A. 给排水涂塑钢管的检测方法
外观检查
目测检查涂覆钢管的外观质量,试验结果应符合5.1的规定。
厚度测量
从涂覆钢管的两端取不同长度的两个横断面,在每个横断面用电磁测厚仪测量圆周上直交的任意四点的涂层厚度,试验结果应符合5.4的规定。
针孔试验
管段试件长度约为1000 mm,用电火花检漏仪对钢管涂层在规定试验电压下进行检查,涂层厚度不大于0.4mm,试验电压为1500 V,涂层厚度大于0.4 mm,试验电压为2000 V。检查有无电火花产生,试验结果应符合5.5的规定。
附着力试验
附着力试验按CJ/T 120-2008中7.4.2进行,试验结果应符合5.6的规定。
弯曲试验
DN≤50mm的涂覆钢管进行弯曲试验。管段试件长度为(1200±100) mm。
在温度为(20±5) ℃的环境下,以钢管公称通径的8倍为曲率半径,弯曲角度为30o,在弯管机或模具上进行弯曲。弯曲试验时管内不带填充物,焊缝位于弯曲主面的侧面。
试验后,从弯曲圆弧的中部将试件剖开,检查内涂层,试验结果应符合5.7的规定。
压扁试验
DN>50 mm的涂覆钢管进行压扁试验。管段试件尺寸长为(50±10) mm。
在温度为(20±5) ℃的环境下,如图1所示,将试件置于两平板之间,在压力试验机上逐渐压缩至两平板间距离为试件外径的五分之四,压扁时涂覆钢管焊缝垂直于载荷施加方向。试验后,检查内涂层,试验结果应符合5.8的规定。
压扁试验
冲击试验
从涂覆钢管的任意位置切取长约100 mm的试样,在温度为(20±5) ℃的环境下,如图2所示,按表2的规定进行冲击试验,观察内涂层的损坏情况。试验时,焊缝应在冲击面相反的方向,试验结果应符合5.9的规定。
表2 冲击试验条件
公称通径 DN
mm锤重,kg落下高度,mm
15~251.0300
32~502.1500
65
80~3006.31000
冲击试验装置
真空试验
管段试件长度为(500±50) mm,使用适当的措施堵住管道进出口,从进口逐渐增加负压至660 mm汞柱,保持1 min,试验后检查内涂层,试验结果应符合5.10的规定。
高温试验
管段试件长度为(100±10) mm,将试件放置在恒温箱中,升温至(300±5) ℃,并恒温1 h,然后取出自然冷至常温。试验后,取出试件并检查内涂层(允许外观颜色变深、发暗现象),试验结果应符合5.11的规定。
低温试验
管段试件尺寸长度为(100±10) mm,将试件放置在低温箱中,降温至(-30±2) ℃,并恒温1 h,然后取出放置在温度为(20±5) ℃的环境下(4~7) h。试验周期结束后,取出试件检查其内涂层,并按6.4的规定进行附着力试验,试验结果应符合5.12的规定。
压力循环试验
管段试件长度为(500±50) mm,使用适当的措施堵住管道进出口,并与水压供给系统相连接,充水排除空气,然后进行3000次从(0.4±0.1) MPa至 MPa的交变水压试验,每次试验的周期不大于2 s。试验后检查内涂层,并按6.4的规定进行附着力试验,试验结果应符合5.13的规定。
温度循环试验
管段试件长度为(500±50) mm,将试件按下列顺序在每个温度条件下放置24 h:
(50±2)℃;
(-10±2)℃;
(50±2)℃;
(-10±2)℃;
(50±2)℃;
(-10±2)℃。
试验后试件放置在温度为(20±5) ℃的环境中24 h,检查内涂层情况,并按6.4的规定进行附着力试验,试验结果应符合5.14的规定。
温水老化试验
管段试件尺寸长度约为100 mm,管段两端裸露处应进行相应的防腐处理,将管段放置在(70±2) ℃的蒸馏水中浸泡30 d,试验后取出自然冷却至常温,检查试件内涂层,试验结果应符合5.15的规定。
施工、安装要点
1)、应按《建筑给水涂塑复合管管道工程技术规程》CECS125:2001执行。
2)、涂塑钢管应选用下列施工机具:
(1)切割应采用金属锯切割;
(2)压槽应采用专用滚槽机;
(3)弯管应采用弯管机冷弯;
(4)套丝应采用电动套丝机进行管螺纹加工;
(5)涂塑钢管端口去毛刺和加工园角应采用锉刀加工;
(6)涂敷高强度无机溶剂液体环氧树脂涂料应采用小毛刷或小牙刷。
3)、涂塑钢管施工程序应符合下列要求:
(1)涂塑钢管不宜埋设于钢筋混凝土结构层中;
(2)涂塑钢管管道安装中禁止进行焊接;
(3)涂塑钢管管道安装宜从大口径逐渐接驳到小口径,管口应及时封堵;
(4)涂塑钢管在运输、装卸及工地施工中,严禁抛摔和剧烈撞击;
(5)涂塑钢管安装时,管径不大于DN50时可用弯管机冷弯,但其弯曲曲率半径不得小于8倍管径,弯曲角度不得大于10°。
B. 管道腐蚀检测方法
目前比较成熟的检测方法主要有:多频电流测绘系统(PCM)、标准管地电位(P/S)测试、密间隔电位测试技术(CIS)、Pearson测试、阴极保护电流测试(CPS)、直流电位梯度测试(DCVG)。其中Pearson、PCM多频电流测绘系统属交流技术,密间隔电位测试技术、DCVG直流电位梯度测试属直流技术。下面分别介绍几种测绘系统。
图9.1.4 直连法检测示意图
图9.1.5 夹钳耦合法检测示意图
9.1.2.1 多频管中的电流法(PCM)
亦称电磁电流衰减法,是用于检测埋地管道防腐层的新方法。PCM系统由发射机和接收机两部分组成,发射机可同时向管道施加几个频率的电信号,接收机则接收这些信号。如果施加一个频率固定的信号电流,电流沿管道向远处传送,在管道周围形成电磁场,磁场强度与管道中的电流正相关。如果整条管线处处都呈很高的管/地电阻,说明管道涂层绝缘性能良好;当防腐层有破损时,管道和土壤接触,形成短路点,管地电阻在此处就会突然变小,电流衰减加剧。那么涂层缺损上方的地面就有泄漏电流存在,若施加交变电流,管道磁场随电流频率改变时,管道上的电流位置很容易确定。PCM法的优点是能定性测定破损的位置,当没破损时能评价防腐层老化的情况。
其基本原理是:当从管道某一点向管道施加一个频率固定的信号电流时,电流沿管道流动并随距离增加而有规律地衰减。电流强度I随距离的衰减公式为
环境地球物理学概论
式中:I为管道上任意一点的电流;I0为初始电流,即发射机向管道供入的电流;α为衰减系数,与管道的防腐层绝缘电阻、管道直径、管壁厚度、管道材质、管内输送介质密切相关;χ是观测点与供电点之间的距离。
判断参数主要是基于管道的电流变化率,当防腐层有破损时,实测的电流变化率曲线有异常衰减或跃变,即电流反常流失(图9.1.6,图9.1.7,图9.1.8)。但凡有这种异常特征的地方还不能判定为一定存在破损,还要排除一些未加防腐保护的支管、弯头、管闸、分水器以及阴极电保护作用的阳极等设施。
这个方法的优点是不受接地条件的限制,可与下述的皮尔逊(Pearson)法同时进行。当管道表面的防腐层质量很好时,施加的信号电流可沿管道传播达30 km以上。只需一人就可操作,接收机不必与地接触,电流衰减率(dB/m)与施加的电流信号大小无关,可迅速获得初步勘查结果。缺点是对埋设在非均质土壤中的管道和劣质防腐层的管道以及存在有多种附属部件如阀门、管套、三通等的管段有关,使该方法往往不能取得很好的效果。易受外界电性的干扰。
9.1.2.2 标准管/地(P/S)电位测试
该方法采用万用电表电压档测试接地硫酸铜电极与管道上的CP(阴极保护)电位,再进一步测试管道上的CP电流,了解涂层电阻和电流状况。通常P/S法仅用于电位测试,用以比较当前电位与以往电位的差别,同时可用来参考检查CP是否满足要求。优点是不需开挖直接在检查桩上即可取得数据;缺点是当涂层屏蔽了腐蚀或蚀坑时,P/S法检查不出来。另外,检查桩每隔一定距离一个,一般是1 km;计算的涂层电阻是平均电阻,容易漏判。
图9.1.6 管道电流变化率-距离曲线图
图9.1.7 不同质量防腐层观测结果对比
9.1.2.3 皮尔逊(Pearson)法
通过发射机向管道施加一个交变电流信号(1000 Hz),该电流信号沿管道传播,当管道防腐层存在缺陷时,在缺陷附近形成一个交变电场,在缺陷点处电场梯度最大,找出中心位置即是缺陷的准确位置。测量时,需要信号接收器与管线探测仪配合使用,必须先准确检测出管道的位置。该方法可确定外防腐层缺陷及靠近管道的能引起电位梯度的外部金属物的位置,检测速度快,可检测没有CP的管道。缺点是不能在道路、混凝土路面、河流等地段检测。另外,不能指示保护层剥离、不能指示阴极保护的效率、易受地电场干扰,常给出不确定的信息。
图9.1.8 防腐层破损修复前后观测结果对比
9.1.2.4 直流电位梯度(DCVG)法
测定直流电流从管道防腐层缺陷处流入或流出在土壤表面形成的电位梯度,即土壤的IR降。依据IR降的百分比来计算涂层的缺陷位置与大小。它与P/S法不同的是不能检测管地电位。它必须与管线探测仪、近间距极化电位检测(CIPS)仪配合使用。当管线涂层缺陷部位有电流流过,管线周围就形成一个CP泄漏电流场,它相对管道中心所形成的形状和位置与缺陷的形状和管道直径有关。主要有横向电位梯度和纵向电位梯度。该方法的优点是:可判断缺陷的准确位置,确定电流流动方向和腐蚀缺陷。对大多数土质条件,不受离散电流的影响,适合于在电流相互影响和存在不稳定电位的区域工作。
DCVG的局限是对于没有阴极保护(CP)的管道无法检测;没有断电器的支持也无法使用。还需大量数据支持,否则,解释困难。Cu/CuSO4溶液电极浓度不均匀也会影响测量效果。土壤较干燥,测量的误差就大。
9.1.2.5 密间隔管/地电位检测(CIS,CIPS)
近间距电位测试CIS和近间距极化电位测试CIPS类似于加密的P/S法,沿管道走向,一般0.7 m的点距进行“开”和“关”两个状态下的管/地电位测定。“关”状态下的管地电位是管道真正的极化电位。防腐层缺损可引起周围电位梯度的畸变,因此通过“开”和“关”测的电位/距离曲线,获得沿管道走向完整的管地电位曲线,间接反应涂层状况。图9.1.9是哈依煤气管线152~154#测试桩管段DCVG和CIPS实测结果平滑曲线图,CIPS检测得管线全线的开/关电位均位于标准的保护电位曲线之上,说明该管段管线均处于有效的阴极保护范围。
图9.1.9 哈依煤气管线152~154#测试桩管段DCVG和CIPS实测结果平滑曲线图
C. 什么方法可以检测到墙内水管什么地方漏水急问
墙内水管漏水解决方法分一下三种 一、墙内水管接头漏水的解决方法: 家里的水管接头漏水,除了换新的以外,还有什么好办法?管接头本身坏了只能换个新的,而丝口处漏水可将它拆下,如没有胶垫的要装上胶垫,胶垫老化了就换个新的,丝口处涂上厚白漆再缠上麻丝后装上,用生料带缠绕也一样。如果是胶接或熔接处漏水就困难些了,自己较难解决,如果是水龙头的问题,由于水龙头内的轴心垫片磨损所致。使用钳子将压盖拴转松并取下,以夹子将轴心垫片取出,换上新的轴心垫片即可。 二、墙内下水管漏水的解决方法: 1、如果是PVC的水管的话,就可以去买一根PVC的水管来自己接,先把坏了的那根管子割断,把接口先套进管子的一端,使另外的一端的割断位置正好与接口的另外的一个口子齐平,使它刚好能够弄直,然后把直接往这一端送,使两端都有一定的交叉接着距离(长度)然后把它拆卸下来,用PVC胶水涂抹在直接的两端内侧与两个下水管的外侧。 2、可以买防水胶带来修补下水管,缠住就好了,再用砂浆防水剂和水泥抹上去就可以了。 3、如果您自己不能处理的话,找专业的水管维修公司比较好一点。 三、墙内铁水管漏水的解决方法: 1、直径2厘米铁水管漏水但是铁水管没有绣制,只是部分位置破坏,把水管总阀关闭,只需要更换该位置的铁水管即可。切断该位置水管,在用彻丝用的器械彻丝扣,在接上连接头即可。 2、直径2厘米铁水管漏水,是因为整体水管锈蚀所致,把水管总阀关闭,把该段水管整体换掉两头套上镙丝扣拧上 3、直径20厘米铁水管漏水,如果是连接头出现问题就换掉接头部分。如果是管身出现漏水,磨去原管身的绣制,在采用焊接方法修补,注意需要在修补位置镶嵌一块与水管贴合紧密的铁板做加固处理。
D. 如何通过分析频谱图来检测材料内部裂纹
常用的无损检测方法有以下几种:磁粉探伤、渗透探伤、超声波探伤、射线检测等。裂纹易于产生的应力集中部位,如叶片进水边正面(压力分布面)靠近上冠处、叶片出水边正面的中部、叶片出水边背面靠近上冠处、叶片与下环连接区等部位,由于透照布置比较困难,不能用射线透照法进行无损探伤。根据水轮机转轮叶片表面比较粗糙、结构复杂和厚度变化大的特点,一般应采用渗透、磁粉、超声波的方法进行无损检测。 3.1 超声波检测 超声波探伤方法对裂纹、未熔合等面积型缺陷的检出率较高,适宜检验较大厚度的工件,但是对于铸钢、奥氏体不锈钢材,由于粗大晶粒的晶界会反射声波,在屏幕上出现大量的“草状波”,容易与缺陷波混淆,影响检测可靠性,限制了超声波探伤方法在铸钢制水轮机转轮叶片上无损检测的应用。探测频率越高,杂波就越显着,为了减小晶界反射波的影响,我们采用了低频探头(2MHz)对铸钢转轮进行超声波探伤,发现反射信号以后再用高频探头(4MHz)进行定量,实践证明这是可行的。 3.2 渗透探伤 渗透探伤方法简单易行,显示直观,适合于大型和不规则工件的检查和现场检修检查。但是,渗透探伤方法是利用渗透能力强的彩色渗透液渗入到裂纹等缺陷的缝隙中,再利用吸附能力强的白色显像剂,将渗透液吸出来以显示缺陷的,因此,只能检查表面开口的缺陷。 3.3 磁粉探伤 磁粉探伤方法是利用工件磁化后,在材料中的不连续部位(包括缺陷造成的不连续性和结构、形状、材质等原因造成的不连续性),磁力线会发生畸变,部分磁力线有可能逸出材料表面形成漏磁场,这时在工件上撒上磁粉,漏磁场就会吸附磁粉,形成与缺陷形状相近的磁粉堆积,从而显示缺陷。因此,磁粉探伤适用于铁磁材料探伤,可以检出表面和近表面缺陷,但是有些部位由于难以磁化而无法探伤。 第五种射线探伤法(RT),能比较直观地对缺陷定性和定量,底片可长期保存。此方法已广泛应用于锅炉压力容器压力管道的检验。但对于微裂纹检测,却受到微裂纹本身取向及其宽度和深度的影响,加之透照、暗室处理等诸多环节因素,其过程处理稍有不当,结果将事倍功半,检测灵敏度降低,甚至无法检出。 3裂纹检测的主要方法 3.1磁粉法 此法是利用高磁导率的磁粉细粒,在进入由于裂纹而引起的漏磁场时,就会被吸住留下,从而形成磁痕。由于漏磁场比裂纹宽,故积聚的磁粉用肉眼容易看出。其应用非常简单,直接检测表面裂纹,特点是显示直观、操作简单,它是最常用的方法之一。但磁粉检测也存在如下问题:无法检测应力集中,而应力集中往往会引起疲劳裂纹。检测时必须对被检工件磁化,而形状复杂的承载部件磁化时有一定的难度。为了清晰的显示磁痕,检测前,必须对被检件表面进行表面处理,即清理检测区域影响磁痕显示的油漆和腻子等,这不仅大大的增加了检测成本、检测时间,而且打磨过程本身会使被检工件形成新的缺陷。检测时速度慢,无法对整个承载部件全面检查,只能在目测的基础上重点检测一些部位,使得检测存在一定的隐患。检测结果受人为因素影响,降低了检测的准确度及可靠性。检测后为了不影响构件的性能,往往要求对检测件进行退磁,这也增加了检测成本。目前主要应用于汽车零部件等的探伤。 3.2渗透法 渗透法是利用毛细现象来进行探伤的方法。对于表面光滑而清洁的零部件,用一种有色或带有荧光的、渗透性很强的液体,涂覆于待探零部件的表面。若表面有肉眼不能直接观察的微裂纹,由于该液体的渗透性很强,它将沿着裂纹渗透到其根部。然后将表面的渗透液洗去,再涂上对比度较大的显示液。放置片刻后,由于裂纹很窄,毛细现象作用显着,原渗透到裂纹内的渗透液将上升到表面并扩散,在衬底上显出较粗的线条,从而显示出裂纹露于表面的形状,因此,常称为着色探伤。若渗透液采用的是带荧光的液体,由毛细现象上升到表面的液体,则会在紫外灯照射下发出荧光,从而更能显示出裂纹露于表面的形状,故常常又将此时的渗透探伤直接称为荧光探伤。此探伤方法也可用于金属和非金属表面探伤。其使用的探伤液剂有较大气味,常有一定毒性。渗透法对表面开口裂纹检测灵敏度很高,但对表面有涂层的工件不佳; 3.3超声法 超声波检测采用高频率、高定向声波来测量材料的厚度、发现隐藏的内部裂纹,分析诸如金属、塑料、复合材料、陶瓷、橡胶以及玻璃等材料的特性。超声波仪器使用人耳听力极限之外的频率,向被检测材料内发射短脉冲声能,而后仪器监测和分析经过反射或透射的声波信号来获取检测结果。 超声导波方法可细分为接触式检测方法、非接触式检测方法,其作用机理为当超声入射至被测工件时,产生反射波,根据反射波的时间及形状来判断工件的裂纹。这种检测方法有时会产生盲区,发生阻塞现象,不能发现近距离裂纹。它常用于管道内壁的裂纹检测,能较为精确的判断出裂纹位置、周向开口裂纹长度、管壁减薄程度及裂纹截面积。 表面波对于表面上的复层油污不光洁等反应敏感,并被大量衰减。利用表面波测定裂纹深度有2种方法: (1)表面波入射到上表面开口裂纹时,会产生一个反射回波,其波高与裂纹深度有关,当裂纹深度较小时,波高随裂纹深度增加而升高,这种方法只适用于测试深度较小的表面裂纹。当裂纹深度超过2倍波长时,测试误差较大。 (2)利用表面波在裂纹开口处和尖端处产生的2个反射回波及回波前沿所对应的一起水平刻度差值来确定裂纹深度,此法适用于深度较大的裂纹。裂纹深度太小,裂纹表面过于粗糙会导致测试误差增加。如果裂纹中充满了油和水,误差会更大。 相控阵检测是一种特殊的超声检测技术。它使用复杂的多晶片阵列探头及功能强大的软件来操控高频声束,使其通过被检测材料,并显示保真(或几何校正)的回波图像。所生成的材料内部结构的图像类似于医用超声波图像。对诸如关键金属结构、管道焊接、航空航天复合材料等的检测,相控阵技术所提供的附加信息是非常有价值的。 目前激光超声技术、超声红外热成像技术等的发展为超声技术在裂纹检测方面的应用提供了有益的启示。 3.4漏磁法 所谓漏磁检测是指,铁磁材料被磁化达到磁饱和后,其表面和近表面缺陷与空气边界出现磁导率跃变,裂纹及附近的磁阻会增加,裂纹附近的磁场会因此发生畸变而形成漏磁通,通过检测漏磁场即可确定铁磁性金属结构上的应力和变形集中区,进而发现缺陷的非破坏检测技术。从整个检测过程来说,漏磁检测可以分为以下几个部份: 测试系统是基于金属磁记忆效应原理检测铁磁管件裂纹,诊断评估其应力状态和集中区域,为及时处理或更换管件提供科学依据。铁磁体在形变和微弱地球磁场的作用下产生磁记忆现象的内部原因取决于铁磁晶体的微观结构特点,是由于磁弹性作用的结果。 漏磁场检测方法是由传感器获取信号,计算机判断有无缺陷,可以从根本上解决人为因素的影响,具有较高的检测可靠性,也易于实现自动化,检测效率很高。在一定条件下,漏磁通信号的峰值和表面裂纹的深度有很好的线性关系。因此这种方法不仅可以检测裂纹的方位,还可对裂纹的危险程度作进一步判断,这是实现非破坏评价的基础。但这种检测方法也有一定的局限性。和磁粉检测一样它只适合于铁磁材料的表面检测,而且检测灵敏度较低,检测得到的信号相对简单,只能给出裂纹的初步量化,不适合检测形状复杂的试件 实际工业生产中,漏磁检验方法被大量应用于钢铍、钢棒、钢管的自动化检测。特别值得指出的是,漏磁场检测是地埋输油管线等最主要的检测方法,采用漏磁技术的“管道猪”可在地下管道中爬行300km。在管道的检查中,在厚度高达30mm的壁厚范围内,可同时检测内外壁缺陷。该技术也应用于火炮、飞机、导弹、弹药、铁道机车、石油等应用领域。 3.5红外线法 红外检测常用于高温或低温承压设备内部保温层状态的检测与评价,而热弹性红外检测技术适用于各种特种设备高应力集中和疲劳损伤部位的检测;许多高温特种设备内部有一层珍珠岩保温材料,若其出现裂纹或部分脱落,壳体会出现超温运行,引起材料的热损伤,采用常规红外热成像技术即可发现该局部超温现象。特种设备上的高应力集中部位在大量疲劳载荷的作用下,出现的早期疲劳损伤会显示在热斑迹图像上。红外无损检测技术是一种非接触式的检测技术,远距离空间分辨率高、安全可靠对人体无害、灵敏度高、检测范围广、速度快,对被测物体没有任何影响。 3.6涡流法 涡流法检测是利用电磁感应原理实现的。电涡流传感器的线圈作为振荡电路中谐振回路的一个电感元件,加电工作时在线圈里会产生高频振荡电流。而传感器接近试件表面时,线圈周围的高频磁场在金属表面和内层感应出高频电流,即涡流。而涡流产生的损耗及反磁通又通过耦合反射到传感器的线圈中去,当传感器在试件表面移动时遇到裂纹处或裂纹深度宽度有变化时,涡流磁场对线圈的反射作用不同,线圈等效阻抗电感量也不同,进而影响回路的谐振频率和幅频特性,分析处理这种变化就可判断试件有无裂纹或裂纹深浅宽窄。 涡流技术对表面开口裂纹很灵敏,可以在不去除表面涂层的情况下方便可靠地检测出金属材料的表面和近表面裂纹。其特点是检测速度快、裂纹灵敏度高、适用方便,缺点是不能准确区分裂纹性质、受干扰因素多、不确定性大。它可分为单频和多频涡流检测技术,单频涡流检测只能显示涡流信号的幅值变化,不能抑制,不能区别提离、抖动等干扰信号,定性、定量均有一定困难。多频涡流检测技术的发展对上述问题做了较好的解决,多频涡流检测就是用几种不同频率同时激励探头,具有阻抗平面图形相位显示和纹幅值显示功能。根据不同频率激励信号所取得的测量结果,通过实时矢量相加减和处理,抑制不需要的干扰信号,具有去伪存真的功能,阻抗分析能在检测中分离出探头摆动信号和提离信号等的干扰。常规涡流方法只适用于检测表面光滑母材上的裂纹,对焊缝上的裂纹检测会因焊缝在高温熔合时产生的铁磁性变化和表面高低不平而出现杂乱无序的磁干扰而无法实施。只有基于复平面分析的金属材料焊缝电磁涡流检测技术,采用特殊的点式探头(电流扰动磁敏探头)检测焊缝的表面裂纹才可以允许焊缝表面较为粗糙或带有一定厚度的防腐层。 脉冲涡流检测方法是一种新近发展的技术。按照傅立叶变换,一个脉冲信号可以展开为无限多个谐波分量之和,因而,具有较宽的频谱。当用脉冲电流作激励信号进行涡流检测试验时,蕴含着丰富的被测信息。而且,激励的脉冲特性使涡流在金属中存在一个很高的峰值,易于观察和测量;能够进行传统涡流检测所不能进行的瞬态分析。 目前工程上能检测出在0.3~0.4mm 涂层下最小裂纹深度为0.5~2mm 的裂纹。
E. 锅炉水冷壁管内部腐蚀用什么方法检测
一般用超声波测厚仪检测腐蚀程度,但不会达到可视效果,当经过多点检测,当最薄处厚度小于原厚度50%的时候即为失效,所以需要更换。如果就是想知道表面腐蚀情况可用内窥镜观察,过去都采用切割方法检测,就是割下一段管子,然后按照修补规程再焊接上。
F. 真空检漏方法有哪些
真空检漏方法有如下几种:
1、氦质谱检漏
该技术是真空检漏领域里不可缺少的一种技术,由于检漏效率高,简便易操作,仪器反应灵敏,精度高,不易受其他气体的干扰,在检漏中得到了广泛应用。
2、真空封泥检测法
将真空泥逐个封住可疑漏点,注意观察真空度的变化,假如贴上真空封泥真空度提升很快,取掉有明显下降,说明这是一个漏点。这种方法在实际应用中,采用的比较少。
3、真空计检漏法
选用适当的气体或液体做示漏物质,这些真空计便成了探测器,一般镀膜机上都有真空计,使用起来很方便,也是常用到的一种检漏方法。
4、高频火花检漏
这种方法仅适用于玻璃真空系统。先将系统抽成真空,高频火花检漏仪的火花端沿着玻璃表面移动,火花集中成束形成亮点处即是漏孔位置。
选择检漏方法的原则:
1、主要根据被检漏设备的允许漏率为依据,由于一个设备的允许漏率是很多漏孔漏率的综合,为找到一个单个漏孔,所选择的检漏方法的检漏灵敏度就要高于允许漏率1~2个数量级。如一个设备的允许漏率为10-11W,而必须选用的检漏灵敏度为10-12~10-13W;
2、根据具体被检对象,所用方法简便易行、经济实用。
以上内容参考网络-真空检漏技术
G. 水管漏水检测要怎么操作
方法一:环境调查法环境调查法是判定漏水线索和范围直观的一种方法,该方法是根据供水管网图及相关人员提供的情况,对供水管道进行详细的调查。调查内容包括管道的连接、分布、材质及周围介质的情况。同时,通过对路面情况、冬季积雪先融、管线上方草木生长、下水井沟渠清水长流等情况的观察来判定漏点。
方法二:压力测试比较法压力测试比较法是管道漏水检测最为常见的一种漏水检测方法。将管道阀门关闭后,连接相关仪器,保证整个回路的密闭性良好,通过打压测试,利用漏水检测仪来确定漏点位置,这是漏水检测中快速、有效的方法之一。
水管漏水检测
方法三:管道漏水检测之余氯检测法余氯检测法是利用余氯与邻联甲苯胺反应生成黄色的醌式化合物的原理,通过对采集到的水样进行检测,利用目视比色法来判断供水管网是否发生泄漏的方法。按照国家规定的标准,氯和水接触30分钟后,水中余氯含量要不低于0.3毫克/升,管网末梢水中游离性余氯的含量不低于0.05毫克/升。通过比对,判断漏水情况。
方法四:管道漏水检测之音听检漏法音听检漏法一般分为阀栓听音、路面听音和钻探定位三种。其中,阀栓听音法适用于查找漏水的线索和范围,也被称为漏点预定位。阀栓听音法一般是用听音杆直接在管道暴露点(如消火栓、烦闷及暴露的管道等)测听漏水声,从而确定漏水管道、缩小漏水检测范围,通常金属管道的漏水声频率范围在300-2500Hz之间,非金属管道的漏水声频率在100-700Hz范围内,听测点距漏水点位置越近,听测到的漏水声越大,反之则越小;路面听音和钻探定位法适用于确定漏点位置,也被成为漏点精准定位法。
H. 哪位能说下暖气管道漏水检测方法是什么
管道漏水探测有许多种方法,如音听法、区域装表法及气体探测法,但供暖管道漏水有它的特殊性,对于物业小区来说采用测温法不失为一种省钱省力的暖气管道漏水探测方法。
不同漏水方法的比较
随着人们对小区环境的要求越来越高,管道直埋技术的不断成熟,越来越多的供暖管道被直埋于地下,以前很容易查找的架空暖气管道漏水问题现在变得非常困难,大量的漏水导致了水处理、蒸汽以及维修等费用的大量增加,同时也使供暖效果受到了影响,有时还会导致换热器能力的降低和损坏。音听法要求工人经验丰富,不适合在供暖管道上应用。气体探测法受家中私自放水干扰大,且费用较高。而测温法具有许多优点:
1、设备投资小(一块优质数字式温度测量仪配一不锈钢温度传感器和一台进口红外线测温仪价格在4000元左右)。
2、操作简便。
3、费用少。
因暖气管道的水温较高,一般在60-90度,所以漏水必然导致排水沟内的水温或地面的水温升高,测温法就是按照这个原理进行的。通常以为一旦漏水,排水沟上就会冒热气,其实不尽然,只有排水沟有落差或排水沟污水表面无油污覆盖时才会出现。只有通过测量污水的温度或地面温度才能准确发现温度的变化。测量时首先测量排水沟里的污水温度,然后用红外线测温仪沿小区管道的走向测量地面温度,进行普查,找出可疑点。测量污水沟的污水温度可以按照先主排水沟,后支排水沟的原则进行。正常华北地区排水沟的水温在20度以下,如超出此范围证明有异常,可以沿水流的方向查找,越接近漏水点温度越高。因为我国不同地区的室外温度相差较大,所以不同地区排水沟里的污水温度也不同,差别较大。对地面的温度普查也很重要,因为有的漏水不一定流入排水沟,如果测量地面某一位置的温度与其它位置的温度差别较大,就可以将探头插入土内(路面较硬的地方可以用冲击钻打孔),根据埋地管道的深度确定探头插入的深度。越接近漏水点处的水温越高,基本接近暖气管道里的水温。根据测量暖气管道周围土的温度的高低来决定打孔的位置和打孔密度,找出准确的位置。
爬行机器人管道体检
管道体检,别开玩笑!这次真没开玩笑,真的。给它们体检的,还是高科技玩意,机器人。
它的头部,是一个高清摄像头。别小看了这个摄像头,像素达到700万,即便是在黑暗的管道内,也能把管道情况看得一清二楚。一根150米的线缆,连着机器人尾部。线缆另一头,连接着地面控制和分析装置。
施罗德SINGA300机器人下井后,地面的显示屏上立即出现管道内壁情况。不仅能检测出管道堵塞,还能查出管道破损情况,地面分析设备能够分析出是哪种堵塞和哪种破损。采用电子潜望镜检测、CCTV(电视)检测、声纳检测等3种成熟的先进内窥技术,可全面普查老旧污水管道。
I. 漏水检测的方法和检测步骤
漏水检测的方法和检测步骤:
1、收集管线资料
收集需要检测管线的图纸资料和用水量资料,企业安排熟悉管线位置的技术人员现场指出该管线的相关信息。
2、区域管网环境调查
管网环境调查的目的是充分了解现场情况,为下一步漏水检测工作的施工安排、方法选择等做好准备,它包括管网环境调查,附属设备情况调查,用水情况调查和排水情况调查等。
(1)管网环境调查:①供水压力;②管道材质;③管道路面。
(2)附属设备调查:调查区域内井、表、阀、栓,并对以上附属物都进行漏水初步调查。
(3)排水情况调查:对管网附近的排水管道及电缆等所有涉及的地下构筑物均作详细调查。
3、漏水详查
在工作区内,日间对区域内的消火栓、阀门、水表及明管进行100%直接听音,以听取从漏水点传播至管道构筑物的声波,发现漏水异常。发现异常后均作详细记录,记录内容包括:外业编号、位置、异常性质、异常状况及解释等。
4、音听检测
在调查区域的管路上方,用漏水探知机按“S”型路线沿管道走向以间隔0.5~1.0m进行音。
作业实施在用水量相对稳定,周围环境相对安静的时间段。
调查埋设于路面下的管道漏水状况,在可能漏水的地面上做好标识。
a. 在异常处做“米”字型剖面探测
b. 路面听音率100%,声音异常查明率100%
c. 异常点及周围环境做详细记录
d. 路面听音同时应辅助阀栓听音及环境调查
5、漏水点确认及漏水点定位
对已经发现的漏水异常或区域,组织技术水平较高、经验丰富的人员进行异常判断,排除异常干扰,确认是否属于漏水异常。若为漏水异常时,再对漏水点进行准确定位。
对漏水点进行准确定位,是一项综合且复杂的工作。需综合利用地面音强及音频探测、管道音强及管道近距离音强音频探测等多种方法,综合分析阀栓检测,路面检测,相关检测等多种检测方法的结果,最终确认漏水点准确位置。
J. 管道检测的方法有哪些,找什么单位好
管道检测的方法主要分为传统检测方法和现代检测方法
现代检测方法主要有(1)管道潜望镜检测(QV)(2)管道闭路电视检测(CCTV)(3)声纳检测等,要是管道的向的话可以用管线仪或地质雷达。广州迪升集团在这方面还不错,你可以去看下。