《三角形》中《三角形边的关系》时,我让学生自己探索任意三根小棒能否围成三角形,先猜想,再让学生动手操作试围,验证自己的猜想。实验结果有所不同,这样使学生在具体的操作过程中产生思维冲突,从而提出数学问题“为什么有的能围成,有的围不成呢?”,有效地激发了学生进一步探究的欲望,在进一步的探索交流中得出结论,即较短两条边的和等于或小于第三边时不能围成三角形,只有较短两边的和大于第三边时才能围成三角形。
再如:教学《三角形的内角和》一课时,根据学生已有的知识经验和生活经验,课前有一部分学生就能说出三角形内角和是180°这一知识点。但是如何让学生明白为什么三角形的内角和是180°,而不是仅仅知道这个结论而已。教学中我引导学生通过量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活动,找到了几种验证三角形内角和是180°的方法,学生通过动手操作,自主探究得出结论后,体验到了成功的喜悦。还有我在教《梯形的面积》时,引导学生探究“怎样计算梯形的面积?”这一问题时,我给学生提供了硬纸片的梯形学具,把实际操作策略的选择权留给学生,学生将这个问题转化为一个已知的问题进行推导研究。学生在自主探索实现操作策略的多样化:有的学生将它剪为两个三角形;有的通过割、补将它转化为长方形;或者把两个完全一样的梯形拼成一个平行四边形。这种开放性的操作策略,不仅有可能获得问题解决,而且还能培养学生的创造性思维。
‘伍’ 小学数学解决问题的一般策略有哪些
1.归纳法。就是用联系、运动、发展变化的观点看待问题,把有待解决的问题,通过某种转化过程,归结为一类已经解决或容易解决的问题。其实质就是对问题进行变形,促使矛盾转化。例如:完全归纳法(数学归纳法)与不完全归纳法。
2.假设法。就是先对题目中的已知条件或问题作出某种假设,然后,按照题中的已知条件进行推算,根据数量上出现矛盾,加在适当调整,最后找到正确答案的一种解题思想方法。如“鸡兔同笼”问题。
3.逆推法。采用与事情发生过程相反的顺序思考的解题方法做做逆推法。
4.列举筛选法。解某些数学题时,有时要根据题目的一部分条件,把可能的答案一一列举出来,然后根据另一部分条件检验,筛选出题目的答案。
5.图解法。解数学题时,可以设法把条件、问题以及它们的数量关系用线段图、韦恩图等图形反映上来,使我们能借助图形进行分析、推理,寻找解题途径,这种方法叫图解法。
6.类比法。
“类比”是根据两个或两类事物有些属性相同,推测它们另一些属性也可能相同的推理。在解题中,根据题中所求问题与已知条件相类似的关系,利用类比推理,找类比模型,从而寻找解题途径的方法叫类比法。
7.小学数学中常用逻辑推理法。
(1)分析与综合法
分析法是从需证的结论出发,以一系列已知定义、定理为依据逐步逆溯,从而达到已知条件的推理方法。特别是应用题,几何证明题等。
综合法是从题设条件出发,以一系列已知定义、定理为依据,逐步推演出所需证明的结论的推理方法。
(2)归纳与演绎法
归纳与演绎是相互联系着的,归纳得出的结论,可以用演绎法去验证,演绎的前提是通过归纳得出的。
由特殊性前提引出一般性结论的推理叫做归纳推理。以归纳推理为主要内容的科学研究方法叫做归纳法。一般地,在小学数学课中,运算定律,基本性质,法则等都是运用不完全归纳让学生从头从一般原理到特殊事例的推理叫做演绎推理。以演绎推理的主要内容的科学研究方法叫演绎法。一般地,在小学数学教材中,当以归纳推理的形式得出运算定律,基本性质、法则、公式后,都再以演绎推理的形式进行计算。如三段论(由大前提、小前提、结论构成)
(3) 观察与实验法
(4)联想法
(5)猜想法
(6)对应法
‘陆’ 小学数学解决问题的方法
直推法,根据现有的数据直推
‘柒’ 小学数学难题大全
小学数学公式大全一、小学数学几何形体周长 面积 体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a.a= a 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高 S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 直径=半径×2 d=2r 半径=直径÷2 r= d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。二、单位换算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤(5)1公顷=10000平方米 1亩=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角1角=10分1元=100分(8)1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒三、数量关系计算公式方面 1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数四、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。五、特殊问题和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者 和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: (1)如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) (2)如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数(3)如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题(1)一般公式: 顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 (2)两船相向航行的公式: 甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%) 工程问题 (1)一般公式: 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间 (2)用假设工作总量为“1”的方法解工程问题的公式: 1÷工作时间=单位时间内完成工作总量的几分之几 1÷单位时间能完成的几分之几=工作时间
‘捌’ 如何上好小学数学中"解决问题"的教学
解决问题的教学内涵丰富,如何让学生喜欢它,这是我们当前所面临的问题。如何上好小学数学解决问题教学的几点体会
《基础教育课程改革纲要》中指出:改变课程实施中过于强调接受学习,死记硬背,机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生收集和处理信息的能力。《课程标准》明确指出:“学生是学习的主人。”前苏联教育家苏霍姆林斯基也曾说过:“人的心灵深处,总有一种把自己当作发现者、研究者、探索者的固有需要,这种需要在小学生精神世界尤为重要。”长期束缚在教师、教材、课堂圈子里,不敢越雷池半步的学生,在今天更需要我们极力改变学习方式,而探究即为自主学习的方式。因此,要讲究自主探究的学习策略,使之成为发现者、研究者、探索者,从而把他们心灵深处被压抑的个性释放出来。数学解决问题教学更能充分发挥学生自主探究学习的能动性。
一、引导发现、感悟,注重自主探究的尝试性
发现是探究的开始。由于好奇是少年儿童的心理特点,它往往可促使学生作进一步深入细致的观察、思考和探索,从而提出探究性的问题。让学生提出问题,自主合作探究,不仅仅是一个方式方法问题,而是一种教育观念的问题,是一种教学质量观的问题,是学生观的反映。如果我们能营造一个积极宽松和谐的课堂教学氛围,让学生成为“问”的主体,成为一个“信息源”,那么,学生学习的积极性和主动性将被大大激发。因为学生提问题总是以自身积极思考为前提的。正因为这样,我们说教师与其“给”学生10个问题,不如让学生自己去发现,去“产生”一个问题。
两步计算的解决问题教学时,我将例题巧作变动,大大激发了学生探究的欲望。
师:大家想不想来做一个猜数游戏啊?
生:想!
师:我这儿有三个不同颜色的盒子(分别出示红、白、黑三个盒子),盒子里分别装了一些硬币。现在,我请你猜一猜,红盒子里装了多少个硬币?
生:(七嘴八舌乱猜)
师:大家都没有猜对。在你没有得到相关的信息之前,你能一下子准确地猜出红盒子里装了多少个硬币吗?
生:不能。
师:那我给你一个信息:黑盒子里有15个硬币。依靠这个信息,你能准确猜出红盒子里的硬币个数吗?为什么?
生:不能。红盒子里硬币的个数与黑盒子无关。
师:我再给你一个信息:白盒子里有10个硬币。现在,你能不能猜出红盒子里硬币的个数?为什么?
生:还是不能。因为红盒子里的个数与白盒子的个数无关。
师:知道了这两个信息,你还想知道什么方面的信息就能猜出红盒子里硬币的个数了?把你的想法和小组里的成员交流一下。
学生通过交流,归纳出如果再知道一个能把红盒子与白盒子和黑盒子里的个数联系起来的信息,就能猜出红盒子里硬币的个数。学生举例:红盒子里的硬币个数比黑(白)盒子多(少)多少个;红盒子里的硬币个数是黑(白)盒子的多少倍;红盒子里的硬币个数比黑盒子和白盒子的总数多(少)多少个;红盒子里的硬币个数是黑盒子和白盒子的总数的多少倍等等。这时,引导比较学生自己提出的问题,可以发现有的只需一步计算,有的却需两步计算。让学生说说为什么要两步计算。在提出问题、比较问题的过程中,学生不仅强化了两步解决问题的结构,而且对解决问题教学中数量关系的选择有了初步的定位。教师最后出示相关信息,学生终于顺利猜出红盒子里的硬币个数。
只有学生自己主动提出问题,主体作用才能得以真正的发挥,才能体现自主探究发现。因此,教师要随时注意挖掘教材中隐藏的“发现”因素,创设一种使学生主动发现问题、提出问题的情境,启发学生自己发现问题、探索知识,使教学过程围绕学生在学习中产生的问题而展开。教师必须积极创设问题情境,引导学生提出与学习过程有密切关系的问题,使所提出的问题提到点子上,才能促进自主合作探究,达到学会学习之目的。
二、鼓励参与合作,追求自主探究的互动性
1、创设情景,激发兴趣,提供主动探究的空间。
教学时不要把学生死死地捆在教科书上,让学生死记那些他们认为很枯燥的东西。教师要根据学生的数学学习心理规律尽可能选他们乐于接受的,有价值的数学内容为题材编出问题。如给数学找到生活中的原型,让学生体验到“学数学”不是在“记数学、背数学、练数学、考数学”,而是在 “用数学”。
人教版九年义务教育六年制第九册教材第45页,应用题例1是这样的:
一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。剩下的要3天做完,平均每天要做多少套?
这种类型的解决问题枯燥得很,离学生比较远,学生肯定没有兴趣。没有了兴趣不能产生探究的兴趣。我对此题做了如下改动:
(1)课件展示情境或组织学生进行对话表演。
客户:周厂长,你好!我们订做的660套衣服,生产得怎么样了?
厂长:已经做了5天,平均每天做75套。
客户:我们等着要货,你们3天之内能完成了吗?
厂长:能。
(2)师:同学们!你们根据厂长、客户提供的信息想到什么数学问题?
教师根据学生的回答,整理出以上出示的例1。
(3)师:你们会解答吗?如果不会,可以小组讨论。
生:略
这种方式较好地体现了“数学问题生活化”和“自主学习、探索创新”两大方面,将学习活动置于社会生活问题之中,巧妙地把要解决的问题变为对话展现给学生。让学生主动积极地获取知识,将感性的实际活动与学生的内心感受体验结合起来。这样的数学,学生不仅学得好,而且也为他们以后到社会上去成为各行各业的成功者打好基础。
2、给学生自由选择的权利,提供主动探究空间。
每个学生都有自己独特的内心世界、精神世界和内心感受,有着不同于他人的观察、思考、解决问题的方式。现代教育越来越重视每个学生潜能的开发和个性的发展。由于学生的认知水平和认知习惯的不同,常常会想出不同的计算方法,这正是学生具有不同独特性的体现。因此在教学过程中,教师要鼓励学生灵活运用知识,尝试各种算法的多样化。
无论学生用哪种方法解决这个问题,都应该给予肯定,不能强求学生使用统一的方法解决同样的问题,在学生独立思考解决这个问题的基础上,进行小组内的交流,每个学生都发表自己的观点,倾听同伴的解决方法,使每个学生感受到解决方法的灵活性、多样化。这样的教学有利于培养学生独立思考的能力,有利于学生进行学习交流。使每个学生都有获得成功的愉悦,而且还能使不同的人学到不同的数学,不同的人在数学上得到不同的发展。
3、建立合作小组,提供主动参与的合作伙伴。
课前先建立合作小组,将不同学习能力、学习态度、学习兴趣、性别、个性的学生分配在同一组内,组成4人或6人的小组,再给组内成员一个特殊的身份,一项特殊的职责。如“主持人”(掌管小组讨论的全局,分配发言机会,协调小组学习的进程,观察组内同学合作技巧的表现,如讨论时的声音控制、提问和应答时的礼貌)等,最后要求每一组设计组名、组标,促使合作学习小组形成“组内互助合作,组间竞争夺标”的氛围。
解决问题具有抽象性,有时学生不能很好地理解题意,造成解题障碍。在这种情况下,教师应重视问题解决的过程,让学生理解题意,从而轻松掌握解题方法。
4、选择专题,分工合作,加强主动探究能力。
在有限的课堂时间里,可紧扣教材,选择重点、难点、疑点作为专题,运用研究性学习,分工合作,提高学生的主动性、研究性和发现的能力。为了减少学生研究探索学习的梯度,课堂上利用教材特点进行专题研究是必不可少的,可在课外探究学习中面对更多的是如何搜集处理信息怎样与人合作。为此要引导学生遇到困难时能主动寻求帮助,要热情地帮助他人排忧解难。若自己拥有材料正是别人急需的,能成全他人的计划,使自己在学会探究的同时,更学会做人。
三、激活求异思维,培养自主探究的独创性
通过不同的途径,从不同的角度,用不同的方法解决问题,这样不仅活跃了学生的思维,开阔了思路,同时也促进学生养成善于求异的习惯,对于培养学生的创新能力有着决定性的作用。在教师的教学中,通过表达方式的变异,理解角度的变更,思考方法的变迁,题型设计的变化等来提供多形态的知识信息,创造多样化的思维环境,接通多方位的解题思路,从而促进内容的深化,理解的深入,提高学生思维的变通性和广阔性。人们在理解知识的过程中,习惯运用某种思维方式,便会产生定势心理。教师在教学中要不失时机地创设思维情境,千方百计地为学生提供创新素材和空间。用“教”的创新火种点燃“学”的创新火,才能有成效地培养学生自主探究的独创性。
比如针对五年级的学生,在学习了三步计算的应用题后,我设计了一道与学生生活比较接近的开放题,以此来激活学生的变通思维:
学校组织师生看电影。学生950人,教师27人。影剧院售票处写着:
今日放映
《宇宙与人》
成人票: 每张8元
学生票: 每张4元
团体票: 每张6元
(30人或30人以上可购买团体票)
请设计一种你认为最省钱的购票方案,并算出购票一共需要多少钱?
题目一出示,学生就颇有兴趣,积极开动脑筋,力求找到最佳方案。
以下是 学生不同的解题方法:
方法1:827+4950=4016(元)
方法2:(27+950)6=5862(元)
方法3:从学生人数中拿出3人,和教师组成一个团体。
306+9474=3968(元)
……
针对这样的问题,不同层次的学生有不同的解法,每位学生在这样的问题情境中都得到了充分地发挥。通过练习,培养了学生主动应用数学知识的能力
四、设计开放作业,强化自主探究实践性
数学教学是一个开放的系统,生活中处处有数学,也处处用数学。皮亚杰认为“儿童如果不具有自己的真实活动,教育就不可能成功。”如何设计开放的作业,让学生在自主探究的实践中有所收获呢?首先要尊重学生择业的要求,其次要开放作业的形式与内容。
1、迁移例题解法。
如讲授了植树问题后,可建议学生去步行街上走一走,数一数步行街上有多少个垃圾桶,目测一下每两个垃圾桶之间的距离大约是多少米,再算一算从起始的垃圾桶到最后一个垃圾桶之间的总长度约是多少米?
2、结合生活热点。
国庆、元旦等节日期间,许多商店推出打折的促销手段,可以在家长的带领下,去商店购物,看看商品的原价是多少,打几折,打折以后的价钱是多少,比原价便宜多少?记录下你的考察结果。返校后可组织讨论:商店利用打折的手段促销商品,它是赚多了,还是赚少了?会不会亏本?让学生真切的感受到数学就在我们的身边。
3、加强专题实践。
学习了长方形和正方形面积的计算以后,就可以跟爸爸妈妈一起给家设计一些装修方案。比如:量一量房间的长和宽,算一算房间的面积大约是多少平方米。如果购买地板的话,根据家庭的经济实力,再去市场了解地板的价格,选择合适的价位,进行购买,大约需要支出多少。
这样开放的作业内容,既与教材内容相联系,又与学生生活相结合,还“接轨”了社会活动,学生有了“自由驰骋”的自主学习,自由探索的空间,在实践中才能焕发生命的活力,充满成长的气息,书写一个创造的人生。
解决问题的教学内涵丰富,如何让学生喜欢它,这是我们当前所面临的问题。但我坚信,只要教师通过一定的策略,为学生营造轻松的氛围,让学生觉得要解决 的问题,离自己并不遥远,问题解决才有价值。这样才能让学生喜欢上解决问题。从而真正掌握解决方法。达到了这种境界才算是一堂成功的优秀的教学。