㈠ 伽罗瓦的群理论的发现对现代数学产生了怎样的影响
伽罗瓦理论不仅对近代代数学产生了深远影响,也渗透到数学的其他许多分支。
伽罗瓦理论是以伽罗瓦的名字命名的,用群论观点研究代数方程求解的理论。它源于代数方程的根式解问题。早在公元前几世纪,巴比伦人用配方法解二次方程之后,经历两千多年的漫长岁月,直到16世纪意大利数学家才给出三次方程的求根公式,即卡尔达诺公式。
基本内容
1、域的正规可分扩张定义为伽罗瓦扩张。
2、若K/F为伽罗瓦扩张,K上的F-自同构的集合构成一个群,定义为伽罗瓦群,记为Gal(K/F)。
3、对于H是Gal(K/F)的子群,称K中在H中任意元素作用下不动元的集合为H的不动域,这是一个中间域。
4、对于伽罗瓦扩张,扩张的中间域和伽罗瓦群的子群有一一对应的关系。
5、F⊂E⊂K形式的伽罗瓦扩张,E/F是正规扩张当且仅当Gal(K/E)是Gal(K/F)的正规子群。
6、在特征为0的域上,多项式的根可用根式解当且仅当其分裂域扩张的伽罗瓦群是可解群。广义上的伽罗瓦理论还包括尺规作图,诺特方程,循环扩张,库默尔理论等内容。
㈡ 一元七次方程求根公式
伽罗瓦可解性定理。
伽罗瓦工作的核心部分是可解性判别准则:当且仅当多项式方程的群是可解群(伽罗瓦群),这个方程可用代数的方法求解。