导航:首页 > 解决方法 > 稀土全相与离子相检测方法

稀土全相与离子相检测方法

发布时间:2022-02-10 03:42:12

❶ 稀土元素组成球粒陨石标准化图解的解释

影响稀土元素球粒陨石标准化图解形式的因素非常复杂,如元素的矿物/岩石分配系数,构成岩石主要造岩矿物的差异,岩浆部分熔融或分离结晶的程度,岩石矿石的形成环境,以及REE在热液蚀变或变质作用过程中的活动性等。因此,对于 REE 球粒陨石标准化图解的解释要严谨和慎重。

1. REE 的分配系数

图5-28 REE 在玄武岩和安山岩中的矿物/熔体分配系数

(据Schnetzler et al.,1970)

Schnetzler et al.(1970)最早进行了天然体系中REE分配系数的研究。他们采用斑晶-基质法确定了REE 在玄武岩和安山岩某些矿物和熔体间的分配系数 (图5-28),可以清楚地看出,不同的矿物具有不同的分异 REE 的能力。自那以后,已有许多有关 REE 在岩浆岩中分配的研究。Henderson (1984)将天然岩浆体系中REE和其他微量元素的矿物/熔体分配系数汇编成表。Hanson (1978)依据已经发表的数据绘制了英安岩和流纹岩REE的矿物/熔体分配系数图解 (图5-29)。Rollinson (1993)汇编了REE在不同类型岩浆岩/矿物之间的分配系数,Henderson作出了斜长石/熔体对之间REE分配系数变化范围 (图5-30)。由此可以得出有关REE分配系数的以下规律:

图5-29 REE 在英安岩和流纹岩中的矿物/熔体分配系数

(据 Hanson,1978)

图5-30 REE 在斜长石/酸性岩熔体 (a)和斜长石/玄武质和安山质熔体 (b)分配系数变化范围和平均值

(据 Henderson,1984)

1)REE都是亲氧元素,其分配系数多小于 1,在大多数岩浆岩中是不相容元素。因此它们一般易富集于岩浆热液和晚期结晶的矿物中。REE 在造岩矿物与不同熔体之间的分配系数表明,随着原子序数的增加和离子半径的减小,元素的相容性增强。

2)REE在矿物/熔体之间的分配系数值,一般倾向为富硅体系高于基性体系。对于许多造岩矿物说来,除Eu之外,REE的分配系数平均D值常常小于 1。然而,在硅酸盐中REE的单斜辉石/熔体和角闪石/熔体分配系数均大于 1。

3)对于任何一种稀土元素和矿物/熔体对来说,其分配系数值均在较宽的范围内变化(图5-30)。这种变化有时可达一个数量级或更大些 (例如图5-30b 中的Yb),这是由于温度、压力和成分变化效应以及矿物不纯的结果。

4)虽然REE在一给定矿物/熔体对之间的分配系数值可以有很大的变化,但是对该矿物说,REE分配系数的模式形态一般是固定不变的,因此一种特定的矿物将对熔体中的REE组成模式施以特征影响,并且根据这种影响可以推断在部分熔融残余熔体中或分离结晶早期析出物中该矿物的存在。

5 )在稀土元素分配方面副矿物起着重要的作用。REE 的副矿物/熔体分配系数均很大 (远远大于 1,最高达n*100),并能造成REE彼此间的强烈分异。例如,对褐帘石说来,DLa (=820)大约比DLu (=7.7)高两个数量级。某些副矿物优先富集 LREE (如褐帘石),有些副矿物优先富集 HREE (例如锆石、石榴子石),还有的矿物优选富集MREE (如磷灰石、单斜辉石、普通角闪石)。

6) REE的分配系数D值表明,斜长石和钾长石的结晶或斜长石在部分熔融残余体中的存在可以在熔体中造成 Eu的亏损或负异常,因为相对于三价 REE 离子, Eu在斜长石和钾长石中是相容元素,即 Eu异常主要受长石特别是长英质岩浆的控制,因此由分离结晶长石从长英质熔体中的移出,或者岩石部分熔融长石保留在源区,都会在熔体中产生 Eu的负异常。而石榴子石、磷灰石、普通角闪石、单斜辉石、紫苏辉石、榍石等在残留体中的存在或早期的结晶析出均可以在熔体中造成Eu的相对富集或形成Eu的正异常。

当残余相仅有少量或无钾长石时,或者斜长石和单斜辉石等量;或者角闪石含量大于或等于斜长石含量时,则形成无 Eu 异常 (或异常很小)的熔体。在一系列火山岩中,Eu负异常逐渐增大,表明如果是斜长石作为斑晶,则斜长石不断从熔体中析出是Eu负异常逐渐增加的原因。多阶段的分离结晶可以形成大的 Eu 负异常 (δEu~0.1 )。因此,至少要用包括更多的长石的两阶段熔融或结晶模型来解释具有大的 Eu负异常的岩石。在晚期阶段的酸性岩石中,Eu亏损的增大往往不只是长石分离造成的,富挥发分 (F、Cl)流体与熔体的相互作用 (云英岩化、钠长石化)也是造成 Eu 亏损的重要原因。

LREE相对于 HREE的富集可以由橄榄石、斜方辉石和单斜辉石的存在引起,因为从La到Lu这些矿物的分配系数可以增大一个数量级。但是在玄武岩和安山质熔体中,对于每一种矿物每个REE都是相容的,只有轻微的分异。

相对于LREE,HREE的显着亏损,最可能表明在源区存在石榴子石。而长英质熔体中角闪石的存在可以说明相对于HREE,LREE的极端富集。长英质熔体中的副矿物,如榍石、锆石、褐帘石、磷灰石和独居石可以强烈地影响岩石的 REE 模式,尽管它们可能含量很低 (在岩石中经常小于 1%),但非常高的分配系数表明它们对于 REE 分布模式具有不成比例的影响。锆石具有类似于石榴子石的效应,它会使 HREE亏损。榍石和磷灰石更多地富集 MREE,而独居石和褐帘石则引起LREE的亏损。

2.岩浆部分熔融或分离结晶程度

图5-31 使用批次熔融模型作出假设的石榴二辉橄榄岩通过不同F值熔融形成熔体中REE浓度的变化 (球粒陨石标准化)

岩浆部分熔融或结晶分异程度直接影响着 REE 的球粒陨石标准化图解曲线的形态。图5-31为 Winter (2001)使用批次熔融模型作出的假设的石榴二辉橄榄岩通过不同F值熔融形成熔体中 REE 浓度的变化 (对球粒陨石标准化)。可见随着F(熔融(据 Winter,2001)

度)从0.05~0.6 不断增大,即随着部分熔融程度的增大,形成熔体中 REE 的球粒陨石标准化曲线逐渐由陡变缓,岩石中 LREE/HREE 比值由大到小。与 HREE 相比,LREE偏向进入液相,随F值减小,LREE 在液相中的浓度增大,不会出现正斜率。F=1,原岩全部熔融,液相REE含量与球粒陨石相同。体现出相对重稀土元素,轻稀土元素具有更加不相容的地球化学行为。

玄武岩中微量元素包括稀土元素的丰度怎样能够用于约束这些岩石的成因? Zielinski (1975)对印度洋Reunion岛火山岩的研究是一个很好的研究实例。对8个样品微量元素含量的测试结果表示在图5-32中。这些样品含有橄榄石、斜方辉石、单斜辉石以及磁铁矿的斑晶,基质由相同组成矿物构成并含有磷灰石。Zielinski (1975)用全岩和斑晶的主量元素构建分离结晶作用模型,通过一个岩石学混合程序,他发现 3~8 号熔岩样品可能是斑晶通过假定为母岩浆的2 号样品的分离结晶形成的。1 号样品不是这套岩石合适的母岩,即使它也有较高的Mg/Fe比值,它可能含有堆晶的橄榄石和辉石。Zielinski (1975 )使用微量元素对此模型进行了考察。

图5-32 球粒陨石标准化 REE 模式和其他微量元素含量变化

(据Zielinski,1975)

a—球粒陨石标准化REE模式;b—其他微量元素含量变化图样品 3~8 是样品 2 组成的熔体通过渐进平衡分离结晶所形成。样品 1 似乎是堆晶岩(a cumulate rock)(据McSween et al.,2003)

图5-32a中的稀土元素球粒陨石标准化模式从样品1到8平行递增,正像所期待的那样,不相容REE在残余液相中浓度更高,没有一种固相呈现出轻重稀土显着分异的特征。使用稀土元素在矿物和玄武岩熔体之间的分配系数 (Zielinski,1975),结合从混合程序中分离相的比例,可以计算每个样品的总分配系数,混合程序也可以确定残余液相的份数F。假定在完全分离出的固相与熔体之间达到了平衡,将上述值代入平衡结晶微量元素演化方程

中,可以求出

。Zielinski (1975)假定2号样品岩石是母岩浆,其微量元素浓度为

。由此可以计算来自样品2的液相的REE模式。结果相当精确地重现了测试获得的REE分配模式。样品8中的负Eu异常是在结晶作用结束时大量斜长石的移出引起的。

图5-32b表示了岩石中其他一些微量元素的丰度。与REE 相比,U和Th甚至更不相容,在结晶序列中呈现逐渐增加的特征。Ba也是不相容元素,它和Sr能够类质同象进入钠长石中,所以二者随着斜长石分离为主在序列结束时降低。与此相比,Ni和Cr是相容元素,在分离形成的岩石中表现出典型的亏损趋势。1号样品这些元素的含量远高于所希望的原始母岩浆,支持了这种岩石含有堆晶相的认识。

即使Zielinski (1975)的模拟似乎无可挑剔,我们还是注意到,这并非是对该问题的唯一解。相同的地球化学模型也可以通过不同程度地幔橄榄岩的部分熔融而成。8号岩石代表了低度部分熔融过程中形成的岩浆,随着熔融程度的加大,熔体相中不相容元素将逐渐被稀释,最终形成2号岩石。实际上,Zielinski (1975)已经认识到这种可能性,但是他结合岩浆浅部分异的野外证据给予了驳斥。

像其他地球化学工具一样,微量元素的模拟可以给出模棱两可的回答,因此我们最好将获得的结论与其他研究方法结合才能得出更合乎实际和令人信服的解答。

3.挥发分物种对REE 分配的影响

REE被认为是最难溶的微量元素,在低级变质作用、风化作用和热液蚀变过程中相对不活泼。例如Michard (1989)指出,热水溶液的REE含量是它们所流经储岩 REE 含量的 1/500~1/106 或百万分之一,因此热液活动性不会对岩石化学产生显着的影响,除非水-岩比值非常大。实验研究表明,REE 并非是完全不活动的,当热液中含有 Cl、F、CO2 等挥发分时,REE的活动性大大提高。

据Wendlandt et al.(1979)的试验研究,在5×108Pa、20×108Pa和1200~1300℃条件下,气液相组成为CO2 蒸气,而熔体相组成分别为硅酸盐熔体和碳酸岩熔体。在 2GPa压力下,与碳酸盐熔体和硅酸盐熔体平衡的CO2 蒸气相富集轻稀土元素,而在0.5GPa压力下,CO2 蒸气相富集所有稀土元素,特别是 LREE。相对于两种熔体,0.5GPa下 REE在CO2 蒸气相中的富集程度超过水蒸气相3~4个数量级。2GPa 下,蒸气相与水蒸气相中REE富集程度相近。研究指出,作为岩浆形成先兆的富LREE的CO2 蒸气的地幔交代作用,可以解释碳酸岩、富碱硅酸盐熔体以及金伯利岩 REE 的高含量和 LREE 的富集。霓长岩和金伯利岩中颗粒状结核暗示,地幔和地壳条件下,REE 在富 CO2 流体中活动性增强。

Flynn et al.(1978)实验研究了 REE 在含氯蒸气相与硅酸盐熔体之间的分配系数,得出结论:REE在蒸气—熔体之间的分配系数随着气相中氯化物摩尔浓度的增加而增大。三价REE在蒸气—熔体之间的分配系数是水溶液相氯化物浓度三次方的函数,而 Eu 的分配系数则是氯化物浓度5次方的函数。球粒陨石标准化图解上,在实验研究的所有氯化物浓度下,都呈现出Eu的强烈正异常。Reed et al.(2000)在 800℃和 200MPa 条件下进行了稀土元素在二长花岗岩熔体和水溶挥发分相之间的分配研究,结果表明,相对于重稀土元素Yb、Lu等,轻稀土元素 La、Ce 更易于分配进入与熔体平衡的水溶挥发分相中,分配系数的变化近似为原子序数的平滑函数。随着氯化物摩尔浓度的增加,Eu 的分配系数呈现由强烈正异常变为弱负异常的趋势,这与 Flynn et al.(1978)的实验结果有别。Reed et al.(2000)还讨论了与斑岩铜矿有关岩浆的热液出溶以及钾化对稀土元素分配模式变化的影响。

与此相比,热液中含F时可能加大重稀土元素的活动性。Mineyev (1963)在研究哈萨克斯坦某交代花岗岩体时,将交代岩中 REE 的迁移及 REE 型式与流体相中氟化物的浓度及pH值联系起来。岩石经历了一系列蚀变作用,流体的pH值发生了很大变化。REE 型式表现出从靠近岩体中心的LREE 富集到岩体边部的 Yb富集,呈现出岩石的碱质和氟化物含量增加的特征 (图5-33)。Meneyev (1963)认为 REE在溶液中是以碱性氟化物络合物形式迁移的。由于钠长石化使 Na+含量减少,引起氟化物的沉淀。LREE 络合物最不稳定,所以最先沉淀,从而使 HREE在残余溶液中富集。最后,当流体中碱的含量很低时, HREE沉淀下来。这说明稀土元素与氟化物的络合可以使 REE远距离迁移,同时也说明络合物对pH值的变化很灵敏。

图5-33 哈萨克斯坦某交代花岗岩体的球粒陨石标准化REE型式

(据 Henderson,1984)

②③④代表自岩体中心向边部的顺序,氟化物的存在大大增强了REE的活动性,特别是 HREE的活动性

主要出现在高度演化 (highly evolved)岩浆岩中的稀土元素四分组效应 (tetrad effect),也是特别富F、B等挥发分体系的产物,体现了岩浆端元和高温热液之间过渡体系的特征 (赵振华,1992)。

❷ TRB0(全相)在检测稀土矿中代表什么意思

REO就是指稀土氧化物总量的意思(一般是指质量百分比),RE就是稀土二字英文的缩写.

❸ 请教稀土总量全相和稀土总量离子相是什么意思,两者有什么区别

很显然你测的是南方离子矿。稀土总量离子相是指矿物中以离子形式存在的稀土总量(就是一般加硫铵进去能洗出的那部分稀土)。稀土总量全相是指包含在里面的所有稀土的量(它还包括以稀土矿石形态存在的不可洗出的部分稀土)。

❹ 任务稀土分析方法的选择

任务描述

含稀土元素的矿物种类很多,组分也很复杂。稀土分析包括非常丰富的内容,几乎涉及化学分析和仪器分析的各个领域,是分析化学中一个难点。稀土元素的分析可分为两大类,一是稀土总量的测定,其中包括稀土元素分组含量的测定;二是单一稀土元素含量的测定。要掌握好稀土元素分析,必须对稀土元素的基本性质、稀土矿石的特点、稀土元素的分析方法等有比较全面的了解,这样才能在接收稀土样品后,根据样品的特点及其分析任务选择合理的分析方法,正确派发分析检验单。

任务分析

一、稀土元素在地壳中的分布、赋存状态及稀土矿石的分类

稀土元素在地壳中的总质量分数为0.0153%,含量最大的是铈(占0.0046%),其次是钇、钕、镧等。含量最小的是钷,然后是铥、镥、铽、铕、钬、铒、镱等。稀土元素在地壳中主要呈三种状态存在:

(1)呈单独的稀土矿物存在于矿石中,如独居石、氟碳铈矿、磷钇矿等。

(2)呈类质同象置换矿物中的钙、锶、钡、锰、锆、钍等组分存在于造岩矿物和其他金属矿物及非金属矿物中,如萤石、磷灰石、钛铀矿等。

(3)呈离子形态吸附于某些矿物晶粒表面或晶层间,如稀土离子吸附于黏土矿物、云母类矿物的晶粒表面或晶层间形成离子吸附型稀土矿床。

离子吸附型矿是我国独有的具有重要工业价值的稀土矿。离子吸附型稀土矿中75%~95% 的稀土元素呈离子状态吸附于高岭土和云母中,其余约10% 的稀土元素呈矿物相(氟碳铈矿、独居石、磷钇矿等)、类质同象(云母、长石、萤石等)和固体分散相(石英等)的形态存在。离子吸附型稀土矿中的稀土氧化物含量一般为0.1% 左右,有的可高达0.3% 以上。根据离子型稀土矿中稀土元素的配分值可将其分为下列类型:富钇重稀土矿、富铕中钇轻稀土矿、中钇重稀土矿、富镧钕轻稀土矿、中钇轻稀土矿、无选择配分稀土矿。离子型稀土矿不用经过选矿,用NaCl、(NH42SO4、NH4Cl等溶液渗浸就可以将稀土元素提取到溶液中,再将溶液中的稀土转化成草酸盐或碳酸盐,最后灼烧得到稀土氧化物。

二、稀土元素的分析化学性质

(一)稀土元素的化学性质简述

稀土元素位于元素周期表的ⅢB 族,包括钪(Sc)、钇(Y)和镧系元素镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu),共17种元素。它们的原子序数分别为21,39 和57~71。其中镧、铈、镨、钕、钷、钐、铕为轻稀土,钆、铽、镝、钬、铒、铥、镱、镥、钇为重稀土。稀土元素是典型的金属元素,其金属活泼性仅次于碱金属和碱土金属,近似于铝。稀土金属在空气中不稳定,与潮湿空气接触会被氧化而变色,因此需要保存在煤油中。稀土金属能分解水,在冷水中作用缓慢,在热水中作用较快,放出氢气。稀土金属与碱不起作用。

(二)稀土元素主要化合物的性质

(1)稀土氧化物。在稀土分析化学中,稀土氧化物是一类非常重要的化合物。各种稀土元素标准溶液基本上是用高纯的稀土氧化物配制而成的。稀土氢氧化物、草酸盐、碳酸盐、硝酸盐及稀土金属在空气中灼烧均可获得稀土氧化物。经灼烧后,多数稀土元素生成三价氧化物,铈为四价氧化物CeO2,镨为Pr6O11,铽为Tb4O7。稀土氧化物不溶于水和碱性溶液中,能溶于无机酸(氢氟酸和磷酸除外)。

(2)稀土草酸盐。稀土草酸盐的溶解度较小,这是草酸盐重量法测定稀土总量的基础。随着原子序数的增大,稀土草酸盐的溶解度增大,因此当用重量法测定重稀土元素时较轻稀土的误差大。在800~900℃灼烧稀土草酸盐可使其完全转化为稀土氧化物。

(3)稀土氢氧化物。一般情况下,稀土氢氧化物为胶状沉淀。不同稀土氢氧化物开始沉淀的pH不同,并且随原子序数的增加而降低,碱性越来越弱。稀土氢氧化物主要用于稀土元素与铜、锌、镍、钙、镁等元素的分离。

(4)稀土卤化物。稀土卤化物中,氟化物难溶,可用于稀土元素的分离与富集。其他卤化物在水中有较大溶解度并且易潮解。稀土氟化物可以溶解于 H2SO4或 HNO3-HClO4中。

三、稀土矿石的分解方法

(1)酸分解法。由于稀土矿物的多样性与复杂性,它们的分解方法各不相同。大部分稀土矿物均能被硫酸或酸性溶剂分解,如硅铍钇矿、铈硅石等可以用盐酸分解,而独居石、磷钇矿等用浓盐酸分解不完全,而必须采用热硫酸分解。对难溶的稀土铌钽酸盐类矿物则可用氢氟酸和酸性硫酸盐分解。

密闭或微波消解是分解稀土矿石的非常有效的方法,该法具有速度快、分解完全、空白低、损失小等优点。微波消解一般使用硝酸+氢氟酸。

(2)碱熔分解法。碱熔分解法几乎适用于所有的稀土矿,该法一般使用过氧化钠或氢氧化钠(或氢氧化钠加少许过氧化钠)。其优点是熔融时间短,水浸取后可借以分离磷酸根、硅酸根、铝酸根和氟离子等阴离子,简化了以后的分析过程。

(3)离子型稀土矿的盐浸取法。离子型稀土矿的送检样品除了通过化学法提取并经其他处理过程得到的混合稀土氧化物外,也有一部分是稀土原矿。离子型稀土原矿一般要求测定离子相稀土总量和全相(离子相和矿物相等)稀土总量。全相稀土总量的测定,其样品分解方法同其他稀土矿的方法相同。而离子相稀土总量的测定有其特有的样品处理方法——盐浸法。

用于离子型稀土矿浸出的浸矿剂为各种电解质溶液,浸矿过程为离子交换过程,遵循离子交换的一般规律。盐浸法的实质是用一定浓度的盐溶液作为浸矿剂(实为解析剂)使被吸附于矿土中稀土阳离子解吸,进而转入浸出液中。适当浓度的各种电解质(酸、碱、盐)溶液均可作为离子型稀土矿的浸出剂。常用的浸矿剂有:氯化铵、氯化钠、硫酸铵、盐酸、硫酸等。

影响浸出率的主要因素是浸矿剂的类型、浓度和pH值。稀土浸出率随浸出剂浓度的增加而增加。但此时非稀土杂质的浸出率也相应增加,因此必须通过实验选择合适的浸出剂浓度。

稀土离子在水中水解的pH值为6~7.5。因此,稀土浸出液的pH值必须小于6。pH值太低,浸出剂的酸度太高,此时虽可获得较高的稀土浸出率,但非稀土杂质的浸出率也相应提高,有可能对后续的测定产生干扰;相反,浸出液的pH值太高,稀土离子会水解析出沉淀,使浸出率下降。一般浸出液的pH值控制在4.5~5.5 范围可获得比较理想的结果。

在稀土分析中,综合考虑稀土浸出率、杂质浸出率、浸出液pH值的控制难易等因素,一般选择硫酸铵(2%)作为离子型稀土矿的浸出剂。

四、稀土元素的分离富集方法

稀土元素的主要分离富集方法见表6-1。

表6-1 稀土元素的主要分离富集方法

五、稀土元素的分析方法

稀土分析的主要任务是稀土总量的测定、混合稀土中单一稀土元素含量的测定及铈组稀土或钇组稀土量的测定。由于稀土元素的化学性质十分相似,因此稀土分析是无机分析中最困难和最复杂的课题之一。为了测量各种含量范围、不同形态的稀土元素总量和各种单一稀土元素,几乎采用了所有的分析手段。下面介绍稀土分析最常用的分析方法。

(一)化学分析法

稀土元素的化学分析法包括重量法和滴定法,主要用于稀土总量的测定。

1.重量法

重量法用于稀土含量大于5% 的试样的分析,是测定稀土总量的古老的、经典的分析方法。该法虽然流程长、操作繁琐,但其准确度和精密度均优于其他方法,因此国内外常量稀土总量的仲裁分析或标准分析方法均是采用重量法。

能用于稀土沉淀剂的有草酸、二苯基羟乙酸、肉桂酸、苦杏仁酸等,其中草酸盐重量法因其具有准确度高、沉淀易于过滤等优点而被广泛采用。该法是将草酸盐沉淀分离得到的沉淀灼烧成氧化物进行称量。

2.滴定法

滴定分析法测定稀土主要是基于氧化还原反应和配位反应。对于稀土矿物原料分析、稀土冶金的流程控制和某些稀土材料分析,配位滴定法常用于测定稀土总量。氧化还原滴定法常用于测定铈、铕等变价元素。单一稀土的滴定法的测定范围和精密度与重量法相当,而操作步骤比重量法简单,常用于组分较简单的试样中稀土总量的测定。对于混合稀土总量的测定来说,由于试样的稀土配分不清楚或多变,给标准溶液的标定带来困难,并由此而造成误差。因此,混合稀土总量的滴定法主要用于生产过程的控制分析。稀土元素的氧化还原滴定法主要用于Ce4+、Eu2+的测定,由于其他稀土元素和其他不变价元素不干扰测定,因此该法具有较好的选择性。

总铈的氧化还原滴定法的一般程序是先将Ce3+氧化成Ce4+,然后用标准还原滴定剂滴定Ce4+。Ce3+的氧化常用的氧化剂有过硫酸铵、高氯酸、高锰酸钾。滴定Ce4+常用的还原剂是Fe2+,最常用的指示剂是邻菲罗啉和苯代邻氨基苯甲酸或两者的混合物。也有用硝基邻菲罗啉和邻菲罗啉与2,2′-联吡啶混合指示剂。由于上述指示剂本身具有氧化还原性,因此应注意扣除指示剂的空白值。铕的氧化还原滴定一般是在盐酸介质中用锌汞齐将Eu3+还原成Eu2+,在二氧化碳或其他惰性气氛中用Fe3+将Eu2+定量氧化成Eu3+,再用重铬酸钾滴定所产生的Fe2+;或用FeCl3直接滴定Eu2+。也有人用重铬酸钾定量将Eu2+氧化成Eu3+,再用亚铁滴定剩余的重铬酸钾。在上述这些方法中,Eu3+的定量还原是影响结果的关键。此外,控制好锌粒的大小及纯度,掌握好溶液流经锌柱的流速才能得到理想的结果。

稀土元素的配位滴定是用氨羧络合剂为滴定剂,它与三价稀土离子形成一定组成的稳定配合物。稀土元素的EDTA配合物较稳定,其lgK值在15~19 之间,形成稀土配合物的稳定常数彼此相差不大,一般只能滴定稀土总量。

二甲酚橙、偶氮胂Ⅲ、偶氮胂Ⅰ、铬黑T、紫脲酸铵、PAN、PAR、次甲基蓝、溴邻苯三酚和一些混合指示剂都可作为配位滴定法测定稀土的指示剂。其中最常用的是二甲酚橙,滴定的适宜酸度是pH值为5~6。

(二)仪器分析

稀土元素的仪器分析方法主要有可见分光光度法、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、X射线荧光光谱法(XRF)。各自的应用情况见表6-2。

表6-2 仪器分析法在稀土元素测定中的应用

六、稀土矿物的分析任务及其分析方法的选择

稀土矿物的分析任务主要有两个方面:稀土总量的测定和各单一稀土含量的测定。样品主要有以下几类:稀土原矿、稀土精矿、稀土氧化物、稀土渣、草酸稀土、碳酸稀土、氯化稀土、氟化稀土等。

对于稀土原矿,样品处理方法可以采用碱溶、复合酸溶或微波消解,测定方法主要有分光光度法,ICP -AES,ICP -MS,XRF,INAA。分光光度法一般只能测定稀土总量,铈组稀土或钇组稀土,而不能对单一稀土的测定。而其他几种方法可以方便地测定各单一稀土含量,将各单一稀土含量加和后即为稀土总量。其中以ICP-MS和INAA的灵敏度最高,ICP-AES居中,XRF次之。ICP-MS和INAA虽然有很好的分析性能,但因仪器设备昂贵,运行成本高,现在还很难普及,特别在中小型企业未能广泛应用。XRF的缺点是灵敏度差,对痕量稀土元素的测定比较困难。相比之下,ICP-AES在稀土分析领域获得了非常广泛的应用,在国内已经越来越普及。该法具有灵敏度高、容易建立方法、分析速度快等优点。但其对痕量稀土的测定还必须采取一定的富集方法。值得一提的是,对于我国特有的南方离子型稀土矿,检测项目还包括离子相稀土含量的测定和全相(离子相和矿物相)稀土含量的测定。

稀土精矿、稀土氧化物、草酸稀土、碳酸稀土、氯化稀土、氟化稀土中稀土总量的测定基本上采用草酸盐重量法。滴定法在混合稀土总量的测定中并不普及。稀土精矿可采用碱溶或酸溶法分解试样,应视样品性质而定。草酸稀土和碳酸稀土一般应先于900℃马弗炉中灼烧成氧化物后再进行分析,稀土氧化物用盐酸、硝酸即可完全分解。氯化稀土可直接用盐酸分解,而氟化稀土则必须加高氯酸冒烟处理方能完全为酸所分解。高含量稀土矿物中稀土配分量的测定是一项非常重要的项目,目前能用于稀土配分测定的是ICP-AES和XRF法。XRF测定稀土配分具有准确、快速和直接分析的特点,被人们作为标准分析方法和仲裁方法。ICP-AES测定稀土配分具有制样简单、分析速度快、线性范围宽等优点,已经获得了越来越广泛的应用,成为一种可以与XRF 相媲美的另一种重要的分析技术。

综上所述,对于稀土矿物中稀土元素的测定,因综合考虑样品性质、稀土含量范围、分析目的、分析成本等各方面因素,结合实验室的自身条件,选择合适的分析方法。

技能训练

实战训练

1.实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成稀土矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

❺ 任务岩矿中稀土总量的测定

——PMBP-萃取分离-偶氮胂Ⅲ光度法

任务描述

定量分析中,分析的对象往往比较复杂,因此就需要预先将待测组分与干扰组分分离。若待测组分含量甚微,就必须对待测组分进行预富集。分析中常用的分离富集方法有沉淀分离法、萃取分离法、离子交换分离法、液相色谱分离法等。能与稀土形成配合物并为有机溶剂萃取的有机试剂很多,PMBP为目前分离稀土最好的试剂之一。通过本任务的学习和训练,熟练掌握萃取的基本操作;了解液-液萃取技术在稀土分离中的应用。

任务实施

一、仪器和试剂准备

(1)可见分光光度计。

(2)过氧化钠。

(3)三乙醇胺。

(4)盐酸。

(5)氨水。

(6)1 -苯基 -3 -甲基 -苯基酰吡唑酮(PMBP)-苯溶液(0.01mol/L):称取2.78 g PMBP溶于1000mL苯中。

(7)乙酸-乙酸钠缓冲液(pH 5.5):称取164g无水乙酸钠(或272g结晶乙酸钠),溶解后过滤,加入16mL冰乙酸,用水稀释至1000mL。以精密pH试纸检查,必要时用盐酸(5+95)或氢氧化钠溶液调节。

(8)甲酸-8-羟基喹啉反萃取液(pH 2.4~2.8):称取0.15g 8-羟基喹啉,溶于1000mL甲酸(1+99)中。用精密pH试纸检查。

(9)偶氮胂Ⅲ溶液(1g/L):过滤后使用。

(10)抗坏血酸溶液(50g/L)。

(11)磺基水杨酸溶液(400g/L)。

(12)六次甲基四胺溶液(200g/L)。

(13)稀土氧化物标准储备溶液

称取0.1g从本矿区提纯的稀土氧化物或按矿区稀土元素比例配制的铈、镧、钇氧化物(850℃灼烧1h),加5mL盐酸及数滴H2O2,加热溶解,冷却后,移入500mL容量瓶中,用水稀释至刻度,混匀。

(14)稀土氧化物标准溶液

用稀土氧化物标准储备溶液稀释制得。

(15)混合指示剂溶液:取0.15g溴甲酚绿和0.05g甲基红,溶于30mL乙醇中,再加70mL水,混匀。

(16)强碱性阴离子树脂:水洗至中性,用盐酸(1 +9)浸泡2h,再水洗至中性,用NH4Ac(150g/L)溶液浸泡过夜,水洗至中性备用。

(17)校准曲线:移取0.00、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL稀土氧化物标准溶液,分别置于一组分液漏斗中,用水补足至10mL,加入1mL抗坏血酸溶液、1mL磺基水杨酸溶液及2滴混合指示剂,混匀。用氨水(1 +4)调节至溶液刚变绿色(有铁存在时是紫色),再用盐酸(5+95)调至紫色,此时pH值约为5(必要时可用精密pH试纸检查)。加入3mL乙酸-乙酸钠缓冲溶液,15mL PMBP-苯溶液,萃取1min,放置分层后,弃去水相。再加入3mL缓冲溶液,稍摇动洗涤一次,水相弃去,用水洗分液漏斗颈。于有机相中,准确加入15mL甲酸-8-羟基喹啉反萃取液,萃取1min,分层后,水相放入干燥的25mL比色管中。有机相可收集回收使用。于比色管中准确加入1mL偶氮胂Ⅲ溶液,混匀。用3 cm比色皿,以试剂空白溶液作参比,于分光光度计波长660 nm处测量其吸光度,绘制校准曲线。

二、分析步骤

称取0.1~0.5g(精确至0.0001g)试样,置于刚玉坩埚内,加3~4g过氧化钠,拌匀,再覆盖一薄层。在700℃温度下熔融5~10min,冷却,放入预先盛80mL三乙醇胺(5+95)溶液的烧杯中,用水洗出坩埚(如氢氧化物沉淀太少,加入约含10mg的MgCl2溶液作载体),加热煮沸10min以逐去过氧化氢。用水稀释至120mL,搅匀。冷后用中速定性滤纸过滤,用氢氧化钠(10g/L)溶液洗涤烧杯及沉淀6~8 次。以数毫升热的盐酸(1+1)溶解沉淀,用50mL容量瓶承接,用水洗涤并稀释至刻度,混匀。

分取10.0mL试液,置于分液漏斗中,以下按校准曲线进行测定。

三、结果计算

按下式计算稀土氧化物总量的含量:

岩石矿物分析

式中:

为稀土氧化物总量的质量分数,%;m1为从校准曲线上查得分取试样溶液中稀土氧化物的质量,μg;m0为从校准曲线上查得分取试样空白中稀土氧化物的质量,μg;V1为分取试样溶液体积,mL;V 为试样溶液总体积,mL;m 为称取试样的质量,g。

四、质量表格填写

任务完成后,填写附录一质量表格3、4、7。

任务分析

一、方法优点

分光光度法测定矿石中低含量的稀土总量具有准确、成本低、操作简单等优点,该方法非常容易普及,无须昂贵的仪器设备。

二、分光光度法测定稀土总量的“统一标准”问题和测定条件的选择

吸光光度法测定稀土总量存在“统一标准”的难题。由于各单一稀土的灵敏度对某一种显色剂来说是各不相同的,因此,当试样的稀土配分与绘制工作曲线用的混合稀土标准的配分不一致时就会带来误差,尤其当试样的稀土配分未知或者变化很大时,由此带来的误差就更大了。这就是“统一标准”问题。为了解决这一难题,人们提出了标准的配制、显色剂的选择、显色和测定条件的改变等方法来提高准确度。

1.标准的配制

采用与试样的稀土配分相同或相近的混合稀土来配制标准是常用的办法,主要有三种方法。

(1)对于稀土配分相同的同类试样(如同一矿区的试样)可以将试样中所含的混合稀土分离、提纯,作为该类试样测定稀土总量用的统一标准;对于某些使用同一种混合稀土为原料的稀土制品试样,如果在制备过程中原料和制品的稀土配分没有变化的话,就可以用其混合稀土原料作为试样分析的标准。

(2)对于已知稀土配分的试样,可以按其稀土配分来配制混合稀土标准,或按近似于试样的稀土配分的混合稀土来配制标准。

(3)对于稀土矿物或者天然矿石中稀土总量的测定,可以采用我国产量最大的以轻稀土为主的包头产混合稀土(Ⅰ类)和以重稀土为主的龙南产的混合稀土(Ⅱ类)以及两者的等量混合物(Ⅲ类)作为近似通用标准。详见表6-5。

表6-5 典型稀土矿物的稀土配分

2.显色剂的选择

如果存在这样的显色剂,它对所有稀土元素的灵敏度相同,那么就不存在前面所说的(统一标准)的问题了。无疑,这只是一种理想状态,实际上很难找到这样的显色剂。所以,在选择显色剂时,只能选择那些对各单一稀土元素灵敏度尽量接近的显色剂,以提高测定的准确度。

3.显色条件的选择

显色条件主要是指介质种类、酸度。在稀土的分光光度分析中,确定显色条件主要是为了使各种稀土的灵敏度尽量接近。对于不同的显色剂来说,显色条件应通过严格的试验来确定。

4.测定波长的选择

众所周知,分光光度分析中波长的选择一般是选择最大吸收波长。但在稀土的光度分析中却有其特殊性。这也是缘于各稀土元素的灵敏度差异。对于大部分显色剂来说,轻稀土元素的灵敏度比较接近且较高,重稀土元素中钇的灵敏度较高,而其他非钇重稀土灵敏度则普遍较低。根据这个情况,人们采取了以下措施:用包头混合稀土矿代表轻稀土矿,龙南混合稀土矿代表重稀土矿,分别用它们绘制吸收曲线,取其交点为测定波长。在此波长下,轻重混合稀土的灵敏度较接近,这样在测定不同稀土配分混合稀土总量时,可以减少测量误差。

三、液-液萃取技术简介及其在稀土元素分离中的应用

液-液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起振荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。萃取技术在稀土元素的分离中获得了非常广泛的应用。

(一)萃取分离法的基本原理

1.萃取过程的本质

物质对水的亲疏性是有一定的规律的。一般无机盐类都是离子型化合物,溶于水中形成水合离子,难溶于有机溶剂,这种易溶于水而难溶于有机溶剂的性质称为亲水性。许多有机化合物具有难溶于水而易溶于有机溶剂的性质称为疏水性或亲油性。萃取分离就是从水相中将无机离子萃取到有机相以达到分离的目的。因此萃取过程的本质就是将物质由亲水性转化为疏水性的过程。有时需要将有机相的物质再转入水相,这个过程称为反萃取。

2.萃取过程的基本参数

萃取过程的主要参数有分配比(D)、萃取率(η)、相比、分配系数(β)。

分配比是指当萃取体系达到平衡时,被萃取物在有机相的总浓度C有(总)与在水相中的总浓度C水(总)之比。萃取率是指萃入有机相中的金属质量与萃取前水相中的金属总质量之比(常用百分数表示)。分离系数表示两种元素自水相转移到有机相的难易程度的差别。它等于两种被分离元素在同一萃取体系内,在同样萃取条件下分配比的比值。分配系数值越大,分离效果越好,即萃取剂的选择性越高。

(二)常用稀土萃取剂

稀土萃取剂有几百种,而且新的萃取剂还在不断出现。实际应用中,对萃取剂的基本要求是:良好的选择性,水溶性小,萃取容量大,易反萃,稳定和安全,密度小,表面张力大,黏度低,沸点和闪点高。稀土萃取剂主要包括:中性磷类、酸性磷类、有机胺类、中性含氧类、螯合型及其他。

(三)萃取分离稀土元素的应用

1.从非稀土元素中分离稀土元素

稀土元素独特的物理性质和化学性质,使得稀土的应用范围非常广泛。为了测定各种不同性质材料中的稀土元素含量,首先要排除非稀土元素的干扰,而液-液萃取分离微量稀土元素简便、快速和效果好,被广泛采用。

2.稀土元素的分组萃取分离

在实际应用中经常遇到将稀土元素分为铈组和钇组进行分组测定。但是铈组和钇组之间无明确的界限,往往依据具体的分离方法来确定分离的界限。常用的方法有:

(1)磷酸二丁酯(DBP)萃取法。用DBP萃取时可将稀土分为铈组和钇组。当Ce3+被氧化为Ce4+时,在较强的酸度下用DBP萃取Ce4+,与三价稀土元素分离。在

=0.94mol/L中用

=0.3~0.4mol/L DBP的四氯化碳溶液萃取,铈组稀土留在溶液中,钇组稀土进入有机相,用CHCl=5mol/L反萃有机相中的钇组稀土,然后分别用吸光光度法测定其分组含量。

(2)P204萃取法。在

=0.7~0.9mol/L介质中,P204能萃取钇组稀土而不萃取铈组稀土,但钐、钆被部分萃取。矿石样品中铈组和钇组的分离,首先用PMBP-苯萃取全部稀土,经反萃后再用P204-苯(或二甲苯)溶液从总稀土中萃取钇组稀土,铈组稀土留在水相中。

3.单一稀土元素的萃取分离

由于稀土元素性质十分相似,单一稀土的萃取分离较困难,相邻稀土元素的萃取分离往往需要进行数十级萃取才能分离完全。而在稀土的应用和检测中,需要单一稀土的分离测定,萃取分离单一稀土建立在某些稀土价态变化及单一稀土性质差别较大基础上,实际效果要比色谱差。

(1)铈的萃取分离。Ce3+很容易氧化成Ce4+,在硝酸介质中可用多种含氧有机溶剂进行萃取(见表6-6)。TBP、P204、PMBP、P507等也是常用的Ce4+的萃取剂。

表6-6 各种含氧有机溶剂萃取剂对Ce(NO34的萃取率

PMBP萃取分离法:在含铈的溶液中,加入抗坏血酸和磺基水杨酸掩蔽铁,用氨水及盐酸调节溶液为微酸性,加入pH 5.5 的缓冲溶液和2.8g/L PMBP-苯溶液,萃取1min,弃去水相,有机相中加入溴水,振荡1min,放置30min,弃去水相,用pH 2.4甲酸反萃液将非铈稀土元素反萃下来,再用有固体抗坏血酸的磺基水杨酸-盐酸混合液(pH 2.4 )将铈还原并反萃如水相。

(2)钇的萃取分离。用萃取分离法进行钇与其他稀土元素分离,步骤比较麻烦,可以在一定范围内应用。例如,根据PMBP对稀土元素的配位能力是随着原子序数的增加而增强,钇的配位能力在钆和镝之间,同时与PMBP的浓度和反萃取稀土的甲酸浓度成正比,因此利用

=0.001~0.0025mol/L PMBP-苯溶液萃取全部稀土,再将PMBP的浓度升至0.07mol/L,用0.025%(体积分数)甲酸洗涤PMBP -苯溶液除去轻稀土,再将PMBP浓度调节至0.1mol/L左右,用1%(体积分数)甲酸溶液反萃取钇,而其他重稀土留在有机相内。本法适用于0.001%~1% 钇的测定。

(四)溶液中物质的萃取操作及其注意事项(表6-7)

表6-7 溶液中物质的萃取操作及其注意事项

实验指南与安全提示

稀土元素在矿物中一般以铈、镧、钇为主,在不同的矿物中,相互间的比例也各不相同。由于钇的相对原子质量最小,故其摩尔吸光系数最大。因此,配制混合稀土标准溶液时,必须与被测试液中稀土元素的组分,特别是铈和钇的比例大致相似。目前,稀土氧化物标准大多是选择所分析的矿区中具有代表性的矿石,从中提取纯稀土氧化物而配制。

PMBP-苯萃取稀土适宜的酸度为pH 5.5。稀土元素由于“镧系收缩”,离子半径从镧到镥逐渐变小,故镧系元素的碱性由镧到镥逐渐减弱。当pH<5,铈组稀土萃取不完全,而钇组稀土可完全萃取;如pH>5,铈组能萃取完全,而钇组有所偏低。增加PMBP浓度有利于提高稀土元素的萃取率。浓度太大,反萃时大量PMBP被带下来,给以后操作增加困难。

稀土氧化物能吸收空气中的二氧化碳和水分,氧化钕和氧化镧吸收作用最强。铈及钇组氧化物吸收作用最弱,氧化钇能吸收氨,故必须于850℃灼烧1 h 逐去上述杂质,并在干燥器中冷却后称取。

硫化矿需预先在高温炉中灼烧将硫除去。如试样中含铁量不高,又能用酸分解时可用王水或高氯酸分解,含硅高的可滴加少量氢氟酸。

磷酸根的存在能抑制稀土-PMBP配合物的形成,使萃取不完全,0.5~1mg五氧化二磷即有干扰,可在萃取前用强碱性阴离子树脂将磷静态吸附除去,处理后60mg以下磷酸根不干扰(将稀土沉淀为草酸盐或氟化物也可使磷酸根分离)。除磷酸根操作:于原烧杯中加入一小片刚果红试纸,用氨水(1 +1)调节至刚变为红紫色,加2mL冰乙酸、2~3 g强碱性阴离子树脂。混匀后,加入15mL六次甲基四胺溶液,过滤入50mL容量瓶中,用水洗净并稀释至刻度,混匀。

对磷高的试样,也可用PMBP-丙酮代替PMBP-苯。

铅与偶氮胂Ⅲ生成有色配合物,少量存在便干扰稀土测定,使结果偏高。可在萃取前加入2mL铜试剂(20g/L)使之与铅配位,以消除铅的影响。在反萃取稀土后的有机相中,再用盐酸(1+1)将钍反萃,利用此性质可连续测定钍。

苯对身体损害大,致癌。操作时应在通风橱内进行,避免吸入苯。

六次甲基四胺有致敏作用,会引起皮疹和湿疹,可能具有致癌性。本身易燃,遇明火、高热可燃。与氧化剂混合可形成有爆炸性的混合物,受热分解放出有毒的氧化氮烟气。可用泡沫、二氧化碳、雾状水、砂土灭火。操作时应注意防护,避免接触皮肤与眼睛,防止误服和吸入呼吸道。若与皮肤、眼睛接触,应立即用大量清水冲洗。用后及时密封,储存于阴凉、通风处,远离火种、热源、氧化剂和酸类。

案例分析

为了解决分光光度法测定稀土总量的“统一标准”问题,某稀土冶炼企业检测中心在利用分光光度法测定赣南离子型稀土矿离子相稀土总量和全相稀土总量时,采用硫酸铵浸取-草酸盐沉淀法法从该类离子型稀土矿中提取出混合稀土氧化物作为标准物质。然而,检测人员发现,用该法测出的结果,离子相稀土总量与ICP-AES法的吻合得很好,全相稀土总量却和ICP-AES法的相差较大,他百思不得其解。请你帮他分析一下原因。

拓展提高

ICP-AES法测定离子型稀土矿中离子相稀土总量

1.方法原理

试样经硫酸铵溶液浸取,以氩等离子体为离子化源,用发射光谱法测定15个稀土分量,将各个分量加和即为离子相稀土总量。

2.试剂及仪器

硫酸铵(25g/L)、盐酸、标准系列溶液:各稀土氧化物的浓度分别为0.00μg/mL、10.0μg/mL、20.0μg/mL。

Ultima2电感耦合等离子发射光谱仪。

3.分析步骤

将试样研磨至150目后,在干燥箱内于105℃烘1h,置于干燥器内冷却至室温。称取10 g试样,精确至0.001 g。

将试料置于300mL烧杯中,定量加入80mL硫酸铵,搅匀,隔15min搅匀一次,共两次,静置20min,定容100mL。用中速定量滤纸干过滤。移取5.00~10mL 溶液于25mL容量瓶中,用硫酸铵稀释至刻度,混匀。上机测定,测量分析线波长见表6-8。

表6-8 测量分析线波长

4.分析结果的计算

按下式计算稀土离子相的质量分数:

岩石矿物分析

式中:w(ReO)为单一氧化稀土的质量分数,%;C为自工作曲线上查得的测定溶液中氧化镁的浓度,μg/mL;V为测定溶液的体积,mL;m为称取试料的质量,g;n为全部试液与所分取试样溶液的体积比。

❻ 请教稀土总量全相和稀土总量离子相是什么意思,两者有什么区别

稀土总量全相可以理解为几种氧化物形式,离子形式的总量吧
再看看别人怎么说的。

❼ 矿石中稀土的物相分析

方法提要

本分析系统可测定氟碳酸盐相、易解石和黄绿石相、独居石相以及离子吸附型稀土四相。氟碳酸盐相用HCl⁃H2O2浸取,易解石相用HClO4浸取,最后残渣为独居石。分析流程见图1.40。离子吸附型稀土系单独称样,用硫酸铵等浸取。

试剂配制

浸取剂REE Ⅰ H2O2(3+97)⁃HCl(12.5+87.5)溶液。

浸取剂REE Ⅱ 30g/L(NH42SO4用氨水调节至pH=5。

稀土标准溶液 用重量法提取同一矿床的稀土氧化物,配制成吸光光度法用的标准溶液。

分析步骤

(1)氟碳酸盐相稀土的测定。称取0.2~0.5g试样于瓷坩埚中,在800℃焙烧1h(使易解石似晶化以降低溶解率,同时使氟碳酸盐分解逸出CO2,产生裂隙,使该相易溶)。冷却后转入锥形瓶中,加入100mL浸取剂REEI,在沸水溶上浸取1h,过滤,用HCl(1+99)洗锥形瓶1~2次,洗残渣2~3次,滤液用吸光光度法测定REE,此为氟碳酸盐相,残渣留作下一相测定。

(2)易解石(包括黄绿石)相稀土的测定。上述残渣转入瓷坩埚中,灰化,在700℃灼烧30min,残渣转回原锥形瓶中,加入15mL HClO4,加热至沸并微沸15min,取下,加40mL水稀释,过滤,用HCl(1+99)将全部残渣转到滤纸上,再洗残渣2~3次,滤液测定REE,此为易解石相中REE。残渣留作测定独居石相。

流程A

试样0.5~1.0g,加100mL 30g/L(NH42SO4(调至pH=5),室温机械振荡1h,滤液测离子吸附型REE。

流程B

图1.40 矿石中稀土的物相分析流程

(3)独成石相(包括磷钇矿)稀土的测定。残渣连同滤纸转入刚玉坩埚中,灰化,在700℃灼烧30min,取出,冷却,加2g Na2O2,在700℃熔融分解,冷却后,用HCl(1+9)浸取后测定REE,此为独居石相中REE。

(4)离子吸附型稀土的测定。称取0.5~1.0g试样于锥形瓶中,加入100mL浸取剂REEⅡ,室温振荡1h,过滤,用10g/L(NH42SO4溶液洗锥形瓶1~2次,洗残渣2~3次,滤液规定REE,此为离子吸附型稀土。

注意事项

(1)测定REE时标准溶液中各种稀土元素的比例将会影响测定结果的准确度,因此最好用同一矿床试样中提取混合稀土氧化物作标准物质为佳。

(2)测定离子吸附型REE时,如含量较高,应将残渣用同样浸取条件再浸取一次,合并两次浸取溶液测定REE。

❽ 稀土的用途是什么

1、军事方面

稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显着的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。

而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,正缘于稀土科技领域的超人一等。

2、冶金工业

稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。

3、石油化工

用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;

在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。

4、玻璃陶瓷

主要包括一下几个方面:超导陶瓷、压电陶瓷、导电陶瓷、介电陶瓷及敏感陶瓷等。

稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显像管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;

添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。

随着材料科学的发展,近年来功能复合陶瓷备受关注,稀土掺杂在功能复合陶瓷的开发研究方面也取得了较大进展。浙江大学陈昂等,采用常规功能陶瓷的制备方法,YBa2Cu3O7-x和铁电陶瓷BaTiO3复合,获得了铁电性与超导性共存的YBa2Cu3O7-x-BaTiO3系复合功能陶瓷,其电导特性符合三维导电行为,并当YBa2Cu3O7-x含量较高时呈超导性。

华中理工大学周东祥等的研究指出,LaCoO3-SrCoO3系和LaCrO3-SrCrO3系复合功能陶瓷,可用作磁流体电机的电极材料和气敏材料;而在NTC热敏复合材料NiMn2O4-LaCrO3陶瓷中,新化合物LaMnO3导电相决定着陶瓷的主要性质。

智能陶瓷是指具有自诊断、自调整、自恢复、自转换等特点的一类功能陶瓷。如前所述在锆钛酸铅(PZT)陶瓷中添加稀土镧而获得的锆钛酸铅镧(PLZT)陶瓷,不但是一种优良的电光陶瓷,而且因其具有形状记忆功能,即体现出形状自我恢复的自调谐机制,故也是一种智能陶瓷。

智能陶瓷材料概念的提出,倡导了一种研制和设计陶瓷材料的新理念,对拓宽稀土在近代功能陶瓷中应用极为有利。近年的研究还表明,稀土在生物陶瓷、抗菌陶瓷等新型陶瓷材料中也有着独特的作用。由于稀土元素可与银、锌、铜等过渡元素协同增效,开发的稀土复合磷酸盐抗菌可使陶瓷表面产生大量的羟基自由基,从而增强了陶瓷的抗菌性能。

稀土陶瓷颜料主要是指五种色相的组合着色锆英石基稀土陶瓷颜料。

它可用作彩釉砖、外墙砖、地砖等建筑陶瓷的装饰材料,尤其适用于卫生洁具陶瓷制品的彩饰,还可用作瓷器釉上彩、釉中彩和釉下彩的色基。组合着色锆英石基稀土陶瓷颜料,是以二氧化锆、二氧化硅为基质材料,以过渡元素和稀土元素为组合着色剂,添加少量矿化剂,经高温900~1150℃固相反应合成。其主要技术指标如下:色相有红、黄、蓝、绿和灰,稳定性小于或等于1280℃最高可达1300℃),适应气氛为氧化焰,颗粒直径小于15μm的不少于92%,大于30μm者为零新材料

稀土钴及钕铁硼永磁材料,具有高剩磁、高矫顽力和高磁能积,被广泛用于电子及航天工业;纯稀土氧化物和三氧化二铁化合而成的石榴石型铁氧体单晶及多晶,可用于微波与电子工业;用高纯氧化钕制作的钇铝石榴石和钕玻璃,可作为固体激光材料;稀土六硼化物可用于制作电子发射的阴极材料;镧镍金属是70年代新发展起来的贮氢材料;

铬酸镧是高温热电材料;当前世界各国采用钡钇铜氧元素改进的钡基氧化物制作的超导材料,可在液氮温区获得超导体,使超导材料的研制取得了突破性进展。此外,稀土还广泛用于照明光源,投影电视荧光粉、增感屏荧光粉、三基色荧光粉、复印灯粉;在农业方面,向田间作物施用微量的硝酸稀土,可使其产量增加5~10%;在轻纺工业中,稀土氯化物还广泛用于鞣制毛皮、皮毛染色、毛线染色及地毯染色等方面。

5、农业方面

研究结果表明,稀土元素可以提高植物的叶绿素含量,增强光合作用,促进根系发育,增加根系对养分吸收。稀土还能促进种子萌发,提高种子发芽率,促进幼苗生长。除了以上主要作用外,还具有使某些作物增强抗病、抗寒、抗旱的能力。

大量的研究还表明,使用适当浓度稀土元素能促进植物对养分的吸收、转化和利用。玉米用稀土拌种,出苗、拔节比对照早1~2天,株高增加0.2米,早熟3~5天,而且籽粒饱满,增产14%。大豆用稀土拌种,出苗提早1天,单株结荚数增加14.8~26.6个,3粒荚数增多,增产14.5%~20.0%。喷施稀土可使苹果和柑橘果实的Vc含量、总糖含量、糖酸比均有所提高,促进果实着色和早熟。并可抑制贮藏过程中呼吸强度,降低腐烂率。

(8)稀土全相与离子相检测方法扩展阅读:

稀土(Rare Earth),是化学周期表中镧系元素和钪、钇共十七种金属元素的总称。自然界中有250 种稀土矿。最早发现稀土的是芬兰化学家加多林(John Gadolin)。于1794 年从一块形似沥青的重质矿石中分离出第一种稀土“元素”(钇土,即Y2O3),因为18 世纪发现的稀土矿物较少,当时只能用化学法制得少量不溶于水的氧化物,历史上习惯地把这种氧化物称为“土”,因而得名稀土。

根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征

轻稀土包括:镧、铈、镨、钕、钷、钐、铕、。

重稀土包括:钆、铽、镝、钬、铒、铥、镱、镥、钪、钇。

按矿物特点分类:

铈组(轻稀土)—镧、铈、镨、钕、钷、钐和铕;

钇组(重稀土)—钆、铽、镝、钬、铒、铥、镱、镥和钪。

按萃取分离分类:

轻稀土(P204弱酸度萃取)—镧、铈、镨、钕;

中稀土(P204低酸度萃取)—钐、铕、钆、铽和镝;

重稀土(P204中酸度萃取)—钬、铒、铥、镱、镥、钇。

中国的稀土储量最多时占世界的71.1%,目前占比在23%以下。

中国稀土储量在1996至2009年间大跌37%,只剩2700万吨。按现有生产速度,中国的中、重类稀土储备仅能维持15至20年,在2040-2050年前后必须从国外进口才能满足国内需求。

中国并非世界上唯一拥有稀土的国家,却在过去几十年承担了世界稀土供应的角色,结果付出了破坏自身天然环境与消耗自身资源的代价。

日本开始在全球范围内四处寻找能够替代中国的稀土供应源。东京计划投资12亿美元用来改善稀土供应状况。日本已经与蒙古闪电达成协议,从本月起开发该国的稀土资源。另一稀土消耗大国韩国也有类似的计划。本月初,韩国宣布将投资1500万美元,在2016年前储备1200吨稀土。

❾ 矿石中离子吸附型稀土总量和铈组稀土的测定

方法提要

方法基于在矿石中的离子吸附相稀土经钠盐溶液平衡交换进入溶液中,在三乙醇胺和EDTA的联合掩蔽下,用NaOH 进行沉淀,分离大部分W、Mo、Fe、Pb、Ca、Mn、Sn、Al、Cu等杂质元素,然后在pH=3 左右,抗坏血酸、Na2HPO4、磺基水杨酸等存在下,用偶氮胂Ⅲ显色测定稀土总量。HCl介质中用草酸掩蔽重稀土,用三溴偶氮胂显色测定铈组稀土。方法适用于矿石中RE2O3或∑Ce2O3为0.01%~0.5%的测定。

试剂配制

NaCl 交换溶液 9g NaCl和0.1mL HCl 加入100mL 水中。

Na2HPO4⁃磺基水杨酸混合溶液2gNa2HPO4和5g磺基水杨酸溶于100mL水中。

HCl⁃乙酸钠缓冲溶液 将HCl(1+11)与82g/L乙酸钠溶液按1+1混合(pH=3,用精密pH试纸检查,必要时用稀HCl或稀NaOH溶液调节)。

HCl⁃草酸混合溶液 100mL 溶液中含10g草酸和25mL HCl(1+1)。

偶氮胂Ⅲ溶液 1g/L 水溶液,过滤后备用。

三溴偶氮胂溶液 1g/L 水溶液,过滤后备用。

稀土总量标准溶液 称取1.0g被测矿区提纯的稀土氧化物或按接近配分混合的纯稀土氧化物于400mL烧杯中,加入10mL HCl,0.5mL H2O2,加热溶解后,移入1000mL容量瓶中,以水定容,此溶液含1mg/mL RE2O3,取此溶液稀释配制成介质为HCl(5+95)的10μg/mL,RE2O3标准溶液。

铈组氧化物标准溶液 按La+Ce+Pr+Nd=44+2+10+44或更接近于测定矿样的铈组稀土比例,称取铈组氧化稀土,按总量配制方法配成10μg/mL铈组稀土的标准溶液。

分析步骤

称取0.25g试样于100mL容量瓶中,用NaCl交换溶液稀释至刻度,浸取3 h以上,中间摇动数次,干过滤。取50mL溶液于250mL烧杯中,加入10mL 200g/L NaOH溶液,摇匀,再加入5mL三乙醇胺(1+1),1mL 10g/L EDTA二钠溶液,0.2mL 100g/L MgCl2溶液,摇匀,煮沸,用中速或慢速滤纸趁热过滤,用热的10g/L NaOH溶液洗烧杯及沉淀各3次,用冷水洗烧杯及沉淀各1次,滤液弃去。沉淀用热的HCl(1+1)溶解并洗涤烧杯和滤纸,溶液用50mL容量瓶承接,控制HCl浓度约为(5+95),用热水洗烧杯及滤纸,以水定容。REE总量和铈组测定如下:

(1)REE总量测定。吸取5mL上述溶液于25mL比色管中,加1mL 10g/L坑坏血酸溶液,1mL Na2HPO4⁃磺基水杨酸混合溶液,3mL 250g/L NaOH溶液调至黄色,然后用HCl(5+95)调至刚变红色,加入5mL HCl⁃乙酸钠缓冲溶液和1mL 1g/L偶氮胂Ⅲ溶液,以水定容。15min后,以试剂空白作参比,于波长660nm,用2cm吸收皿测定吸光度。

工作曲线:分取含0.0,5.0,10.0,15.0,20.0,25.0μg RE2O3标准溶液于25mL比色管中,用HCl(5+95)补足至5mL,其余同试样分析步骤。

(2)铈组稀土测定。吸取5mL上述溶液于25mL比色管中,加入10mL HCl⁃草酸混合溶液,2mL 1g/L三溴偶氮胂溶液,以水定容。15 min后,以试剂空白作为参比,于波长630nm,用1cm吸收皿测定吸光度。

工作曲线:分取含0.0,5.0,10.0,15.0,20.0μg铈组稀土标准溶液于25mL比色管中,不足部分用HCl(5+95)补足至5mL,其余按试样分析步骤进行。

注意事项

(1)配制标准溶液用的稀土氧化物如放置时间较长,在使用前应在850℃灼烧30min,冷后称样。

(2)根据不同矿区,必要时,可经检查试验以确定交换浸取完全所需的时间。

(3)特别复杂的矿样,可经PMBP萃取分离后再测定。

❿ 稀土总量的测定

61.3.1.1 草酸盐分离-重量法

方法提要

试样经碱熔分解,热水提取(含铁高的试样用!=5%三乙醇胺提取),沉淀过滤后再用盐酸溶解,在pH1~3的微酸性溶液中,用草酸沉淀稀土元素,钍、钙同时被沉淀以及较大量的钛、锆可能被带下外,可与大多数杂质分离。用六次甲基四胺沉淀钍。对钛、锆、铌、钽较高的试样,可用氟化物沉淀分离。最后将稀土沉淀成氢氧化物再转化为草酸盐,于850℃灼烧成稀土氧化物称量。

试剂

过氧化钠。

抗坏血酸。

盐酸羟胺。

氟化铵。

盐酸。

硝酸。

氢氟酸。

高氯酸。

过氧化氢。

氢氧化铵。

盐酸。

三乙醇胺。

氢氟酸-盐酸洗液2mLHF加2mLHCl,用水稀释至100mL。

氢氧化钠溶液(10g/L)。

草酸丙酮溶液(400g/L)。

草酸溶液(10g/L)调节至pH1.5~2.5。

苯甲酸溶液(10g/L,2g/L)。

六次甲基四胺(200g/L)。

六次甲基四胺-氯化铵洗液(10g/L)称取1g六次甲基四胺、1gNH4Cl溶于水中,稀释至100mL,用稀盐酸调节至pH4.4~5.0。

氯化铵-氢氧化铵溶液称取2gNH4Cl溶于100mL氢氧化铵,pH8.6~9.0。

麝香草酚蓝指示剂(1g/L)。

甲基橙指示剂(0.1g/L)。

酚酞指示剂(4g/L)。

分析步骤

称取0.2~0.5g(精确至0.0001g)试样,置于高铝坩埚中,加4gNa2O2,搅匀后再覆盖一层,加盖,置于高温炉中于650~700℃熔融5~15min,取出冷却,置于300mL烧杯中,加约50mL热水提取[含铁高的试样用(5+95)三乙醇胺提取],洗出坩埚及盖,将烧杯加盖表面皿,置于控温电热板上加热煮沸,取下冷却,洗去表面皿,用中速滤纸过滤,用氢氧化钠溶液洗涤6~8次。将沉淀连同滤纸置于原烧杯中,加入2mLHCl、20mL水,用玻璃棒将滤纸捣碎,加热溶解沉淀,加入20~25mL草酸丙酮溶液加热至近沸,加入1滴麝香草酚蓝指示剂,用(1+4)NH4OH调节溶液变橙色(pH1.5~2.5),加水稀释至80mL,保温1h以上,取下冷却,用致密滤纸过滤。将沉淀全部转移到滤纸上,用草酸溶液洗涤7~8次,将沉淀连同滤纸置于瓷坩埚中低温灰化,于高温炉中650~700℃灼烧0.5h,取出冷却,将灼烧物移入250mL烧杯中,加入15mLHCl及0.5~1mLH2O2,加盖表面皿,加热溶解。用下列方法之一分离钍。

苯甲酸沉淀分离法。于上述盐酸溶液中,加2滴麝香草酚蓝指示剂,用(1+1)NH4OH中和至橙红色,加入0.1~0.3gNH2OH·HCl还原Ce4+,再加(1+1)NH4OH至橙红色(pH2.0~2.2),加热煮沸,加入100mL10g/L苯甲酸溶液,微沸片刻,趁热过滤,以2g/L苯甲酸溶液洗涤8次,滤液收集于烧杯中,将沉淀连同滤纸置于瓷坩埚中低温灰化后,于850℃灼烧0.5h,即得氧化钍。

六次甲基四胺分离法。于上述盐酸溶液中,用水调整体积为50~60mL,加入0.1g~0.2g抗坏血酸还原四价铈,加2滴甲基橙指示剂,用(1+1)NH4OH中和至刚变橙色[如有浑浊,滴加(1+1)HCl至溶液清亮]。加热至近沸,在搅拌下加入六次甲基四胺溶液至甲基橙刚变黄色(pH4.4~5.0),补加抗坏血酸少许,冷至室温过滤,以六次甲基四胺-氯化铵洗液(pH4.4~5.0)洗涤8~10次,滤液收集于烧杯中,沉淀连同滤纸置于瓷坩埚中低温灰化,置于高温炉中850℃灼烧0.5h,即得氧化钍。

将分离钍后的滤液,加几滴酚酞指示剂用氢氧化铵中和至红色并过量10mL,加热至近沸,使沉淀凝聚,取下冷却,过滤,以NH4Cl-NH4OH溶液(pH8.6~9.0)洗涤6~8次,将沉淀连同滤纸移入原烧杯中,加15mL草酸丙酮溶液和85mL水,充分搅拌。加2滴麝香草酚蓝指示剂,用(1+1)NH4OH中和至橙红色(pH1.5~2.5),加热保温1h以上,过滤,用草酸溶液洗涤8~10次,将沉淀连同滤纸置于已恒量的瓷坩埚中低温灰化,置于高温炉中于850℃灼烧0.5h,取出冷却,迅速称量,灼烧至恒量即得稀土氧化物总量。

试样中含铌、钽或锆、钛较高时,可用氟化物沉淀稀土,分离除去:将沉淀连同滤纸置于塑料烧杯中,加5mLHCl,将滤纸捣碎,再加10mLHF、2gNH4F、90mL热水,置于80~90℃水浴中保温1h,取下冷却,用塑料漏斗或涂蜡的玻璃漏斗以中速滤纸过滤,用HF-HCl洗液洗涤6~8次,滤液弃去。将沉淀连同滤纸置于原烧杯中,加20mLHNO3浸透滤纸,加入3~5mLHClO4,用玻璃棒将滤纸捣碎,加盖表面皿,置于电热板上加热至冒白烟20min,取下,冷却后,加入20mLHCl和50mL水,加热溶解盐类(如有白色不溶物,即是二氧化硅。如测定钍,应过滤除去)。然后按前述方法之一分离钍,并以草酸沉淀法测定稀土氧化物总量。

按下式计算稀土氧化物总量的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w[RE2O3(T)]为稀土氧化物总量的质量分数,%;m1为试样溶液中稀土氧化物的质量,g;m0为试样空白溶液中稀土氧化物的质量,g;m为称取试样质量,g。

注意事项

1)草酸稀土的定量沉淀,必须严格控制酸度,并尽量避免引入碱金属离子;否则将增加草酸稀土的溶解度,使结果偏低。特别是钇组稀土的定量沉淀,损失更为显着。

2)氢氧化铵必须不含碳酸根,否则钙分离不完全。不含二氧化碳氢氧化铵的处理方法如下:用两个塑料杯分别装入浓氢氧化铵及水各半杯,同时放入密闭容器内,一天后水吸收氨,即成为无二氧化碳氢氧化铵。

61.3.1.2 PMBP-苯萃取分离-偶氮胂Ⅲ光度法

方法提要

在pH2.4~2.8缓冲溶液中,偶氮胂Ⅲ与稀土元素生成蓝绿色配合物,可用作光度法测定。铁、钍、铀,锆、铪,钙、铅、铜、铋、钨和钼等元素干扰测定,必须预先分离除去。

试样经碱熔,三乙醇胺提取,滤去硅、铝、铁、钨和钼等杂质。沉淀用盐酸溶解,在pH5.5的乙酸-乙酸钠缓冲溶液中,PMBP与稀土金属离子生成的配合物为苯所萃取。同时被萃取的还有钍、铀、钪、铋、铁(Ⅲ)、铌,钽、铅、铝和少量钙、锶、钡、锰,以及部分钛、锆的水解物(调节pH前加入磺基水杨酸可掩蔽钛、锆)。用甲酸-8-羟基喹啉溶液反萃取,除稀土元素和部分铅转入水相外,其他元素仍留在有机相中被分离。

仪器

分光光度计。

试剂

过氧化钠。

三乙醇胺。

盐酸。

氢氧化铵。

1-苯基-3-甲基-苯基酰吡唑酮(PMBP)-苯溶液(0.01mol/L)称取2.78gPMBP溶于1000mL苯中。

乙酸-乙酸钠缓冲溶液(pH5.5)称取164g无水乙酸钠(或272g结晶乙酸钠),溶解后过滤,加入16mL冰乙酸,用水稀释至1000mL。以精密pH试纸检查,必要时用(5+95)HCl或氢氧化钠溶液调节。

甲酸-8-羟羟基喹啉反萃取液(pH2.4~2.8)称取0.15g8-羟基喹啉,溶于1000mL(1+99)甲酸中。用精密pH试纸检查。

偶氮胂Ⅲ溶液(1g/L)过滤后使用。

抗坏血酸溶液(50g/L)。

磺基水杨酸溶液(400g/L)。

六次甲基四胺溶液(200g/L)。

稀土氧化物标准储备溶液ρ[RE2O3(T)]=200.0μg/mL称取于0.1g从本矿区提纯的稀土氧化物或按矿区稀土元素比例配制的铈、镧、钇氧化物(850℃灼烧1h),加5mLHCl及数滴H2O2,加热溶解,冷却后,移入500mL容量瓶中,用水稀释至刻度,混匀。

稀土氧化物标准溶液ρ[RE2O3(T)]=5.0μg/mL用稀土氧化物标准储备溶液稀释制得。

混合指示剂溶液取0.15g溴甲酚绿和0.05g甲基红,溶于30mL乙醇中,再加70mL水,混匀。

强碱性阴离子树脂水洗至中性,用(1+9)HCl浸泡2h,再水洗至中性,用150g/LNH4Ac溶液浸泡过夜,水洗至中性备用。树脂再生处理相同。

校准曲线

移取0mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL稀土氧化物标准溶液,分别置于一组分液漏斗中,用水补足体积至10mL,加入1mL抗坏血酸溶液、1mL磺基水杨酸溶液及2滴混合指示剂,混匀。用(1+4)NH4OH调节至溶液刚变绿色(有铁存在时是橙紫色),再用(5+95)HCl调至紫色,此时应约pH5(必要时可用精密pH试纸检查)。加入3mL乙酸-乙酸钠缓冲溶液,15mLPMBP-苯溶液,萃取1min,放置分层后,弃去水相。再加入3mL缓冲溶液,稍摇动洗涤一次,水相弃去,用水洗分液漏斗颈。于有机相中,准确加入15mL甲酸-8-羟基喹啉反萃取液,萃取1min,分层后,水相放入干燥的25mL比色管中。有机相可收集回收使用。于比色管中准确加入1mL偶氮胂Ⅲ溶液,混匀。用3cm比色皿,以试剂空白溶液作参比,于分光光度计波长660nm处测量其吸光度,绘制校准曲线。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样,置于刚玉坩埚(或铁坩埚)内,加3~4gNa2O2,拌匀,再覆盖一薄层。在700℃熔融5~10min,冷却,放入预先盛80mL(5+95)三乙醇胺溶液的烧杯中,用水洗出坩埚(如氢氧化物沉淀太少,加入约含10mgMg的MgCl2溶液作载体),加热煮沸10min以逐去过氧化氢。用水稀释至120mL,搅匀。冷后用中速定性滤纸过滤,用10g/LNaOH溶液洗涤烧杯及沉淀6~8次。以数毫升热的(1+1)HCl溶解沉淀,用50mL容量瓶承接,用水洗涤并稀释至刻度,混匀。

分取10.0mL试液,置于分液漏斗中,以下按校准曲线进行测定。

按下式计算稀土氧化物总量的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w[RE2O(T)]为稀土氧化物总量的质量分数,%;m1为从校准曲线上查得分取试样溶液中稀土氧化物的质量,μg;m0为从校准曲线上查得分取试样空白溶液中稀土氧化物的质量,μg;V1为分取试样溶液体积,mL;V为试样溶液总体积,mL;m为称取试样的质量,g。

注意事项

1)稀土元素在矿物中一般以铈、镧、钇为主,在不同的矿物中,相互间的比例也各不相同。由于钇的相对原子质量最小,故其摩尔吸光系数最大。因此,配制混合稀土标准溶液时,必须与被测试液中稀土元素的组分,特别是铈和钇的比例大致相似。目前,稀土氧化物标准大多是选择所分析的矿区中具有代表性的矿石,从中提取纯稀土氧化物而配制。

2)PMBP-苯萃取稀土适宜的酸度为pH5.5。稀土元素由于“镧系收缩”,离子半径从镧到镥逐渐变小,故镧系元素的碱性由镧到镥逐渐减弱。当pH<5,铈组稀土萃取不完全,而钇组稀土可完全萃取;如pH>5,铈组能萃取完全,而钇组有所偏低。增加PMBP浓度有利于提高稀土元素的萃取率。浓度太大,反萃取时大量PMBP被带下来,给以后操作增加困难。

3)稀土氧化物能吸收空气中的二氧化碳和水分,氧化钕和氧化镧吸收作用最强。铈及钇组氧化物吸收作用最弱,氧化钇能吸收氨,故必须于850℃灼烧1h逐去上述杂质,并在干燥器中冷却后称取。

4)硫化矿需预先在高温炉中灼烧将硫除去。如试样中含铁量不高,又能用酸分解时可用王水或高氯酸分解,含硅高的可滴加少量氢氟酸。

5)磷酸根的存在能抑制稀土-PMBP配合物的形成,使萃取不完全,0.5~1mg五氧化二磷即有干扰,可在萃取前用强碱性阴离子树脂将磷静态吸附除去,处理后60mg以下磷酸根不干扰(将稀土沉淀为草酸盐或氟化物也可使磷酸根分离)。除磷酸根操作:于原烧杯中加入一小片刚果红试纸,用(1+1)NH4OH调节至刚变为红紫色,加2mL冰乙酸、2~3g强碱性阴离子树脂。混匀后,加入15mL六次甲基四胺溶液,过滤入50mL容量瓶中,用水洗净并稀释至刻度,混匀。

6)铅与偶氮胂Ⅲ生成有色配合物,少量存在便干扰稀土测定,使结果偏高。可在萃取前加入2mL20g/L铜试剂溶液使之与铅配位,以消除铅的影响。在反萃取稀土后的有机相中,再用(1+1)盐酸将钍反萃取,利用此性质还可以连续测定钍。

61.3.1.3 阳离子交换树脂分离-重量法

方法提要

在盐酸溶液中稀土元素在阳离子交换树脂上的分配系数与锆、铪和钪相近,小于钍,稍大于钡,比其他元素均大很多,可以用不同浓度的HCl洗提分离,在交换和淋洗液中加入少量酒石酸可有效的除去锆、铪、铌和钽等。在2mol/LHCl中加入乙醇能有效地淋洗铁、铝、钛、铀及大部分钙等,并可防止重稀土的损失。用3mol/LHCl-(1+4)乙醇洗提稀土元素,并用氢氧化铵沉淀稀土元素而与残留的钙和钡分离,最后灼烧为氧化物称量。

试剂

碳酸钠。

过氧化钠。

酒石酸。

氢氧化钠。

盐酸。

酒石酸溶液

盐酸-酒石酸淋洗液(0.2mol/LHCl-20g/L酒石酸)称取20g酒石酸溶于水中,加入16.7mLHCl,用水稀释至1000mL。

盐酸-酒石酸洗涤液[(5+95)HCl-20g/L酒石酸]。

盐酸-乙醇淋洗液A[2mol/LHCl-(1+4)乙醇]取300mLHCl,加360mL无水乙醇,用水稀释至1800mL(用时配制)。

盐酸-乙醇淋洗液B[3mol/LHCl-(1+4)乙醇]取500mLHCl,加400mL无水乙醇,用水稀释至2000mL(用时配制)。

离子交换色谱柱20cm×1.13cm,树脂Zerolit225H型,60~100目。

树脂的处理:先用水浸透,再用6mol/LHCl浸泡过夜,水洗至中性,装入交换柱中。先用200mL盐酸-乙醇淋洗液B淋洗,继用2.3mol/LH2SO4淋洗,最后用150~200mL水分两次淋洗至中性备用。

分析步骤

称取0.2~0.5g(精确至0.0001g)试样,置于刚玉坩埚中,加入1~2gNa2CO3和2~3gNa2O2,置于高温炉中于650~700℃熔融5~10min。冷却后,置于250mL烧杯中,用热水提取。洗出坩埚,用水稀释至约100mL,加热煮沸数分钟,冷却。用致密滤纸过滤,以20g/LNaOH溶液洗涤沉淀5~6次,用热的(1+1)HCl溶解沉淀于原烧杯中,用热水洗至无氯离子,在电热板上蒸干除硅。然后加3mLHCl润湿残渣,加入2g酒石酸、30mL水,加热溶解盐类。用致密滤纸过滤于150mL烧杯中,以热的(5+95)HCl洗涤烧杯及滤纸至70mL体积,再用热水洗至l00mL,混匀。将溶液全部移入离子交换柱的储液瓶中,用30mLHCl-酒石酸洗涤液洗涤烧杯,以0.5~0.8mL/min的速度进行交换。待溶液流完后继续用300mL盐酸-酒石酸淋洗液以同样流速淋洗磷酸根、锆、铌和钽。溶液流完后用100mL水淋洗,再用盐酸-乙醇淋洗液A淋洗铁、铝、钛、锰、铀、钙和镁等,用450mL盐酸-乙醇淋洗液B淋洗稀土元素。将稀土元素洗出液加热蒸发至约15mL,用水稀释至100mL,煮沸。加浓氢氧化铵至出现稀土沉淀,再过量溶液体积的10%,冷却。用中速滤纸过滤,以(5+95)NH4OH洗涤烧杯和沉淀6~7次。将沉淀连同滤纸一起移入已恒量的瓷坩埚中,低温灰化,在高温炉中850℃灼烧至恒量,即得稀土氧化物总量。

稀土氧化物总量含量的计算参见式(61.1)。

注意事项

1)如试样中含有锶、钡较高,将用盐酸溶解沉淀的溶液中,加氢氧化铵沉淀稀土元素,并过量10%氢氧化铵,以分离锶、钡。氢氧化物沉淀再用热(1+1)HCl溶解,然后蒸干除硅。

2)若要测定钍,可在淋洗稀土后用2.8mol/LH2SO4溶液淋洗钍。

61.3.1.4 阳离子交换树脂分离-偶氮胂Ⅲ光度法

方法提要

在1~2mol/LHCl中稀土元素在强酸性阳离子交换树脂上的分配系数很大,但随稀土元素的原子序数增加而减小,铈组稀土元素的分配系数大于钇组稀土元素。在0.5~1.0mol/LHCl中稀土元素、锆和钍被阳离子交换树脂强烈吸附,钛、U6+、Fe2+、锰、镁、Fe3+、钙及铝等也部分或全部被吸附,可用1.25mol/LHCl将上述元素淋洗下来,而稀土元素、锆和钍仍留在柱上。

在H2SO4溶液中,锆的分配系数变得很小,而稀土元素的分配系数反而增大。因此试样中含微量锆时,可在(1+99)H2SO4或(2+98)H2SO4中进行交换,以除去锆,而钍仍留在柱上。或在1.25mol/LHCl淋洗后,继续用0.36mol/LH2SO4溶液洗除锆,最后用3mol/LHCl淋洗稀土元素,用偶氮胂Ⅲ光度法进行测定。

仪器

分光光度计。

试剂

过氧化钠。

盐酸。

硫酸。

抗坏血酸溶液(10g/L)。

氢氧化钠溶液(0.1mol/L)。

氯化钠溶液(20g/L)。

苯二甲酸氢钾溶液(0.2mol/L)。

偶氮胂III溶液(1g/L)。

酚酞指示剂(10g/L)。

阳离子树脂交换色谱柱Zerolit225树脂,H+型,50~100目;柱1.5cm×10cm;流速为1~1.5mL/min。树脂再生:用50mL水洗去柱中残留盐酸,用50mL200g/LNH4Cl溶液使树脂转变为铵型,50mL水洗去残留的NH4Cl,再以240mL40g/L草酸溶液淋洗钍,50mL水洗去残留在柱中的草酸铵溶液,以100mL4mo1/LHCl使之变为氢型,最后加入50mL(1+99)H2SO4流过交换柱,作下次使用。

稀土氧化物标准溶液ρ[RE2O3(T)]=10.0μg/mL配制方法参见61.3.1.2PMBP-苯萃取分离-偶氮胂Ⅲ光度法。

校准曲线

移取0mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL稀土氧化物标准溶液,分别置于一组25mL容量瓶中,加水至10mL左右,加入0.5mL新配制的抗坏血酸溶液及1滴酚酞指示剂,用氢氧化钠溶液中和至红色出现,再用0.1mol/LHCl溶液中和至红色褪去。加入2.8mL0.2mol/LHCl溶液及3.0mL0.2mol/L苯二甲酸氢钾溶液,混匀,加入1mL1g/L偶氮胂III溶液,以水稀释至刻度,混匀。在分光光度计上660nm波长处,用1cm比色皿,以水作参比测量吸光度,绘制校准曲线。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样,置于刚玉坩埚中,加入4~6gNa2O2,搅匀,再覆盖一层,置于已升温至650~700℃的高温炉中,保持此温度至刚全熔。取出冷却,放入已盛有60mL水的250mL烧杯中,盖上表面皿,待剧烈作用停止后,用水洗出坩埚。置于电炉上加热煮沸15~20min,使溶液体积浓缩至40mL以下。取下,加水稀释至200mL左右,放置澄清后,用中速定性滤纸过滤,以20g/LNaCl溶液洗涤烧杯及滤纸共8~10次,滤液弃去。用50mL热的(8+92)H2SO4溶液将沉淀溶解于原烧杯中,用水洗涤滤纸6~8次。将烧杯置于电热板上加热,并蒸发至冒三氧化硫白烟片刻。取下冷却,加水至100mL(若含有锆则加入1gNa2HPO4),加热煮沸。取下冷却后,用慢速定性滤纸过滤(除去二氧化硅及锆),以(1+99)H2SO4溶液洗涤烧杯及滤纸共8~10次,滤液及洗液用400mL烧杯收集,并用水稀释至250~300mL。将上述溶液倾入已再生好的阳离子交换色谱柱中,以1~1.5mL/min的速度流过,依次用150mL(1+99)H2SO4、500mL1.25mol/LHCl洗提除去铁、镁、锰、铀、铁、铝等元素,流出液均弃去。然后用300mL3mol/LHCl淋洗稀土元素,以400mL烧杯承接,置于电热板上加热浓缩至约5mL,用水移入50mL容量瓶中并稀释至刻度,混匀。

分取部分试液(约含40μg的稀土元素)于25mL容量瓶中,以下按校准曲线进行测定。

稀土氧化物总量含量的计算参见式(61.2)。

阅读全文

与稀土全相与离子相检测方法相关的资料

热点内容
锻炼阴茎有效的方法 浏览:602
定点跳大绳的技巧和方法视频 浏览:636
如何出手古玩方法 浏览:809
有什么剥玉米籽的快速方法 浏览:420
怎么挑新天珠最简单方法 浏览:872
美的热水器的安装方法 浏览:609
雪铁龙真假机油鉴别方法 浏览:920
研究对象方法思路一样算剽窃吗 浏览:736
女性普拉提斜方肌锻炼方法 浏览:790
写眼字的技巧和方法 浏览:217
教育类论文要写研究方法吗 浏览:721
电脑连接文件夹的方法 浏览:972
bim空心放样的方法步骤 浏览:101
阿克苏萝卜种植时间和方法 浏览:298
家用照明线安装方法 浏览:743
苹果电脑加速方法 浏览:788
辟谷养生最佳方法 浏览:190
颈椎椎管狭窄的治疗方法 浏览:813
一加6耳机音效设置在哪里设置方法 浏览:220
章飞一绝祛斑液使用方法 浏览:116